

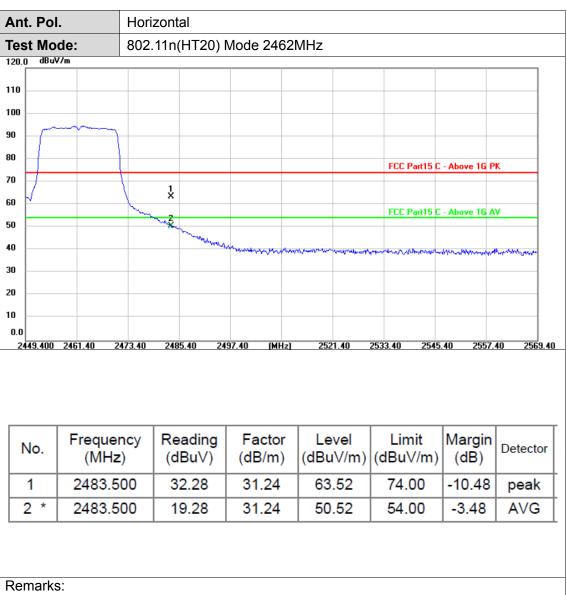
۸nt.	Pol.			Hori	zont	al										
est	Mod	de:		802	.11g	Mode	e 24	462MH	Z							
20.0	dBu¥	/m														
10																
	~	~~~														
				l								FCC	Part15 C	- Above 16	PK	
					1 X											
	,			han	- 3							FCC	Part15 C	- Above 1G	AV	
					×	warman Here										
, [and the second second	al frank al	~~~	wywywtw by	street and the second s	anter mari	enter and the last	and the	Condence
0.0																
244	8.200	2460.20	24	72.20	248	4.20	249	6.20 (MHz)	252	0.20	2532.20	2544	.20 255	6.20	2568.2
N	o.	Frec (N	luen 1Hz)	-		ading BuV)		Fact (dB/r			vel IV/m)		mit iV/m)	Margi (dB)		etecto
1		248	3.50	0	2	8.63		31.2	4	59	.87	74	.00	-14.1	3 p	beak
2	*	248	3.50	0	1	8.14		31.2	4	49	.38	54	.00	-4.62	2 /	AVG

Ant.	Pol.			Verti	ical													
Test	Mod	le:		802.	11g	Mode	e 24	62M	Hz									
120.0	dBuV	/m																_
110																		
100 -																		
90																		
80		~~~~~	١															
ļ													F	CC Part1	5 C - Al	ove 1G	PK	
70			t															
60					1 X								F	CC Part1	5 C - At	ove 1G	AV	
50 -			<u>\</u>	many	. 2													
40					** ****	him		hallow	show and	had the second second	Wellow and The	ward		have been a	whiter	komunda	www.when.wh	randya
30																		-
20																		-
10 -											_							_
0.0 2451	1.800	2463.80	24	75.80	248	7.80	249	9.80	(MHz	1 3	2523.8	Ω	2535.8	0 25	47.80	255	9.80 2	571.80
No	o.	Freq (M	uen Hz)			ading BuV)		Fac (dB	ctor /m)		.eve 3uV/			imit uV/m		argir dB)	Dete	ctor
1	*	2483	3.50	0	2	4.17		31.	24	5	5.4	1	7	4.00	-1	8.59) pea	ak
2		2483	3.50	0	1	0.29		31.	24	4	1.5	3	7	4.00	-3	32.47	' pea	ak
Rem																	-	

Page 52 of 99

Remarks:

nt. Po	ol.	Hori	zontal					
est Mo	ode:	802	.11n(HT20)	Mode 2412	MHz			
).0 dBu	uV/m		, ,					
,								
)								
								-
						500 D . 145 C	AL 10 DK	
						FCC Part15 C	Above 16 PK	\rightarrow
						1×		
						FCC Part 10 C	Above 1G AV	<u> </u>
						we have a start when the start when		
amore	Manical Manual Manual State	monte	ware man when	manan	ange Harris Martin M			
o								
2304.600	2316.60	2328.60	2340.60 23	52.60 (MHz)	2376.60 2	2388.60 2400.	60 2412.6	0 2424.
No.	Frequ (Mi	uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
1	2390	.000.	31.70	30.84	62.54	74.00	-11.46	peak
2 *	2390	000.	18.64	30.84	49.48	54.00	-4.52	AVG


Page 53 of 99

Ant. Pol	-	Vert	ical					
est Mo	de:	802	.11n(HT20)	Mode 2412	MHz			
20.0 dBu\	//m							
10								
00								
o								
o						FCC Part15 C	- Above 1G Pl	
0							- ADOVE TO FI	
0						FCC Part15 C	- Above 1G A	
0						- not		
0 manual	-	Norman	munan	and the forest and the state of the	a almanta and a second and	was the second		
0								
0								
0								
2305.200	2317.20	2329.20	2341.20 2	353.20 (MHz)	2377.20	2389.20 2401.	.20 2413.2	20 2425.2
	Freque		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.	(MH	-)		· ·				
No. 1	(MH) 2390.0		24.85	30.84	55.69	74.00	-18.31	peak

Remarks:

Page 55 of 99

nt. Po	I.	Vert	lical					
est Mo	ode:	802	.11n(HT20) Mode 2462	MHz			
0.0 dB	JV/m							
o								
0								
-		_						
\mathbb{H}						FCC Part15 C	- Above 1G F	ж
1								
		\rightarrow	1 X			ECC Partie C	- Above 1G A	
		- Anna	2 *****			FLL Par(15 L	- MDOVE TU F	
			and a second and a second and a	and a manufacture of an	en an	and and a street a street a street	way the strate of the strate o	upreliber up
.0								
2450.600	2462.60	2474.60	2486.60	2498.60 (MHz)	2522.60	2534.60 2546	.60 2558	.60 2570.
No.	Frequ		Reading			Limit	Margin	Detector
1	(MF 2483	· · ·	(dBuV) 25.87	(dB/m) 31.24	(dBu V/m) 57.11	(dBuV/m) 74.00	(dB) -16.89	nook
								peak
2 *	2483	.500	15.13	31.24	46.37	54.00	-7.63	AVG

Page 56 of 99

2					Pag	e 57 of 9	99			Re	por	t No.: C7	C202	2127
Ar	nt. Po	I	Hori	zontal										
Те	st Mo	de:	802.	.11n(⊢	IT40) I	Mode 24	22	ЛНz						
120	.0 dBu	V/m												1
110	ı													
100														
90														
80												V I		
70										FCC Pa	t15 C	- Above 1G Pl	K	
60									1 X					
50									2	FCC Par	t15 C	- Above 1G A	/	
40						- and many when	and	mm	- Steeler Bartan					
30	waterood	makenman	man	man	admentand	-and marked								
20														1
10 0.1	0													
	2293.750	2308.75 2	323.75	2338.	75 23	53.75 (M	(Hz)	238	3.75	2398.75	2413.	75 2428.7	75 24	43.75
	No.	Frequer (MHz			ding uV)	Facto (dB/m			vel V/m)	Limi (dBuV)		Margin (dB)	Detec	tor
	1	2390.0	00	31	.57	30.84	4	62	.41	74.0	0	-11.59	pea	k
	2 *	2390.0	00	18	.21	30.84	4	49	.05	54.0	0	-4.95	AVC	3

Remarks:

2443.00

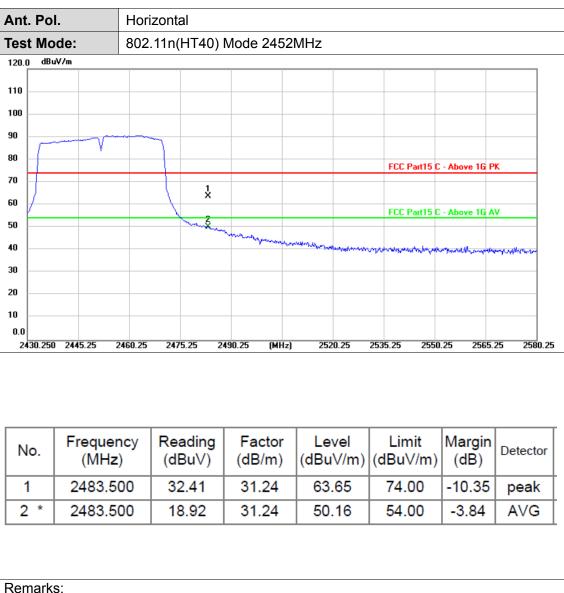
2383.00 2398.00 2413.00 2428.00

2293.000 2308.00

2323.00

2338.00

D	Page 58 of 99	Report No.: CTC
Ant. Pol.	Vertical	
Test Mode:	802.11n(HT40) Mode 2422MHz	
120.0 dBuV/m		
110		
100		
90		
80		FCC Part15 C - Above 1G PK
70		
60		1 X FQC Part15 C - Above 1G AV
50		2
40 anton more marked and	and an an an and the second	


2353.00 (MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	2390.000	24.58	30.84	55.42	74.00	-18.58	peak
2 *	2390.000	10.80	30.84	41.64	54.00	-12.36	AVG

Remarks:

EN

Page 59 of 99

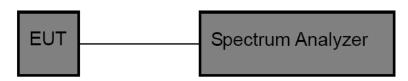
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	. Pol			Verti	cal										
Tes	t Mo	de:				(HT40)	Mode 2	4521	ИНz						
120.0						,									_
110															_
100															_
90															_
80					-										_
70			,		+						FCL	Part15 C	- Above 1G	РК	-
60				_		1 X					-				_
50	/				\rightarrow						FCL	Part15 C	- Above 1G	AV	-
40						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	monte	warmed a scalar	-	and and the second	in hope was	(married and the state	Aug. M. Kongar M. Harrockeller	-way way and the second street	
30															_
20															_
10				_											_
0.0 24	30.250	2445.	25 24	60.25	247	5.25 24	190.25	(MHz)	252	0.25	2535.25	2550.	25 256	5.25 2	2580.25
							1				I				
N	lo.		equer (MHz)			ading BuV)	Fac (dB/			vel V/m)		mit ıV/m)	Margii (dB)	n Dete	ctor
	1	24	183.50	00	2	5.23	31.2	24	56	.47	74	.00	-17.53	3 pe	ak
2	2 *	24	183.50	00	1	2.76	31.2	24	44	.00	54	.00	-10.00		/G
Rer	narks						-				-		-		

Page 60 of 99

Remarks:



3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

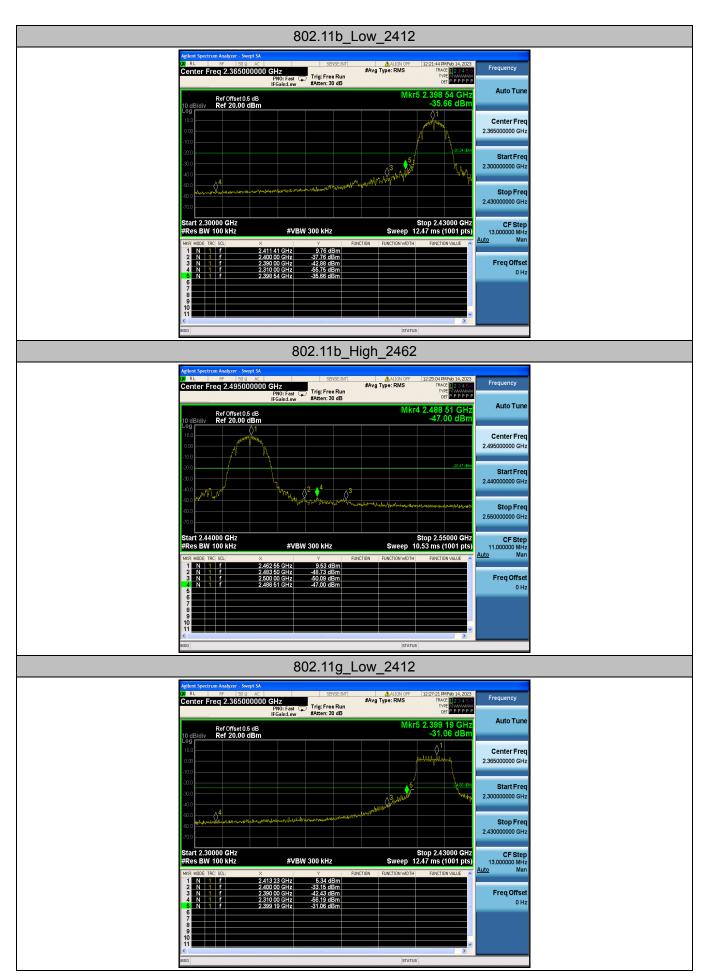
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- Measure and record the results in the test report.
- 4. Measure and record the results in the test

<u>Test Mode</u>


Please refer to the clause 2.4.

Test Results

(1) Band edge Conducted Test

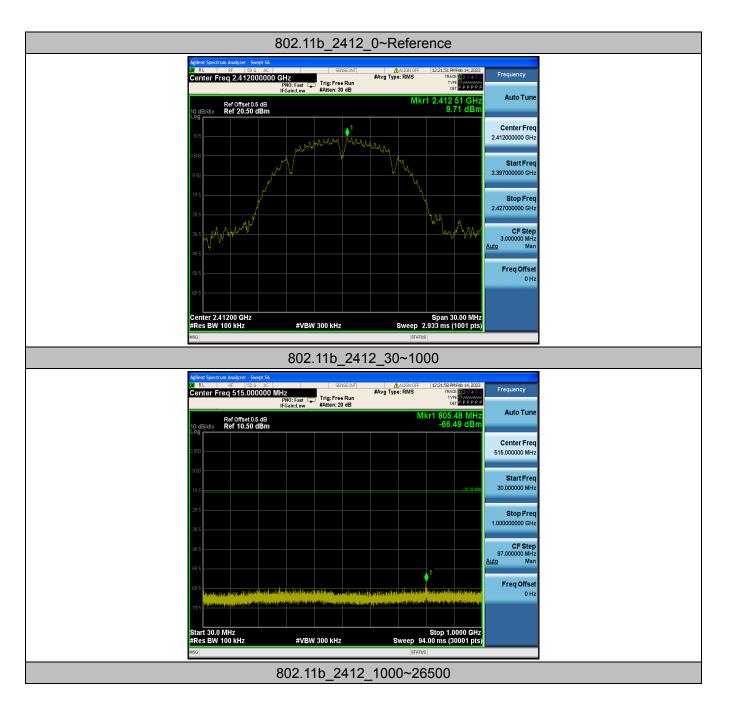
Test Mode	Frequency[MHz]	Ref Level[dBm]	Result[dBm]	Limit[dBm]	Verdict
802.11b	2412	9.76	-35.66	≤-20.24	PASS
002.110	2462	9.53	-47.00	≤-20.47	PASS
900 11 a	2412	5.34	-31.06	≤-24.66	PASS
802.11g	2462	4.80	-40.98	≤-25.20	PASS
902 11p(UT20)	2412	5.75	-27.77	≤-24.25	PASS
802.11n(HT20)	2462	4.97	-36.56	≤-25.03	PASS
902 11p(UT40)	2422	2.34	-30.58	≤-27.66	PASS
802.11n(HT40)	2452	0.68	-39.89	≤-29.32	PASS

EN

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Http://www.sz-ctc.org.cn Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

EN

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

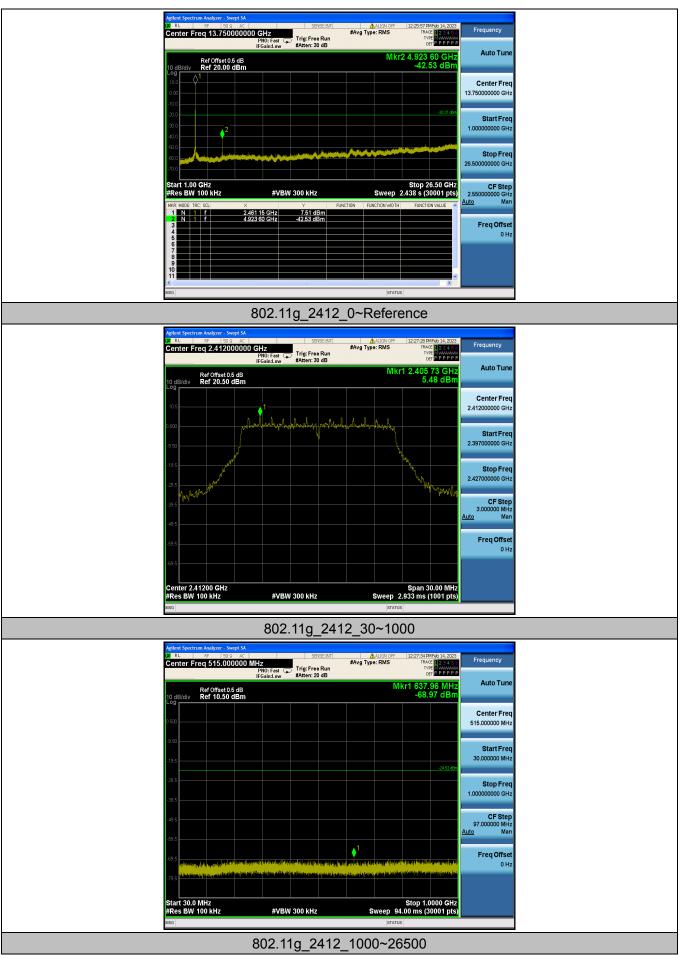

(2) Conducted Spurious Emissions Test

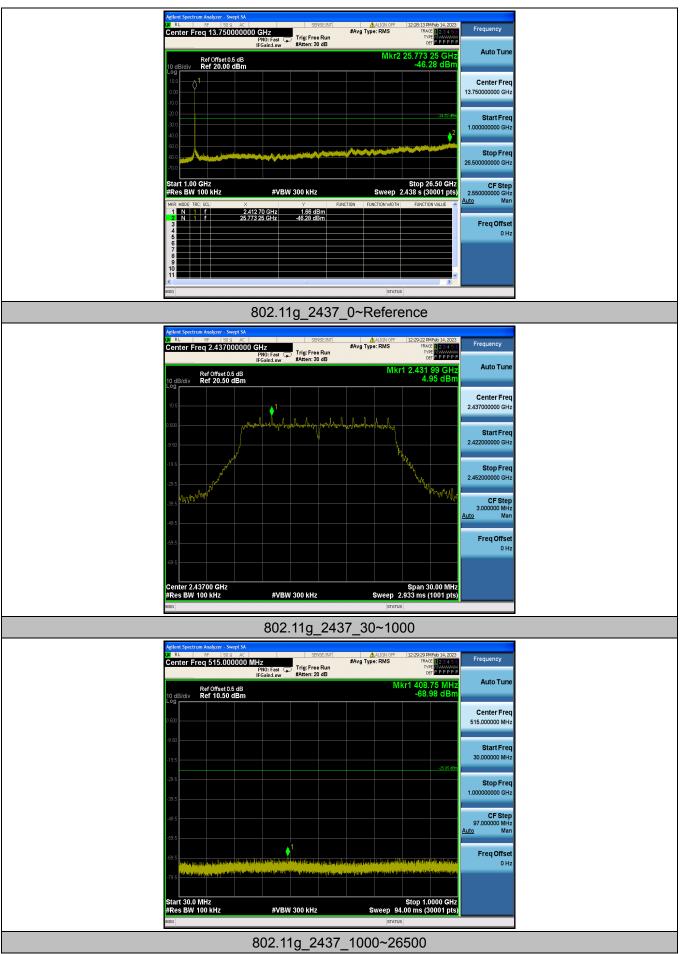
Test Mode	Frequency[MHz]	Freq Range [MHz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Reference	9.71	9.71		PASS
	2412	30~1000	9.71	-66.49	≤-20.29	PASS
		1000~26500	9.71	-42.37	≤-20.29	PASS
		Reference	9.81	9.81		PASS
802.11b	2437	30~1000	9.81	-65.87	≤-20.19	PASS
		1000~26500	9.81	-41.8	≤-20.19	PASS
		Reference	9.63	9.63		PASS
	2462	30~1000	9.63	-67.28	≤-20.37	PASS
		1000~26500	9.63	-42.53	≤-20.37	PASS
		Reference	5.48	5.48		PASS
	2412	30~1000	5.48	-68.97	≤-24.52	PASS
		1000~26500	5.48	-46.29	≤-24.52	PASS
		Reference	4.95	4.95		PASS
802.11g	2437	30~1000	4.95	-68.98	≤-25.05	PASS
		1000~26500	4.95	-45.82	≤-25.05	PASS
		Reference	4.80	4.80		PASS
	2462	30~1000	4.80	-69.33	≤-25.2	PASS
		1000~26500	4.80	-46.24	≤-25.2	PASS
		Reference	5.85	5.85		PASS
	2412	30~1000	5.85	-68.47	≤-24.15	PASS
		1000~26500	5.85	-46.32	≤-24.15	PASS
		Reference	5.33	5.33		PASS
802.11n(HT20)	2437	30~1000	5.33	-69.35	≤-24.67	PASS
		1000~26500	5.33	-46.35	≤-24.67	PASS
		Reference	5.02	5.02		PASS
	2462	30~1000	5.02	-69.26	≤-24.98	PASS
		1000~26500	5.02	-44.86	≤-24.98	PASS
		Reference	1.95	1.95		PASS
	2422	30~1000	1.95	-58.43	≤-28.06	PASS
		1000~26500	1.95	-46.3	≤-28.06	PASS
		Reference	1.89	1.89		PASS
802.11n(HT40)	2437	30~1000	1.89	-56.99	≤-28.11	PASS
		1000~26500	1.89	-45.88	≤-28.11	PASS
		Reference	0.88	0.88		PASS
	2452	30~1000	0.88	-56.18	≤-29.12	PASS
		1000~26500	0.88	-46.15	≤-29.12	PASS

EN

EN

Page 67 of 99


Page 68 of 99


Page 69 of 99

Page 70 of 99


Page 71 of 99

Page 72 of 99

Page 73 of 99

Page 74 of 99

Page 75 of 99

Page 77 of 99

Agilent Spectrum Analyzer - Si OM RL RF 50 Center Freq 13.750	2 AC SENSE:INT	ALIGN OFF 12:15:11 PMFeb 14, 2023 #Avg Type: RMS TRACE 12:24 - C TYPE DET P P P		
Ref Offset 0 10 dB/div Ref 20.00 Log	.5 dB dBm	Mkr2 25.970 45 GHz -46.15 dBm	Auto Tune	
			Center Freq 13.750000000 GHz	
-20.0			Start Freq 1.00000000 GHz	
-20 0 -60 0 -70 0			Stop Freq 26.50000000 GHz	
Start 1.00 GHz #Res BW 100 kHz		Stop 26.50 GHz Sweep 2.438 s (30001 pts)	CF Step 2.550000000 GHz <u>Auto</u> Man	
	2.434 80 GHz -2.50 dBm 25.970 45 GHz -46.15 dBm		Freq Offset 0 Hz	
MSG		STATUS		

3.5. DTS Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

Test Item	Limit	Frequency Range(MHz)
DTS Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- 5. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 6. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \ge 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

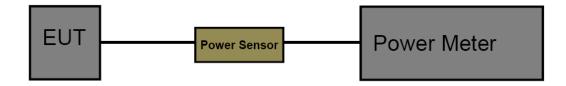
Test Results

Test Mode	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
802.11b	2412	9.520	>=0.5	PASS
	2437	9.080	>=0.5	PASS
	2462	9.080	>=0.5	PASS
802.11g	2412	16.320	>=0.5	PASS
	2437	16.320	>=0.5	PASS
	2462	16.320	>=0.5	PASS
802.11n(HT20)	2412	17.560	>=0.5	PASS
	2437	17.560	>=0.5	PASS
	2462	17.560	>=0.5	PASS
802.11n(HT40)	2422	35.440	>=0.5	PASS
	2437	35.440	>=0.5	PASS
	2452	35.440	>=0.5	PASS

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会


3.6. Conducted Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4:

Section	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC 15.247(b)(3)	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The maximum conducted output power may be measured using a broadband Peak RF power meter.
- 2. Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor.
- 3. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 4. Record the measurement data.

<u>Test Mode</u>

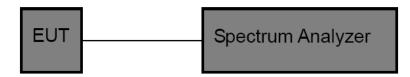
Please refer to the clause 2.4.

Test Result

EN

Test Mode	Frequency[MHz]	Result Avg [dBm]	Limit[dBm]	Verdict
802.11b	2412	18.62	<=30	PASS
	2437	18.81	<=30	PASS
	2462	18.75	<=30	PASS
802.11g	2412	16.44	<=30	PASS
	2437	16.63	<=30	PASS
	2462	16.53	<=30	PASS
802.11n(HT20)	2412	16.34	<=30	PASS
	2437	16.60	<=30	PASS
	2462	16.02	<=30	PASS
802.11n(HT40)	2422	15.93	<=30	PASS
	2437	15.97	<=30	PASS
	2452	15.79	<=30	PASS

Note: Test results increased RF cable loss by 0.5dB.


3.7. Power Spectral Density

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

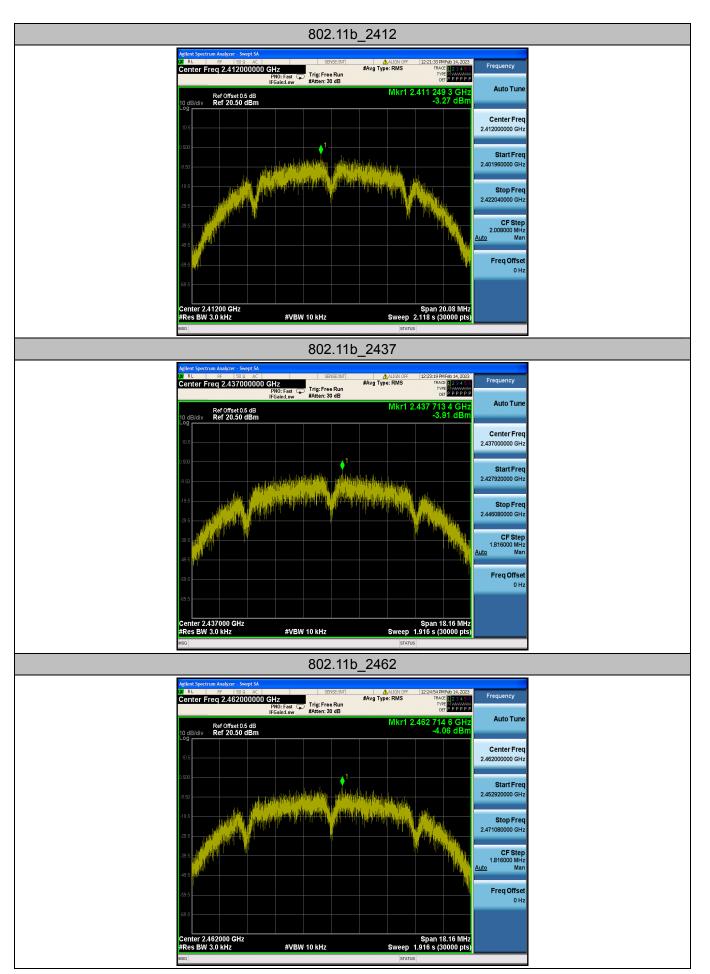
Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

Test Configuration

Test Procedure

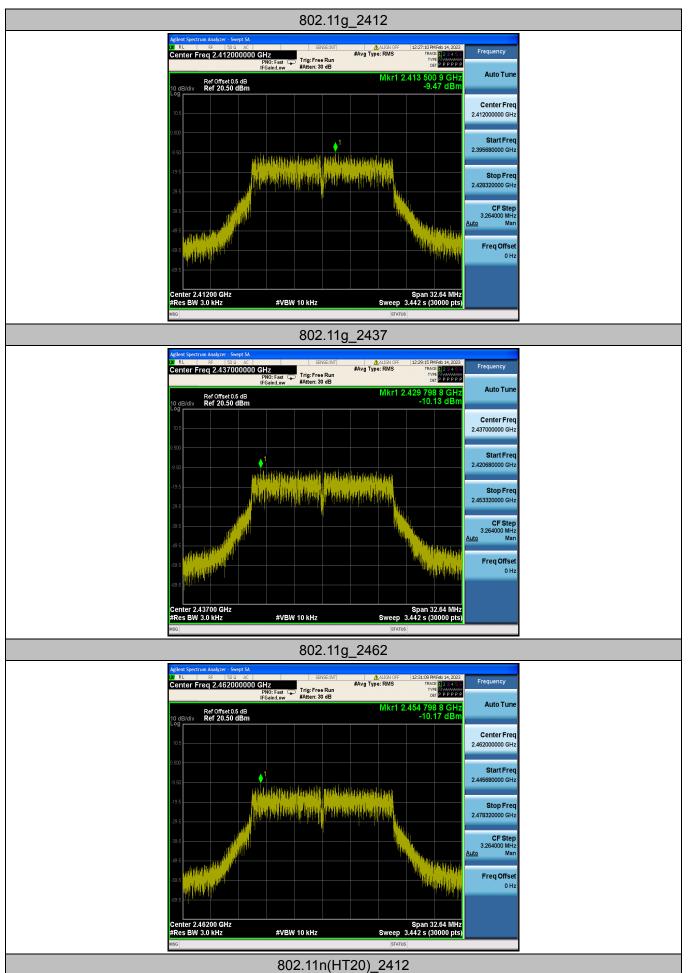
- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.
- 3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 3 kHz Set the VBW to: 10 kHz Detector: PK Sweep time: Auto Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.


Test Mode

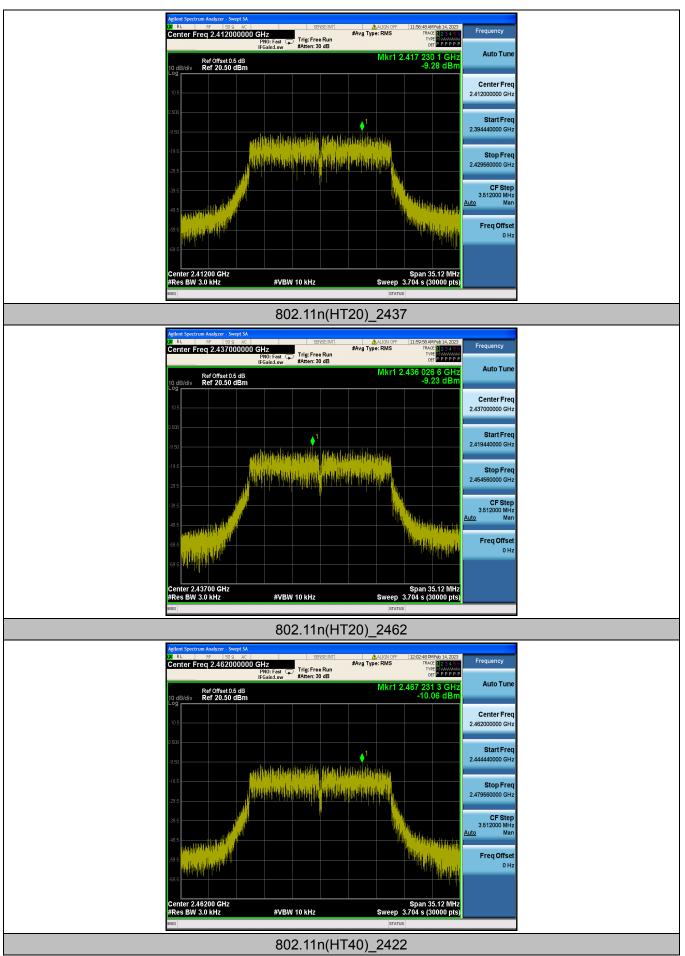
Please refer to the clause 2.4.

Test Mode	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
802.11b	2412	-3.27	<=8	PASS
	2437	-3.91	<=8	PASS
	2462	-4.06	<=8	PASS
802.11g	2412	-9.47	<=8	PASS
	2437	-10.13	<=8	PASS
	2462	-10.17	<=8	PASS
802.11n(HT20)	2412	-9.28	<=8	PASS
	2437	-9.23	<=8	PASS
	2462	-10.06	<=8	PASS
802.11n(HT40)	2422	-11.30	<=8	PASS
	2437	-11.74	<=8	PASS
	2452	-13.06	<=8	PASS



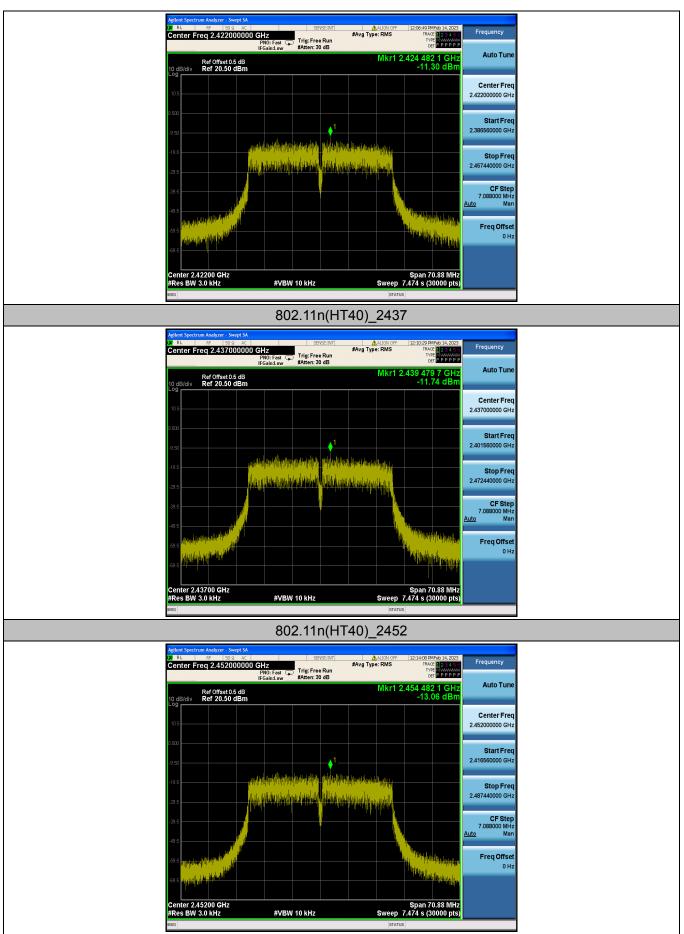
CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn


CTC Laboratories, Inc.

Tel.: (86)755-27521059

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn



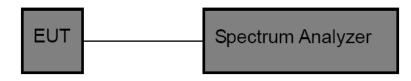
CTC Laboratories, Inc.

EN

 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

 Tel.: (86)755-27521059

 中国国家认证认可监督管理委员会



3.8. Duty Cycle

<u>Limit</u>

None, for report purposes only.

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting: Set analyzer center frequency to DTS channel center frequency.

Set the span to 0Hz

Set the RBW to 10MHz

Set the VBW to 10MHz

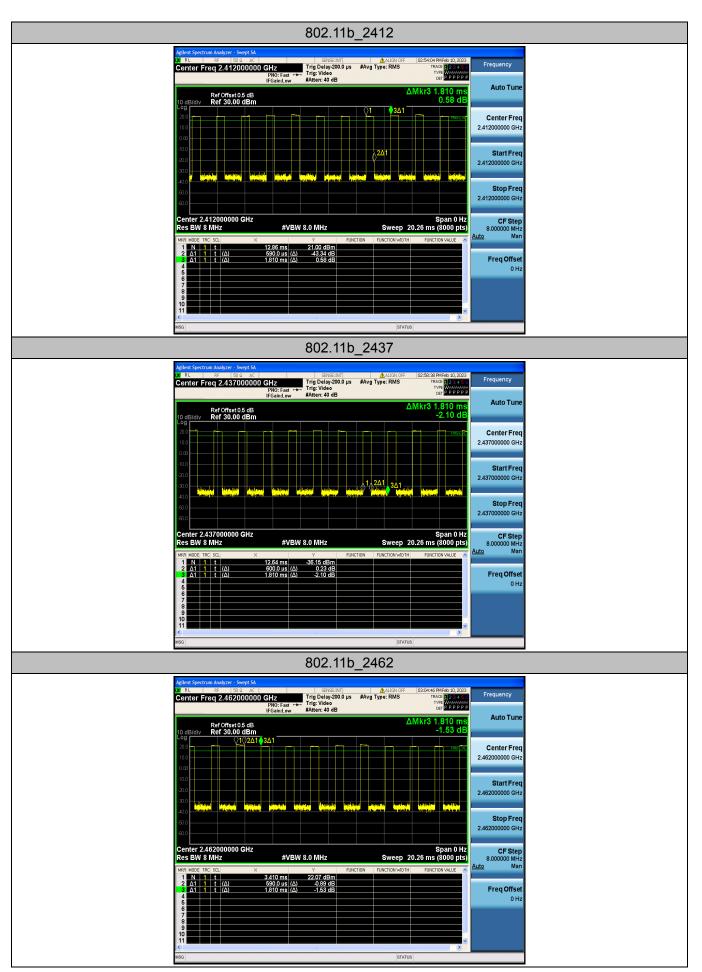
Detector: peak

Sweep time: auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

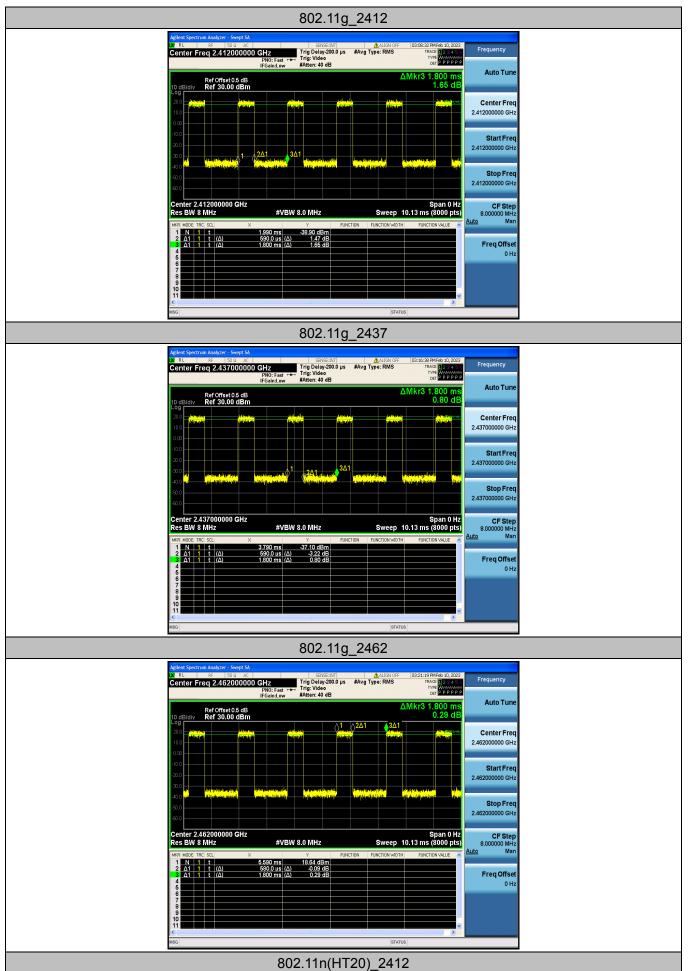
Test Mode

Please refer to the clause 2.4.


Test Result

Test Mode	Frequency [MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
802.11b	2412	0.59	1.81	32.60	1.69	2
	2437	0.60	1.81	33.15	1.67	2
	2462	0.59	1.81	32.60	1.69	2
802.11g	2412	0.59	1.80	32.78	1.69	2
	2437	0.59	1.80	32.78	1.69	2
	2462	0.58	1.80	32.22	1.72	2
802.11n(HT20)	2412	0.56	1.80	31.11	1.79	2
	2437	0.56	1.77	31.64	1.79	2
	2462	0.55	1.77	31.07	1.82	2
802.11n(HT40)	2422	0.58	1.80	32.22	1.72	2
	2437	0.58	1.80	32.22	1.72	2
	2452	0.58	1.80	32.22	1.72	2

Page 95 of 99



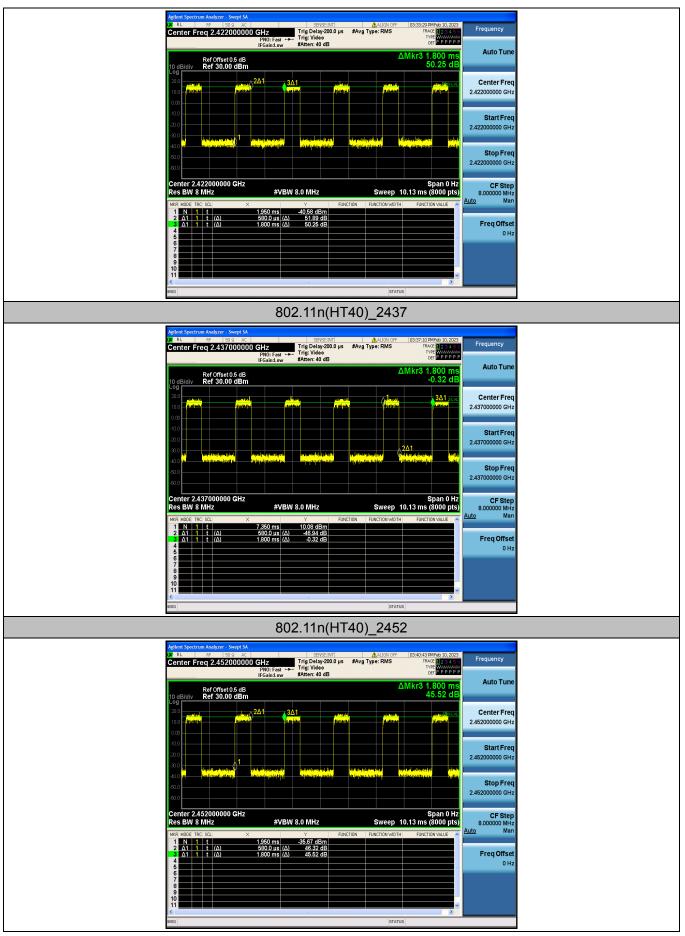
CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Http://www.sz-ctc.org.cn Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

EN

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn


Page 97 of 99

CTC Laboratories, Inc.

3.9. Antenna requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

<u>Test Result</u>

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.