

FCC TEST REPORT for Wahoo Fitness LLC

GEM 2 Radio Module Model No.: GEMSRB02

Prepared for: Wahoo Fitness LLCAddress: 90 W. Wieuca Road #110 Atlanta, GA 30342, United States

Prepared By Address Shenzhen Anbotek Compliance Laboratory Limited 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number:R011606512ZDate of Test:Jun. 20~ Jul. 28, 2016Date of Report:Jul. 28, 2016

TABLE OF CONTENT

D	•	· •	
Desci	rın	t101	n
D000	ιıρ	uo	

Test Report

Page

1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	4
1.2. Auxiliary Equipment Used during Test	5
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	5
2. TEST METHODOLOGY	6
2.1. Summary of Test Results	6
2.2. Description of Test Modes	
3. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION	7
3.1 Test Setup	7
3.2 6dB Bandwidth	
3.3. Maximum Peak output power test	
3.4. Band Edges Measurement	14
3.5. Peak Power Spectral Density	25
3.6. Radiated Emissions	
4. ANTENNA APPLICATION	39
4.1. Antenna requirement	
4.2. Result	
5. PHOTOGRAPH	40
5.1 Photo of Radiation Emission Test	40
APPENDIX I (EXTERNAL PHOTOS)	41
APPENDIX II (INTERNAL PHOTOS)	

TEST REPORT

Applicant	:	Wahoo Fitness LLC
Manufacturer	:	Wahoo Fitness LLC
EUT	:	GEM 2 Radio Module
Model No.	:	GEMSRB02
Serial No.	:	N.A.
Trade Mark	:	N.A.
Rating	:	DC 3.0V Max.

Measurement Procedure Used: FCC Part15 Subpart C 2015, Paragraph 15.247

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test :

Prepared by :

Jun. 20~ Jul. 28, 2016

banon Wan

(Tested Engineer / Baron Wen)

(Project Manager / Amy Ding)

Jon Chen

Reviewer :

Approved & Authorized Signer :

(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: GEM 2 Radio Module
Model Number	: GEMSRB02
Test Power Supply	/: DC 3V
Frequency	: BT: 2402~2480MHz ANT+: 2402~2480MHz
Modulation	: BT: GFSK ANT+: GFSK
Channel Spacing	: BT: 2MHz ANT+: 2MHz
Number of Channels	: BT: 40 ANT+: 40
Antenna Type	: Ceramic Chip Antenna (BT & ANT+)
Antenna Gain	: 5.46 dBi (BT & ANT+)
Applicant Address	 Wahoo Fitness LLC 90 W. Wieuca Road #110 Atlanta, GA 30342, United States
Manufacturer Address	 Wahoo Fitness LLC 90 W. Wieuca Road #110 Atlanta, GA 30342, United States
Factory Address	 Wahoo Fitness LLC 90 W. Wieuca Road #110 Atlanta, GA 30342, United States
Date of receipt	: Jun. 20, 2016
Date of Test	: Jun. 20~ Jul. 28, 2016

1.2. Auxiliary Equipment Used during Test

N/A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 06, 2016.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A-1, Jun. 13, 2016.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 4.1 dB (Horizontal) Ur = 4.3 dB (Vertical)
Conduction Uncertainty	:	Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC Part 15, Paragraph 15.247.

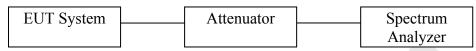
2.1. Summary of Test Results

The EUT has been tested according to the following specifications:

	51		
Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107, 15.207	Conducted Emission Test		N/A
FCC Part 15, Paragraph 15.247(b)(1)	Peak Output Power	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(2)	6dB Bandwidth	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency Band Edges	PASS	Complies
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	-	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency		N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	-	N/A
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies

2.2. Description of Test Modes

The EUT has been tested under operating condition.


Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel Low(2402MHz), Channel Middle(2440MHz) and Channel High(2480MHz) are chosen for the final testing.

3. FCC Part 15.247 Requirements for DSSS & OFDM Modulation

3.1 Test Setup

3.2 6dB Bandwidth

a. Limit

For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

b. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port
- to the spectrum analyzer.
- 3. Set the spectrum analyzer as:
- RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,
- Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

c. Test Setup See 3.1

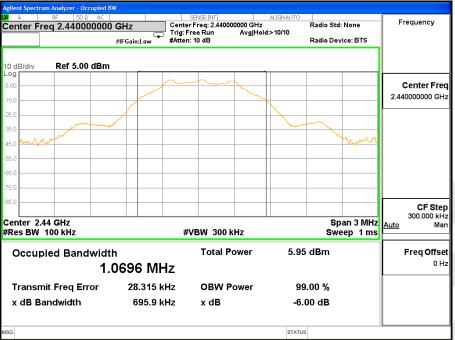
d. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 16, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Apr. 16, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 16, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 19, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 19, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 16, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006 W	15I00041SN0 46	Jun 30, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year
13	TEMP&HUMI PROGRAMMAB LE CHAMBER	Bell Group	BE-THK-1 50M8	SE-0137	Mar 16, 2016	1 Year

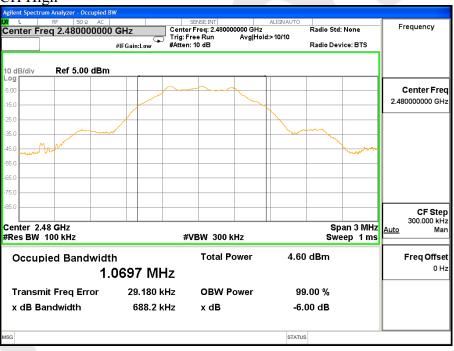
e. Test Results

Pass.

f. Test Data

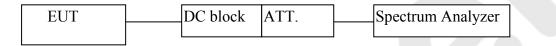

Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	693.0		Pass
Mid	2440	695.9	>500	Pass
High	2480	688.2		Pass

Test Plots See the following page.


L RF 50 enter Freq 2.4020	Ω AC 000000 GHz #IFGain:	Trig: F	sense:INT rr Freq: 2.402000000 GH Free Run Avg H n: 10 dB	ALIGNAUTO z old:>10/10	Radio Std: None Radio Device: BTS	Frequency
dB/div Ref 5.0	0 dBm			-		
5.0						Center Free 2.402000000 GH:
0					~	
0						
0						
0						CF Step
enter 2.402 GHz les BW 100 kHz		#	VBW 300 kHz		Span 3 MHz Sweep 1 ms	300.000 kH Auto Mar
Occupied Ban	dwidth 1.0668	3 MHz	Total P ower	6.75	dBm	Freq Offse 0 H
Transmit Freq E		.330 kHz	OBW Power	99	.00 %	
x dB Bandwidth	6	93.0 kHz	x dB	-6.0	00 dB	

CH Mid

CH High


3.3. Maximum Peak output power test

a. Limit

The maximum peak output power of the intentional radiator shall not exceed the following: 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt (30dBm).

2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antenna of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

b. Configuration of Measurement

c. Test Procedure

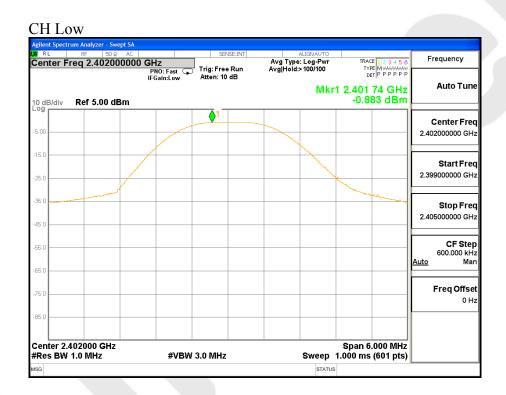
This test was according the kDB 558074 D01 DTS Meas Guidance v03r05 9.1.1:

1. This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 2. Set the RBW \geq DTS bandwidth.
- 3. Set the VBW \geq 3*RBW.
- 4. Set the span \geq 3*RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use peak marker function to determine the peak amplitude level.

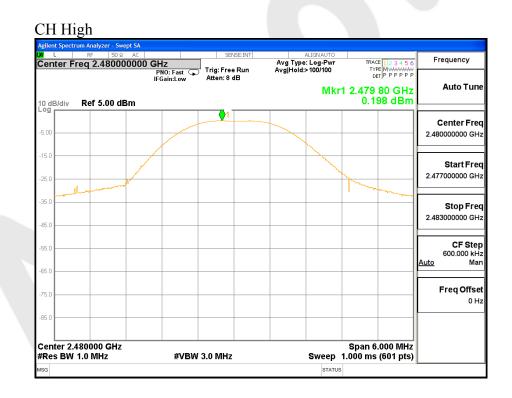
d. Test Equipment

Same as the equipment listed in 3.2.


e. Test Results

Pass.

f. Test Data


Channel	Frequency Maximum transmit power		Limit		Result
Channel	(MHz)	(dBm)	(dBm)	(watts)	Result
Low	2402	-0.883			Pass
Mid	2440	-0.565	30	1	Pass
High	2480	0.198			Pass

CH Mid

3.4. Band Edges Measurement

a. Limit

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

b. Test Procedure

- 1. Conducted Method:
- 1) Set RBW=100KHz, VBW=300KHz
- 2) Detector=peak
- 3) Sweep time= auto
- 4) Trace mode=max hold.
- 2. Radiated Method:
- 1) For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. The EUT is tested in 9*6*6 Chamber.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The EUT is tested in 9*6*6 Chamber.

- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set both RBW and VBW of spectrum analyzer to 100kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT. If pass then set Spectrum Analyzer as below:

For below 1GHz:

The resolution bandwidth and video bandwidth of test receiver/ spectrum analyzer is 120kHz. Detector: **Quasi-Peak**

For above 1GHz Peak measurement:

The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and video bandwidth is 3MHz.

Detector: Peak

For above 1GHz average measurement:

The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and the video bandwidth is 1kHz.

Detector: Peak

5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

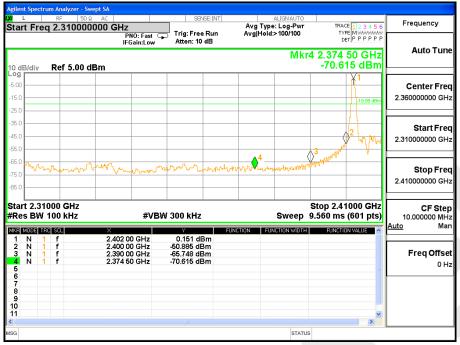
30M to 1G emissions: 3m Turntable 1m to 4m EUT Test 0.8m Receiver Ground Plane Coaxial Cable 1G to 40G emissions: Turntable 3m EUT Test Receiver 1.5 m 1m to 4m Coaxial Cable

Ground Plane

c. Test Equipment

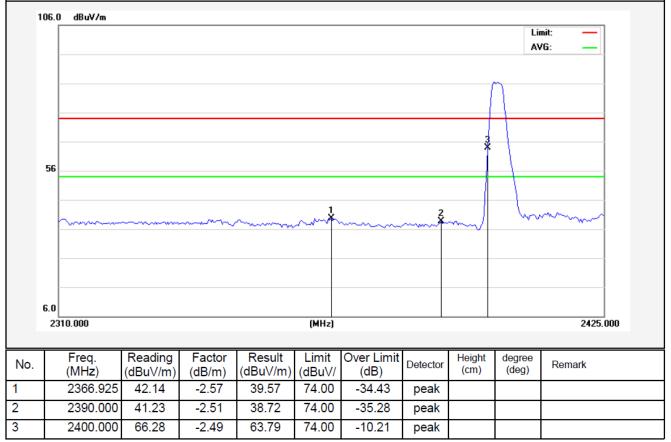
Same as the equipment listed in 3.2.

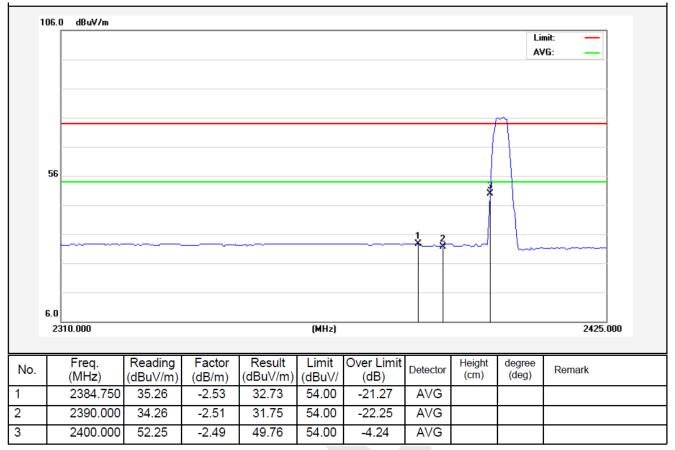
d. Test Results


Pass.

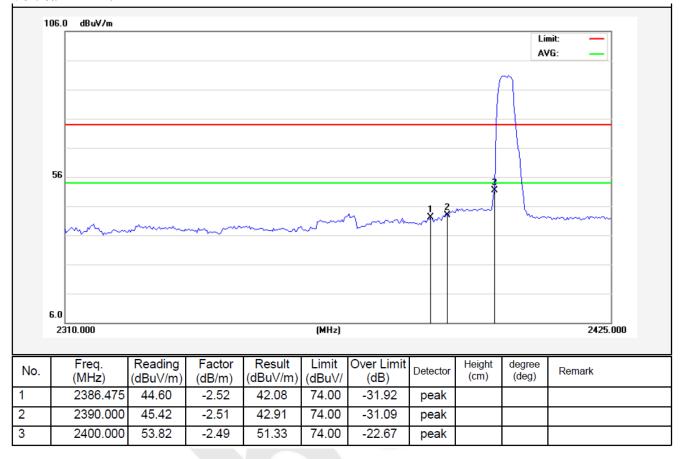
Test Plots e.

See the following page.

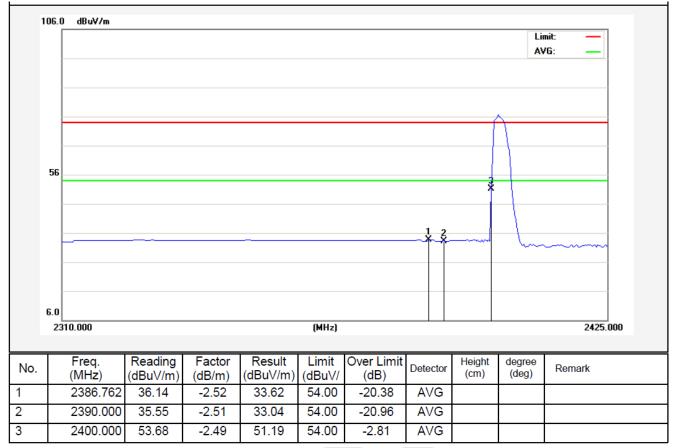

CH Low



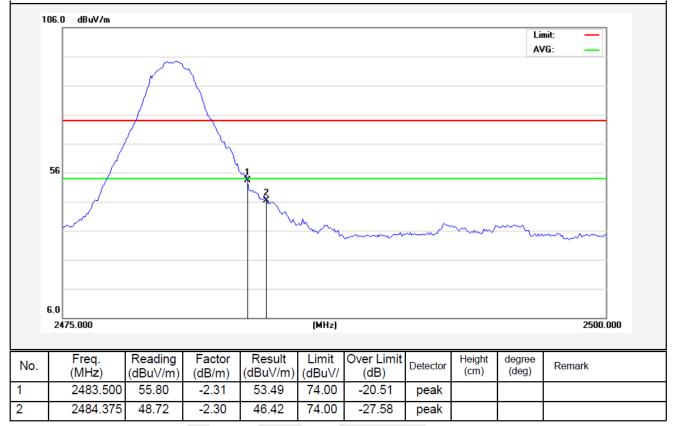
2402MHz Horizontal-PEAK:

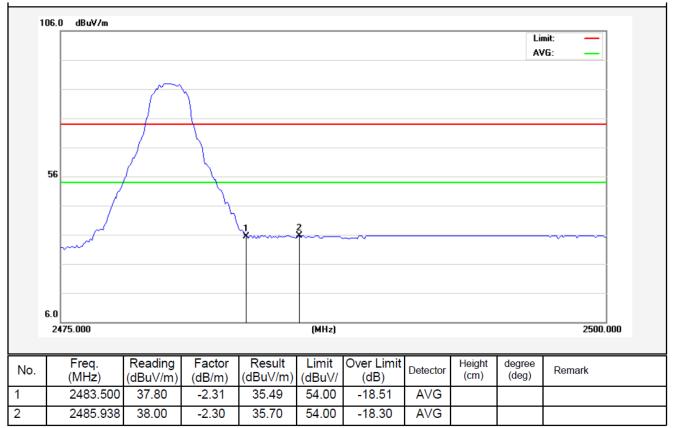


Horizontal-AV:

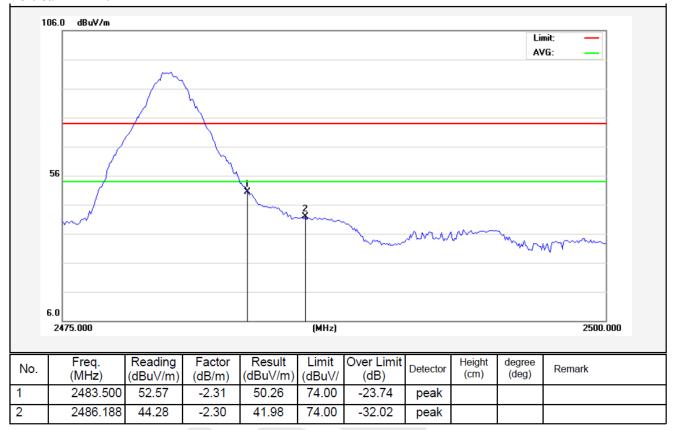


2402MHz Vertical-PEAK:

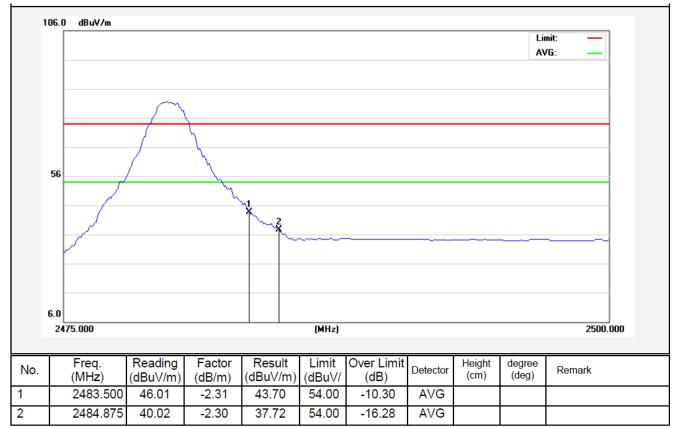

Vertical-AV:


2480MHz

Horizontal-PEAK:



Horizontal-AV:



2480MHz Vertical-PEAK:

Vertical-AV:

3.5. Peak Power Spectral Density

a. Limit

1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

b. Test Procedure

1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW

3. Record the max. reading.

4. Repeat the above procedure until the measurements for all frequencies are completed.

c. Test Equipment

Same as the equipment listed in 3.2.

d. Test Setup See 3.1

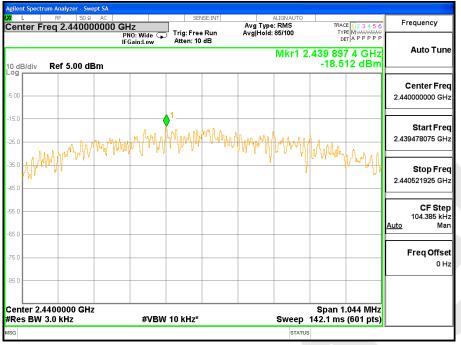
e. Test Results

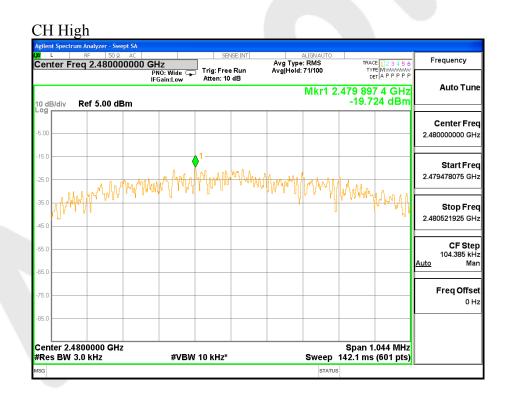
Pass

f. Test Data

Please refer to the following data.

g. Test Plot See the following pages

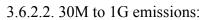


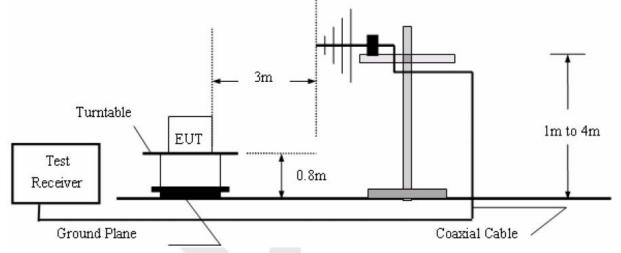

Channel	Frequency (MHz)	PPSD (dBm/3KHz)	∑PPSD (dBm/3KHz)	Limit (dBm)	Result
Low	2402	-17.402	-	8.00	Pass
Mid	2440	-18.512	-	8.00	Pass
High	2480	-19.724	-	8.00	Pass

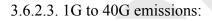
gilent Spectrum Analyzer -					c.
L RF S Center Freq 2.402	ο Ω AC	SENSE:INT	ALIGNAUTO Avg Type: RMS Avg Hold:>100/100	TRACE 123456	Frequency
0 dB/div Ref 5.00	PNO: Wide 🕞 IFGain:Low	Atten: 10 dB		401 895 6 GHz -17.402 dBm	Auto Tune
5,00					Center Free 2.402000000 GH
25.0		Lubber Manager	«♪₽₩₽₩₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	h h h h h h h	Start Fre 2.401478075 GH
					Stop Fre 2.402521925 GH
5.0					CF Ste 104.385 k⊦ <u>Auto</u> Ma
5.0					Freq Offs 0 H
enter 2.4020000 C		10 kHz*	Swoon	Span 1.044 MHz 142.1 ms (601 pts)	
	#VDV		Sweep	,	

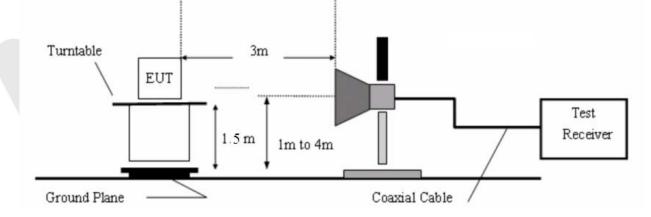
CH Mid

3.6. Radiated Emissions


3.6.1.1. Test Lim	its (< 30 MHZ)			
Frequency	Field Strength	Measureme	ent Distance	
(MHz)	(microvolts/meter)	(meter)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
3.6.1.2. Test Limit	its (≥ 30 MHZ)			
FIELD STRENG	TH FIELD S'	TRENGTH	S15.209	
of Fundamental:	of Harmo	nics	30 - 88 MHz	40 dBuV/m
@3M				
902-928 MHZ			88 - 216 MHz	43.5
2.4-2.4835 GHz			216 - 960 MHz	46
94 dBµV/m @3m	n 54 $dB\mu V/$	m @3m	ABOVE 960 MHz	54dBuV/m
• 0	•	\smile		


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).


	Test Equipment					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Apr. 16, 2016	1 Year
2.	Preamplifier	Instruments corporation	EMC011830	980100	Apr. 16, 2016	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 16, 2016	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 19, 2016	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 19, 2016	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Apr. 16, 2016	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
8	Power Sensor	DAER	RPR3006W	15I00041SN046	Jun 30, 2016	1 Year
9	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Jun 30, 2016	1 Year
10	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Jun 30, 2016	1 Year
11	Signal Generator	Agilent	E4421B	MY41000743	Jun 30, 2016	1 Year
12	DC Power supply	IV	IV-8080	YQSB0096	Jun 30, 2016	1 Year
13	TEMP&HUMI PROGRAMMABLE CHAMBER	Bell Group	BE-THK-15 0M8	SE-0137	Mar 16, 2016	1 Year



- Turntable EUT Bround Plane Turntable Ground Plane Test Receiver Coaxial Cable
- 3.6.2. Test Configuration: 3.6.2.1. 9k to 30MHz emissions:

3.6.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

The test results are listed in Section 3.6.4.

3.6.4. Test Results

PASS.

Please refer the following pages. Only the worst case (x orientation).

The test results of above 18000MHz are attenuated more than 20dB below the permissible limits, so the results don't record in the report.

b No	0.:	01160651	1 2I		Pla	rization:			Horizontal			
anda	ard:	(RE)FCC	C PART1	5 C _3m	Pov	ver Source	:		DC 3V			
est it	em:	Radiatio	n Test		Ter	np.(C)/Hui	n.(%RH):	24.3	(C)/55%RH		
est M	Iode:	On			Dis	tance:			3m			
	80.0 dBuV/m											
									L	.imit: —		
									h	fargin: —		
	40											
									6	he have and he have		
	A Antone mate	2				5		المردار الريان	AN AN AN AN	MAN AND AND A CONTRACT		
	different in adaptation of the	MUM MANANA PARAMA		3 X	4		water	MVH#hadaara.		We gradely wanted by		
			the share and	an han high references	NARAMAN	M-MAMMAN TY		_				
	0.0				1.1.							
	30.000 40	50 60	70 80		(MHz)		300	400	500 600	700 1000.000		
No.	Freq.	Reading	Factor	Result	Limit	Over Limit	Detector	Height	degree	Remark		
	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/	(dB)		(cm)	(deg)	- tomain		
1	34.0365	39.63	-14.80	24.83	40.00	-15.17	peak					
2	58.4074	30.90	-15.25	15.65	40.00	-24.35	peak					
3	95.0930	31.32	-18.00	13.32	43.50	-30.18	peak					
	179.3863	32.27	-18.89	13.38	43.50	-30.12	peak					
1				16 05	46.00	-29.95	peak		1	1		
4 5 6	249.4250 528.2458	31.57 32.61	-15.52 -11.04	16.05 21.57	46.00	-29.93	peak					

00 110).:	0116065	121		P	larization:		Verti	Vertical			
anda	rd:	(RE)FC	C PART1	5 C _3m	Р	ower Sour	ce:		DC 3	DC 3V		
est ite	em:	Radiatio	n Test		Т	Temp.(C)/Hum.(%RH):				C)/55%RH		
est M	lode:	On			D	istance:			3m			
	80.0 dBu¥/m								Li	mit; —		
										argin: <u> </u>		
								_		1		
	40											
	1 X 2							6		in approximation of		
	1 Wards	We down when you	N	3 MMM/Many/MM	A. WWW	unna hulu walaniu	hypothylited	munitifican	http://www.wara	program 1		
	K. Marine	whichterschartherpus	Young wing and	3 Min Managan	Muraulu/14	WHAT IN WARKING	happenninghal	(range high france and	And the first of the second second	add Marine and I wanted		
	0.0			3 Amini Alika ng Alim		un and with the						
		50 60	¹ /	3. Anno 19 Anno	(MHz)	San and a state of the state of	300			700 1000.000		
	0.0 30.000 40	50 60	70 80		(MHz)		300	400	500 600			
No.	0.0			Result (dBuV/m)		Over Limit	300					
No.	0.0 0.0 40	50 60 Reading	70 80 Factor	Result	(MHz)	Over Limit	300	400 Height	500 600 degree	700 1000.000		
No. 1	0.0 0.0 40 30.000 40 Freq. (MHz)	50 60 Reading (dBuV/m)	70 80 Factor (dB/m)	Result (dBuV/m)	(MHz) Limit (dBuV/	Over Limit (dB)	300 Detector	400 Height	500 600 degree	700 1000.000		
No. 1 2	0.0 40 30.000 40 Freq. (MHz) 34.0365	50 60 Reading (dBuV/m) 41.82	70 80 Factor (dB/m) -14.80	Result (dBuV/m) 27.02	(MHz) Limit (dBuV/ 40.00	Over Limit (dB) -12.98	300 Detector peak	400 Height	500 600 degree	700 1000.000		
No. 1 2 3	0.0 40 30.000 40 Freq. (MHz) 34.0365 36.6375	50 60 Reading (dBuV/m) 41.82 37.70	70 80 Factor (dB/m) -14.80 -13.01	Result (dBuV/m) 27.02 24.69	(MHz) Limit (dBuV/ 40.00 40.00	Over Limit (dB) -12.98 -15.31	300 Detector peak peak	400 Height	500 600 degree	700 1000.000		
	0.0 40 30.000 40 Freq. (MHz) 34.0365 36.6375 95.7622	50 60 Reading (dBuV/m) 41.82 37.70 31.00	70 80 Factor (dB/m) -14.80 -13.01 -15.98	Result (dBuV/m) 27.02 24.69 15.02	(MHz) Limit (dBuV/ 40.00 40.00 43.50	Over Limit (dB) -12.98 -15.31 -28.48	300 Detector peak peak peak	400 Height	500 600 degree	700 1000.000		

ob No.:		0116065	12I			Plarizatio	n:	Horizontal		
tandard:		(RE)FC	C PART	15 C _3m		Power Source:				V
est item:		Radiatio	on Test			Temp.(C)	/Hum.(%	RH):	24.3(0	C)/55%RH
lote:		2402MH	Iz			Distance:			3m	
96.9	dBu∀/m									
									Lir AV	nit: /6:
57										
			T A			1				
		mand	n n l	~~~		1 mm	mmy	mm	man	mmm
r		~			~~~~~	X				
16.9										
L	DO.000		2000	3000	(MHz)	5000 6	6000 7000	8000 9000		18000.000
	Freq.	Reading	Factor	Result	Limit	Over Limi	+	Height	degree	
No.	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)		(dB)	Detector	(cm)	(deg)	Remark
1	4612.500	44.25	2.96	47.21	74.00	-26.79	peak			
2	4612.500	34.25	2.96	37.21	54.00	-16.79	AVG			

ob No.	.:	0116065	12I]	Plarization	:	Verti	Vertical		
tandaı	rd:	(RE)FC	C PART1	5 C _3m]	Power Sou	rce:		DC 3	V	
est ite	m:	Radiation Test 2402MHz				Temp.(C)/l	Hum.(%	24.3(24.3(C)/55%RH		
ote:						Distance:		3m			
	96.9 dBu∀/m									_	
5	96.9 dBu¥/m								Lin	nit:	
									AV	/G: <u> </u>	
			- N-								
	57		1								
	57										
			` کمر	my		1 X					
			m			moun	min		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmuh	
				L		2					
16	6.9										
	1000.000		2000	3000	(MHz)	5000 6	000 7000	8000 9000		18000.000	
No.	Freq.	Reading	Factor	Result	Limit	Over Limit	Detector	Height	degree	Remark	
1	(MHz) 5292.500	(dBuV/m) 43.00	(dB/m) 3.85	(dBuV/m) 46.85	(dBuV/ 74.00	(dB) -27.15		(cm)	(deg)		
1 2	5292.500	43.00 32.29	3.85	36.14	54.00	-27.15	peak AVG				
-	5282.000	52.23	5.05	50.14	54.00	-17.00	Av0				

ob No.:		0116065	121]	Plarization:				ontal	
andard:		(RE)FC	C PART1	5 C _3m]	Power Sou	rce:		DC 3	V	
est item:		Radiatio	n Test		r	Femp.(C)/l	Hum.(%	24.3(0	24.3(C)/55%RH		
ote:		2440MHz]	Distance:		3m			
00.0	ID 121									_	
96.9	dBuV/m								Lin	nit:	
									AV	/6:	
			A								
			l l								
57			1 1								
						1 X					
				\sim 1		×					
		m	wee c	han	m	~I∳~~~~	mm	mm	m	mm	
Ē											
16.9 10	00.000		2000	3000	(MHz)	5000 6	000 7000 1	8000 9000		18000.000	
					(, ,)						
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark	
	4867.500	45.70	3.41	49.11	74.00	-24.89	peak		(3)		
2	4867.500	35.71	3.41	39.12	54.00	-14.88	AVG				

ob No.:	011606512I				Plarizatio	on:		Vertical				
tandaı	rd:	(RE)FC	C PART	15 C _3m		Power So	ource:		DC 3V			
est ite	em:	Radiatio	on Test			Temp.(C)/Hum.(%RH):				24.3(C)/55%RH		
ote:		2440MHz				Distance :		3m				
	00.0.40.074											
5	96.9 dBuV/m								Lir AV			
									AV			
			1									
	57											
	57											
				~~		X						
		man		ha		,		\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
16	6.9											
	1000.000		2000	3000	(MHz)	5000 6	000 7000	8000 9000		18000.000		
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark		
1	4867.500	43.63	3.41	47.04	74.00	-26.96	peak					
2	4867.500	34.03	3.41	37.44	54.00	-16.56	AVG					

ob No.: tandard		011606512I (RE)FCC PART15 C _3m				Plarization: Power Source:				ontal V
'est item		Radiation Test 2480MHz				Гетр.(С)/		DC 3V 24.3(C)/55%RH		
ote:]	Distance:			3m	
96.) dBu∀/m									
										nit: — /G: —
			1							
57										
				~~~~		1 X				
		~~~~		- hur	mm	minn		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m_m/m	m
16.9										
	000.000		2000	3000	(MHz)	5000 6	000 7000	8000 9000		18000.000
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/	Over Limit (dB)	Detector	Height (cm)	degree (deg)	Remark
1	4910.000	44.50	3.49	47.99	74.00	-26.01	peak			
2	4910.000	33.65	3.49	37.14	54.00	-16.86	AVG			

ob No).:	011606	512I		I	Plarization:				cal
tanda	rd:	(RE)F	CC PART	C15 C _3m	I	Power Sou	irce:		DC 3V	V
fest ite	em:	Radiat	ion Test]	Temp.(C)/Hum.(%RH):				C)/55%RH
Note:		2480M	Ι	Distance:			3m			
	96.9 dBuV/m									
										nit: <u>—</u> /G: <u>—</u>
			м							
	57									
			- and	h .						
		m		M		1 1				
		~~~~		hr	mm	2		m	······	······
						T				
1	6.9									
	1000.000		2000	3000	(MHz)	5000	6000 7000	8000 9000		18000.000
	Freq.	Reading	Factor	Result	Limit	Over Limi	tlavi	Height	degree	
No.	(MHz)	(dBuV/m)	(dB/m)	(dBuV/m)	(dBuV/	(dB)	Delector	(cm)	(deg)	Remark
1	4612.500	43.34	2.96	46.30	74.00	-27.70	peak			
2	4612.500	33.17	2.96	36.13	54.00	-17.87	AVG			



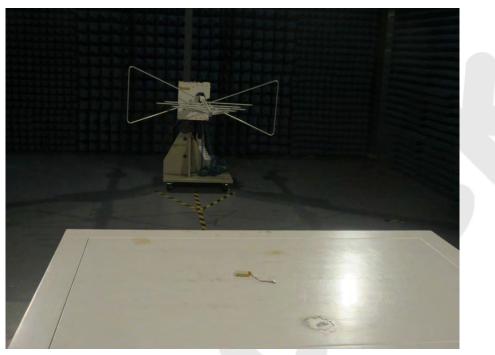
# 4. ANTENNA APPLICATION

### 4.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

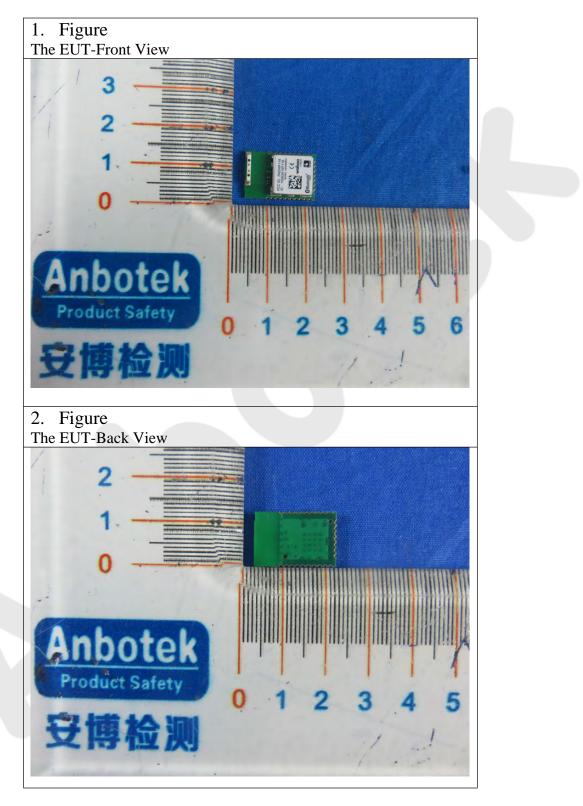
#### 4.2. Result


The EUT's antenna used a ceramic chip antenna which is permanently attached, The antenna's gain is 5.46dBi and meets the requirement.



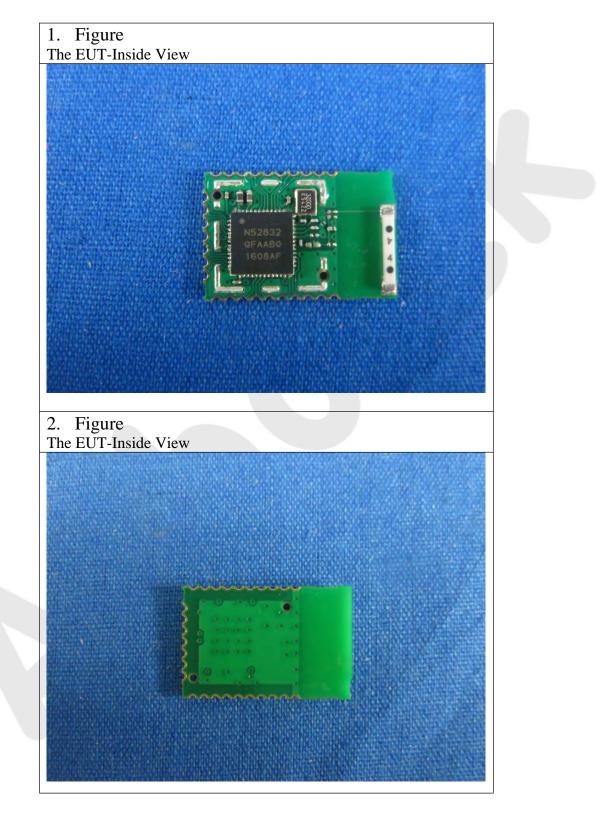


# 5. PHOTOGRAPH


5.1 Photo of Radiation Emission Test








# **APPENDIX I (EXTERNAL PHOTOS)**





# **APPENDIX II (INTERNAL PHOTOS)**

