FCC & Industry Canada Certification Test Report For the Cooper Power Systems

Cooper Power Systems
RFN430EL-A3 MODULE

FCC ID: P9X-RFN430EL-A3 IC: 6766A-RFN430ELA3

WLL JOB# **12109-01 Rev 1 August 8, 2011 Re-issued September 8, 2011**

Prepared for:

Cooper Power Systems 20201 Century Blvd. Suite 250 Germantown, MD 20874

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC & Industry Canada Certification Test Report for the

Cooper Power Systems
RFN430EL-A3 MODULE

FCC ID: P9X-RFN430EL-A3

IC: 6766A-RFN430ELA3

August 8, 2011

Re-issued September 8, 2011

WLL JOB# 12109-01 Rev 1

Prepared by:

James Ritter EMC Compliance Engineer

Reviewed by:

Steven D. Koster VP, EMC & Wireless

Abstract

This report has been prepared on behalf of Cooper Power Systems to support the attached Application for Equipment Authorization. The test report and application are submitted for a Frequency Hopping Spread Spectrum Transmitter under Part 15.247 (10/2009) of the FCC Rules and Regulations and Spectrum Management and Telecommunications Policy RSS-210 issue 8 of Industry Canada. This Certification Test Report documents the test configuration and test results for the Cooper Power Systems RFN430EL-A3 Module.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ACLASS under Certificate AT-1448 as an independent FCC test laboratory.

The Cooper Power Systems RFN430EL-A3 Module complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 and Industry Canada RSS-210.

Revision History Description of Change		Date	
Rev 0	Initial Release	August 8, 2011	
Rev 1	Corrected Model and ID numbers per client	September 8, 2011	

Table of Contents

Abstr	act	11
1	Introduction	1
1.1	Compliance Statement	1
1.2	Part Scope	1
1.3	Contract Information	1
1.4		
1.5	Test and Support Personnel	1
1.6	* *	
2	Equipment Under Test	
2.1	1 1	
2.2		
2.3	ϵ	
2.4		
2.5		
	2.5.1 References	
2.6		
3	Test Equipment	
4	Test Summary	
5	Test Results	
5.1		
5.2		
5.3	1 (, , ,	
5.4		
5.5		
	5.5.1 Band Edge Compliance	
5.6		
	5.6.1 Test Procedure	
5.7		
	5.7.1 Test Procedure	
5.8		
	5.8.1 Requirements	
	5.8.2 Test Procedure	
	5.8.3 Test Data	
•	5.0.5 Tool Data	13
	of Tables	
	e 1: Device Summary	
	e 2: Expanded Uncertainty List	
	e 3: Test Equipment List	
Table	e 4: Test Summary Table	7
	e 5: Duty Cycle/time of Occupancy Results	
Table	e 6: RF Power Output	12
Table	e 7: Occupied Bandwidth Results	19

Table 8: Channel Spacing and Number of Channels Results	23
Table 9: Spectrum Analyzer Settings	
Table 10: Radiated Emission Test Data < 1GHz (Restricted Bands-covers all 3 antenna	
configurations)	60
Table 11: Radiated Emission Test Data >1GHz, Low Channel (8dbi –Omni directional Anter	
Table 12: Radiated Emission Test Data >1GHz, Low Channel (3dbi - Phantom Antenna)	62
Table 13: Radiated Emission Test Data >1GHz, Low Channel (2dbi -Co-Linear Antenna)	
Table 14: Radiated Emission Test Data >1GHz, Center Channel (8dbi –Omni directional	
Antenna)	64
Table 15: Radiated Emission Test Data >1GHz, Center Channel (3dbi -Phantom Antenna)	
Table 16: Radiated Emission Test Data >1GHz, Center Channel (2dbi -Co-Linear Antenna).	66
Table 17: Radiated Emission Test Data >1GHz, High Channel (8dbi –Omni directional	
Antenna)	67
Table 18: Radiated Emission Test Data >1GHz, High Channel (3dbi - Phantom Antenna)	68
Table 19: Radiated Emission Test Data >1GHz, High Channel (2dbi -Co-Linear Antenna)	69
Table 20: Spectrum Analyzer Settings	70
Table 21: Radiated Emission Test Data, Receiver	71
Table 22: AC Conducted Emissions Results	73
List of Figures	
Figure 1: Single Hop Duty Cycle Plot	
Figure 2: Dwell time per 100ms	
Figure 3: Time of Occupancy (Highest spikes are the hop channel, lower spikes are adjacent	
channels)	
Figure 4: RF Peak Power, High Power, Low Channel	
Figure 5: RF Peak Power, High Power, Center Channel	
Figure 6: RF Peak Power, High Power, High Channel	
Figure 7: RF Peak Power, Low Power, Low Channel	
Figure 8: RF Peak Power, Low Power, Center Channel	
Figure 9: RF Peak Power, Low Power, High Channel	
Figure 10: Occupied Bandwidth, Low Channel	
Figure 11: Occupied Bandwidth, Center Channel	
Figure 12: Occupied Bandwidth, High Channel	
Figure 13: Channel Spacing	
Figure 14: Number of Hopping Channels.	
Figure 15: Conducted Spurious Emissions, High Power, Low Channel 30 - 900MHz	
Figure 16: Conducted Spurious Emissions, High Power, Low Channel 900 – 930MHz	
Figure 17: Conducted Spurious Emissions, High Power, Low Channel 930-5000MHz	
Figure 18: Conducted Spurious Emissions, High Power, Low Channel 5-10GHz	
Figure 19: Conducted Spurious Emissions, High Power, Center Channel 30 - 900MHz	
Figure 20: Conducted Spurious Emissions, High Power, Center Channel 900 – 930MHz	
Figure 21: Conducted Spurious Emissions, High Power, Center Channel 930-5000MHz	
Figure 22: Conducted Spurious Emissions, High Power, Center Channel 5-10GHz	
Figure 23: Conducted Spurious Emissions, High Power, High Channel 30 - 900MHz	35

Figure 24: Conducted Spurious Emissions, High Power, High Channel 900 – 930MHz	36
Figure 25: Conducted Spurious Emissions, High Power, High Channel 930-5000MHz	37
Figure 26: Conducted Spurious Emissions, High Power, High Channel 5-10GHz	38
Figure 27: Conducted Spurious Emissions, Low Power, Low Channel 30 - 900MHz	39
Figure 28: Conducted Spurious Emissions, Low Power, Low Channel 900 – 930MHz	40
Figure 29: Conducted Spurious Emissions, Low Power, Low Channel 930-5000MHz	41
Figure 30: Conducted Spurious Emissions, Low Power, Low Channel 5-10GHz	42
Figure 31: Conducted Spurious Emissions, Low Power, Center Channel 30 - 900MHz	43
Figure 32: Conducted Spurious Emissions, Low Power, Center Channel 900 – 930MHz	44
Figure 33: Conducted Spurious Emissions, Low Power, Center Channel 930-5000MHz	45
Figure 34: Conducted Spurious Emissions, Low Power, Center Channel 5-10GHz	46
Figure 35: Conducted Spurious Emissions, Low Power, High Channel 30 - 900MHz	47
Figure 36: Conducted Spurious Emissions, Low Power, High Channel 900 – 930MHz	48
Figure 37: Conducted Spurious Emissions, Low Power, High Channel 930-5000MHz	49
Figure 38: Conducted Spurious Emissions, Low Power, High Channel 5-10GHz	50
Figure 39: Lower Band-edge, Low Channel, High Power	51
Figure 40: Lower Band-edge, Hopping Mode, High Power	52
Figure 41: Lower Band-edge, Low Channel, Low Power	53
Figure 42: Lower Band-edge, Hopping Mode, Low Power	54
Figure 43: Upper Band-edge, High Channel, High Power	55
Figure 44: Upper Band-edge, Hopping Mode, High Power	56
Figure 45: Upper Band-edge, High Channel, Low Power	57
Figure 46: Upper Band-edge, Hopping Mode, Low Power	58

1 Introduction

1.1 Compliance Statement

The Cooper Power Systems RFN430EL-A3 Module complies with the limits for a Frequency Hopping Spread Spectrum Transmitter device under FCC Part 15.247 (10/2009) and Industry Canada RSS-210 issue 8.

1.2 Test Scope

Tests for radiated and conducted (at antenna terminal) emissions were performed. All measurements were performed in accordance with FCC Public Notice DA-00-705 "Measurement Guidance for Frequency Hopping Spread Spectrum Systems. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: Cooper Power Systems

20201 Century Blvd. Suite 250

Germantown, MD 20874

Purchase Order Number: 4503859751

Quotation Number: 66333

1.4 Test Dates

Testing was performed on the following date(s): 7/26/2011 to 8/2/2011

1.5 Test and Support Personnel

Washington Laboratories, LTD James Ritter
Client Representative Steve Seymour

1.6 Abbreviations

A	Ampere	
ac	alternating current	
AM	Amplitude Modulation	
Amps	Amperes	
b/s	bits per second	
BW	B and W idth	
CE	Conducted Emission	
cm	centimeter	
CW	Continuous Wave	
dB	deci B el	
dc	direct current	
EMI	Electromagnetic Interference	
EUT	Equipment Under Test	
FM	Frequency Modulation	
G	g iga - prefix for 10 ⁹ multiplier	
Hz	Hertz	
IF	Intermediate Frequency	
k	k ilo - prefix for 10 ³ multiplier	
LISN	Line Impedance Stabilization Network	
M	Mega - prefix for 10 ⁶ multiplier	
m	m eter	
μ	m icro - prefix for 10 ⁻⁶ multiplier	
NB	N arrow b and	
QP	Quasi-Peak	
RE	Radiated Emissions	
RF	Radio Frequency	
rms	root-mean-square	
SN	Serial Number	
S/A	Spectrum Analyzer	
\mathbf{V}	Volt	

2 Equipment Under Test

2.1 EUT Identification & Description

The RFN430EL-A3 Module is a radio communications device designed for use in Electric meters. It can also be used in Cooper Power Systems Gateways and Relay Nodes. The RFN430EL-A3 Module provides a 915 MHz radio interface to an RF mesh network.

ITEM DESCRIPTION Manufacturer: Cooper Power Systems FCC ID: P9X-RFN430EL-A3 IC: 6766A-RFN430ELA3 Model: RFN430EL-A3 FCC Rule Parts: \$15.247 Industry Canada: RSS210 Frequency Range: 902.75 - 927.25MHz Maximum Output Power: 27.90dBm (616.6mW) Modulation: **FSK** Occupied Bandwidth: 491.58 kHz Keying: Automatic Type of Information: Data Number of Channels: 50 Power Output Level Variable from -30.51dBm to 27.90dBm Antenna Connector MCX Antenna Type 3 antennas: GH908U-PRO 900MHz Omnidirectional - 8dBi Gain TRA9023NP - Antenex Phantom 902-928MHz - 3dB Gain 915MHz Co-linear Antenna -2dB gain Interface Cables: None (plug in module) Power Source & Voltage: 13.5VDC **Emission Designator** 492KFXD Highest TX spurious Emission 108.5uV/m@3m-406.39MHz Highest RX Spurious Emission 156.7uV/m @ 3m- 366.06MHz

Table 1: Device Summary

2.2 Test Configuration

The Cooper Power Systems RFN430EL-A3, Equipment Under Test (EUT), was operated from a 13.5VDC power supply. Programming commands were sent from a support laptop via a custom RS232 adaptor board to a header on the EUT module. The maximum power setting was attained by using the power setting command 'setbias20 1850'. The manufacturer must not exceed this setting during production.

2.3 Testing Algorithm

The RFN430EL-A3 was programmed for operation from a support laptop via a custom RS232 adaptor board to a header on the EUT module. UTF-8 TeraTermPro console program was used on the support laptop to enter commands setting the EUT to the desired channel or hopping mode.

Worst case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. The Industry Canada OATS numbers are 3035A-1 and 3035A-2 for Washington Laboratories, Ltd. Site 1 and Site 2, respectively. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ACLASS under Certificate AT-1448 as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

FCC Public Notice DA 00-705, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 Methods of Measurement of Radio Noise from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The basis for uncertainty calculation uses ANSI/NCSL Z540-2-1997 with a type B evaluation of the standard uncertainty. Elements contributing to the standard uncertainty are combined using the method described in Equation 1 to arrive at the total standard uncertainty. The standard uncertainty is multiplied by the coverage factor to determine the expanded uncertainty which is generally accepted for use in commercial, industrial, and regulatory applications and when health and safety are concerned (see Equation 2). A coverage factor was selected to yield a 95% confidence in the uncertainty estimation.

Equation 1: Standard Uncertainty

$$u_{c} = \pm \sqrt{\frac{a^{2}}{div_{a}^{2}} + \frac{b^{2}}{div_{b}^{2}} + \frac{c^{2}}{div_{c}^{2}} + \dots}$$

Where u_c = standard uncertainty

a, b, $c_{,...}$ = individual uncertainty elements

Div_{a, b, c} = the individual uncertainty element divisor based on the probability distribution

Divisor = 1.732 for rectangular distribution

Divisor = 2 for normal distribution

Divisor = 1.414 for trapezoid distribution

Equation 2: Expanded Uncertainty

$$U = ku_c$$

Where U = expanded uncertainty

k = coverage factor

 $k \le 2$ for 95% coverage (ANSI/NCSL Z540-2 Annex G)

u_c = standard uncertainty

The measurement uncertainty complies with the maximum allowed uncertainty from CISPR 16-4-2. Measurement uncertainty is <u>not</u> used to adjust the measurements to determine compliance. The expanded uncertainty values for the various scopes in the WLL accreditation are provided in Table 2 below.

Table 2: Expanded Uncertainty List

Scope	Standard(s)	Expanded Uncertainty
Conducted Emissions	CISPR11, CISPR22, CISPR14, FCC Part 15	2.63 dB
Radiated Emissions	CISPR11, CISPR22, CISPR14, FCC Part 15	4.55 dB

3 Test Equipment

Table 3 shows a list of the test equipment used for measurements along with the calibration information.

Table 3: Test Equipment List

Test Name:	Bench Conducted RF Tests	:	
Asset #	Manufacturer/Model	Description	Cal. Due
618	HP – 8563A	ANALYZER SPECTRUM	7/15/2012
528	E4446A	ANALYZER SPECTRUM	8/27/2012

Test Name:	Radiated Emissions		
Asset #	Manufacturer/Model	Description	Cal. Due
382	SUNOL SCIENCES CORPORATION - JB1	ANTENNA BICONLOG	1/12/2012
425	ARA - DRG-118/A	ANTENNA DRG 1-18GHZ	9/9/2011
69	HP - 85650A	ADAPTER QP	6/28/2012
71	HP - 85685A	PRESELECTOR RF	6/26/2012
73	HP - 8568B	ANALYZER SPECTRUM	6/26/2012
522	HP - 8449B	PRE-AMPLIFIER 1-26.5GHZ	8/27/2011
337	WLL - 1.2-5GHZ	FILTER BAND PASS	3/24/2012
280	ITC - 21C-3A1	WAVEGUIDE 3.45-11.0GHZ	3/24/2012
728	AGILENT - 8564EC	SPECTRUM ANALYZER 30HZ - 40GHZ	4/28/2012

Test Name:	Conducted Emissions Voltage		
Asset #	Manufacturer/Model	Description	Cal. Due
125	SOLAR - 8028-50-TS-24-BNC	LISN	7/7/2012
126	SOLAR - 8028-50-TS-24-BNC	LISN	7/7/2012
68	HP - 85650A	ADAPTER QP	6/22/2012
72	HP - 8568B	ANALYZER SPECTRUM	6/22/2012
53	HP - 11947A	LIMITER TRANSIENT	3/11/2012

4 Test Summary

The Table Below shows the results of testing for compliance with a Frequency Hopping System in accordance with FCC Part 15.247 10/2009 and RSS210 issue 8. Full results are shown in section 5.

Table 4: Test Summary Table

TX Test Summary (Frequency Hopping Spread Spectrum)					
FCC Rule Part IC Rule Part Description Result					
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	20dB Bandwidth	Pass		
15.247 (b)(2)	RSS-210 [A8.4 (1)]	Transmit Output Power	Pass		
15.247 (a)(1)	RSS-210 [A8.1 (b)]	Channel Separation	Pass		
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	Number of Channels =50 minimum	Pass		
15.247 (a)(1)(i)	RSS-210 [A8. 1 (c)]	Time of Occupancy	Pass		
15.247 (d)	RSS-210 [A8. 5]	Occupied BW / Out-of- Pass			
		Band Emissions (Band Edge @ 20dB below)			
15.205	RSS-210 Sect.2.2	General Field Strength Pass			
15.209	RSS-Gen 7.2.2	Limits (Restricted Bands			
		& RE Limits)			
15.207	RSS-Gen [7.2.4]	AC Conducted Emissions	NA		
	RX/Digital Tes	st Summary			
	(Frequency Hopping	Spread Spectrum)			
FCC Rule Part	FCC Rule Part				
15.207	RSS-Gen [7.2.2]	AC Conducted Emissions	NA		
15.209	RSS-210 sect 2.5	General Field Strength Limits	Pass		

5 Test Results

5.1 Duty Cycle Correction and Time of Occupancy

In accordance with the FCC Public Notice the average spurious radiated emissions measurements may be further adjusted using a duty cycle correction factor if the dwell time per channel of the hopping signal is less than 100 ms.

The duty cycle correction factor is calculated by:

20 x LOG (dwell time/100 ms)

The following figure shows the plot of the dwell time for the transmitter. Based on this plot, the dwell time per hop is 19.5ms. The maximum total dwell time per 100ms is 38ms. This corresponds to a duty cycle correction of -8.1dB for radiated spurious emissions.

The transmitter shall have a time of occupancy for systems having a 20dB bandwidth greater than 250 kHz of no more than 0.4seconds in any 10 second period.

These tests were conducted with the RF output connected through appropriate attenuators to the input of a spectrum analyzer set to zero span mode. The unit was set to hopping mode with the spectrum analyzer set to 902.75MHz. The results are shown in the plots below.

Result Test Limit Pass/Fail 19.5ms Dwell time per Hop NA NA Dwell time per 100ms 39ms NA NA Time of Occupancy 195ms 0.4 sec per 10 sec Pass

Table 5: Duty Cycle/time of Occupancy Results

$\label{eq:cooper_Power_Systems} Cooper Power Systems, \ RFN420A3 \ Module, 915MHz \ Radio, FCC \ ptl5.247/RSS210 \ Dwell \ Time \ per \ Hop \ Dwell \ Time \ per \ Hop = 19.5 ms$

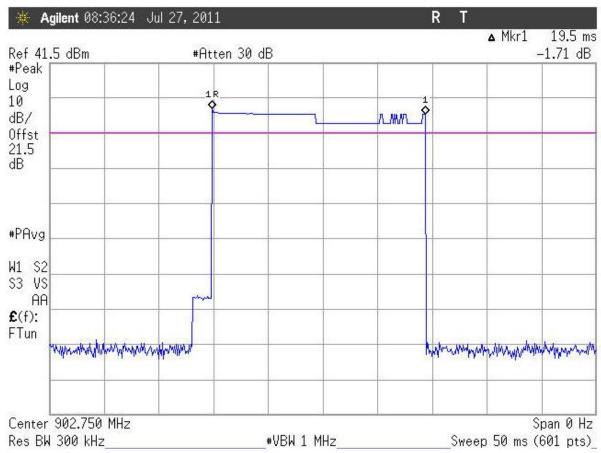


Figure 1: Single Hop Duty Cycle Plot

Cooper Power Systems, RFN420A3 Module, 915MHz Radio, FCC ptl5.247/RS\$210 Duty cycle per 100ms (worst case)
This Plot used for additional Duty cycle correction of 20Log([dwell time per 100ms]/100ms)

Figure 2: Dwell time per 100ms

Cooper Power Systems, RFN420A3 Module, 915MHz Radio, FCC pt15.247/RSS210 Time of Occupancy per 10 Seconds
Limit= 0.4Seconds per 10 seconds for bandwidths greater than 250kHz

Meaured= 19.5ms per hop (from dwell time plot) * 10hops = 195ms per 10 seconds

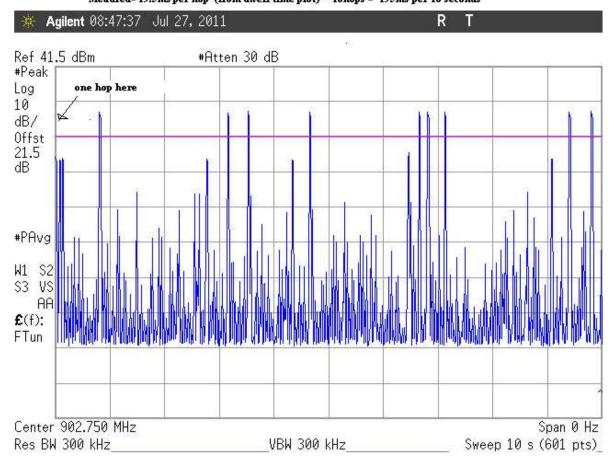


Figure 3: Time of Occupancy (Highest spikes are the hop channel, lower spikes are adjacent channels)

5.2 RF Power Output: (FCC Part §2.1046)

To measure the output power the hopping sequence was stopped while the frequency dwelled on a low, high and Center channel. The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system. The EUT has an adjustable output range. The highest and lowest power available is shown below.

Table 6: RF Power Output

Frequency	Power Setting	Level (dBm)	Limit (dBm)	Pass/Fail
Low Channel: 902.75MHz	High	26.74	30	Pass
Center Channel: 914.75MHz	High	27.21	30	Pass
High Channel: 927.25MHz	High	27.90	30	Pass
Low Channel: 902.75MHz	Low	-30.51	30	Pass
Center Channel: 914.75MHz	Low	-30.35	30	Pass
High Channel: 927.25MHz	Low	-30.34	30	Pass

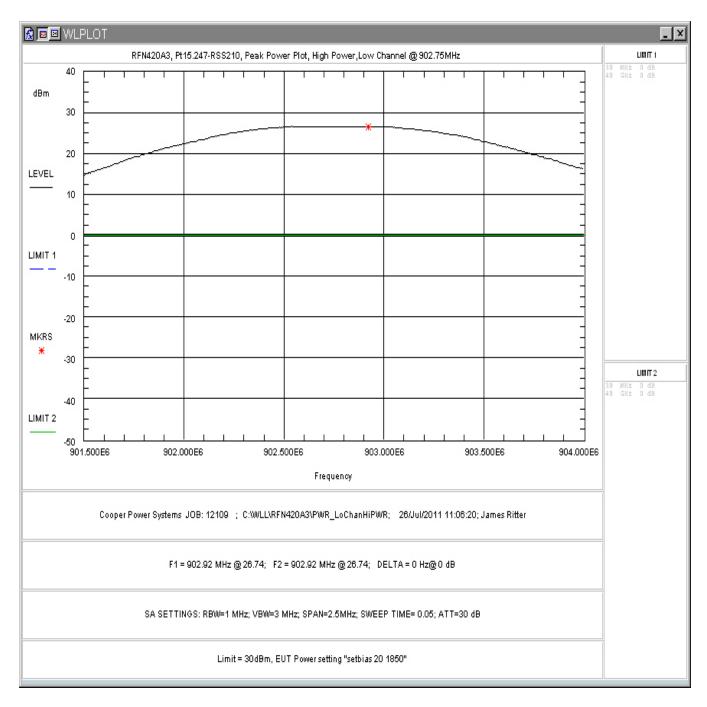


Figure 4: RF Peak Power, High Power, Low Channel

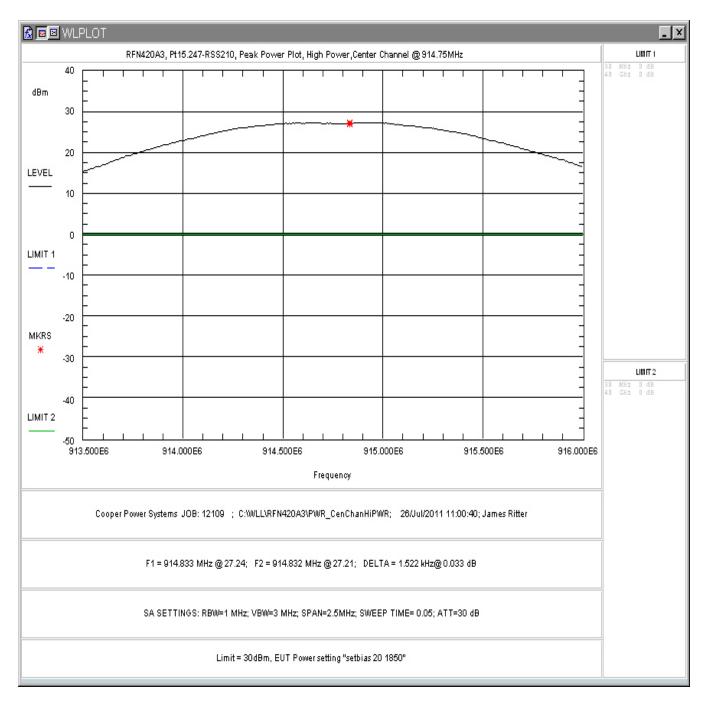


Figure 5: RF Peak Power, High Power, Center Channel

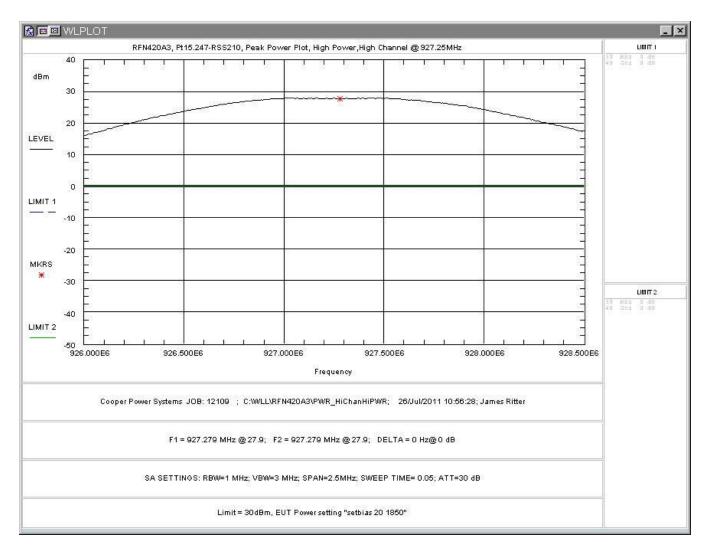


Figure 6: RF Peak Power, High Power, High Channel

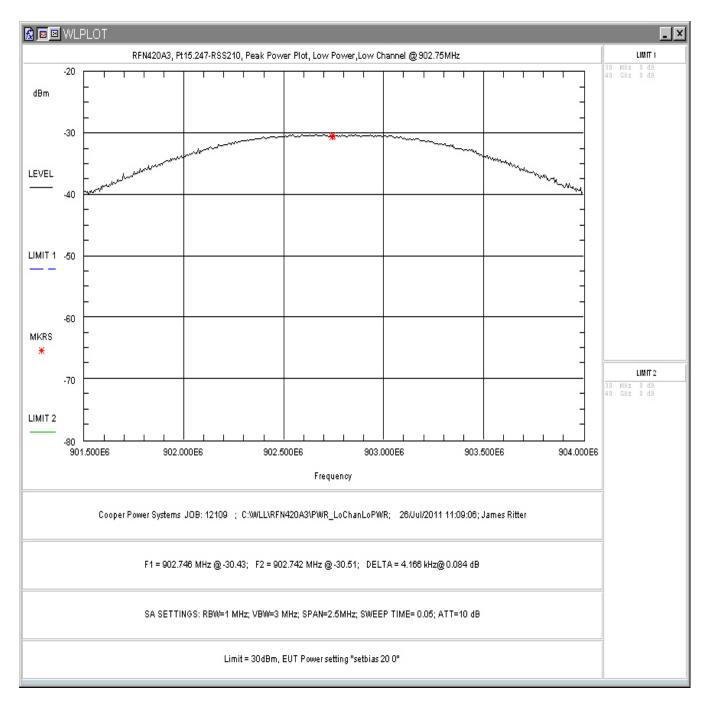


Figure 7: RF Peak Power, Low Power, Low Channel

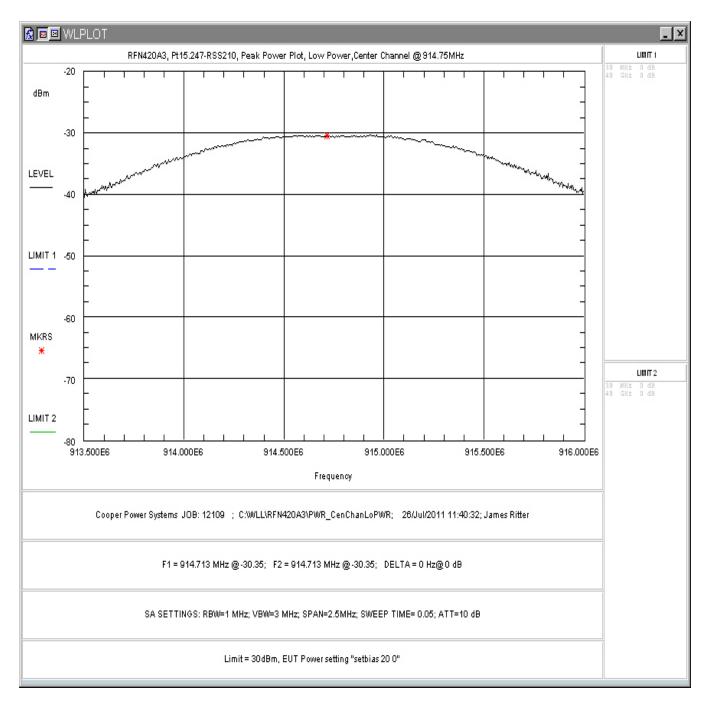


Figure 8: RF Peak Power, Low Power, Center Channel

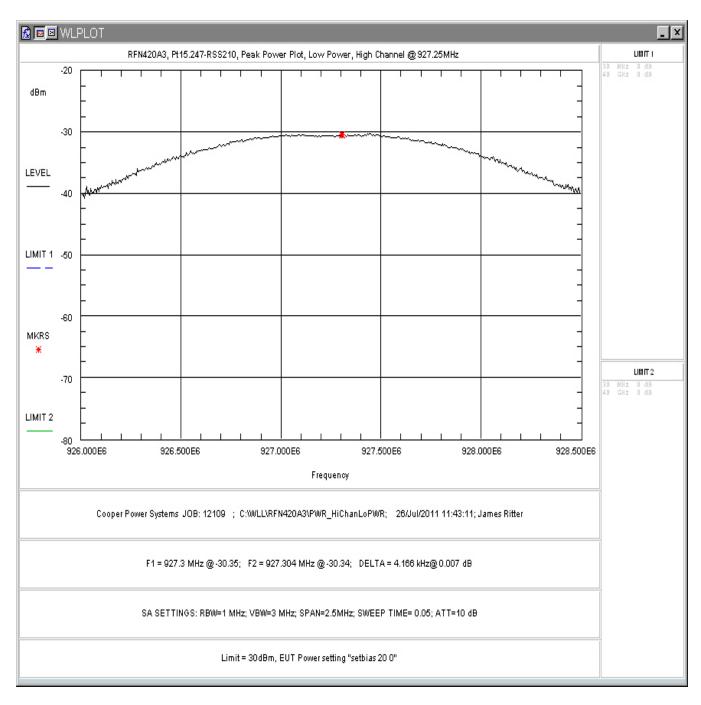


Figure 9: RF Peak Power, Low Power, High Channel

5.3 Occupied Bandwidth: (FCC Part §2.1049)

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

For Frequency Hopping Spread Spectrum Systems, FCC Part 15.247 requires the maximum 20 dB bandwidth not exceed 500kHz.

At full modulation, the occupied bandwidth was measured as shown:

Table 7 provides a summary of the Occupied Bandwidth Results.

Table 7: Occupied Bandwidth Results

Frequency	Bandwidth (kHz)	Limit (kHz)	Pass/Fail
Low Channel: 902.75MHz	481.31	500	Pass
Center Channel: 914.75MHz	491.58	500	Pass
High Channel: 927.25MHz	485.89	500	Pass

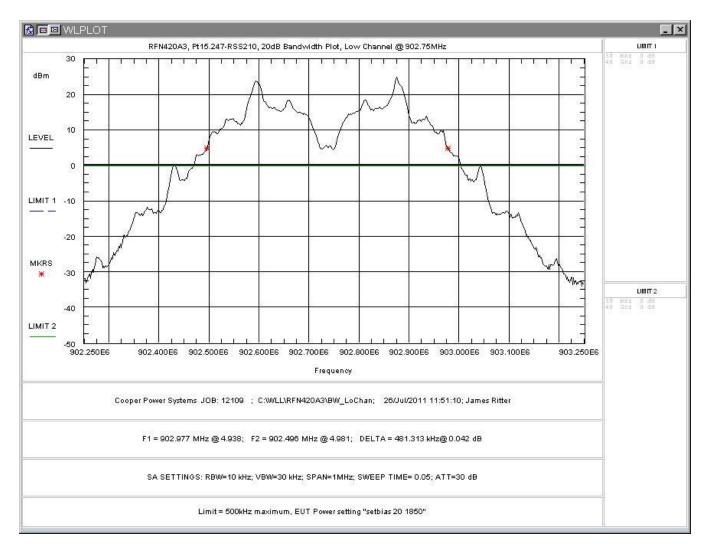


Figure 10: Occupied Bandwidth, Low Channel

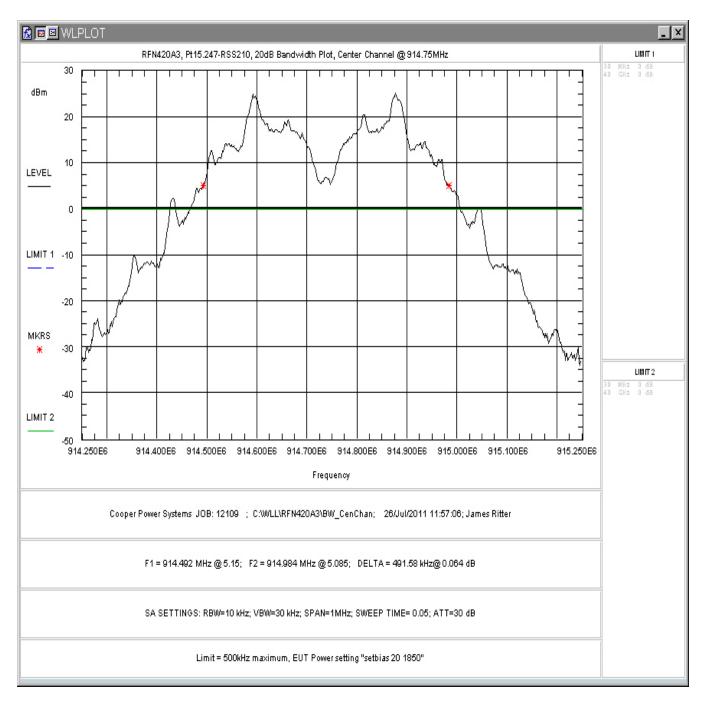


Figure 11: Occupied Bandwidth, Center Channel

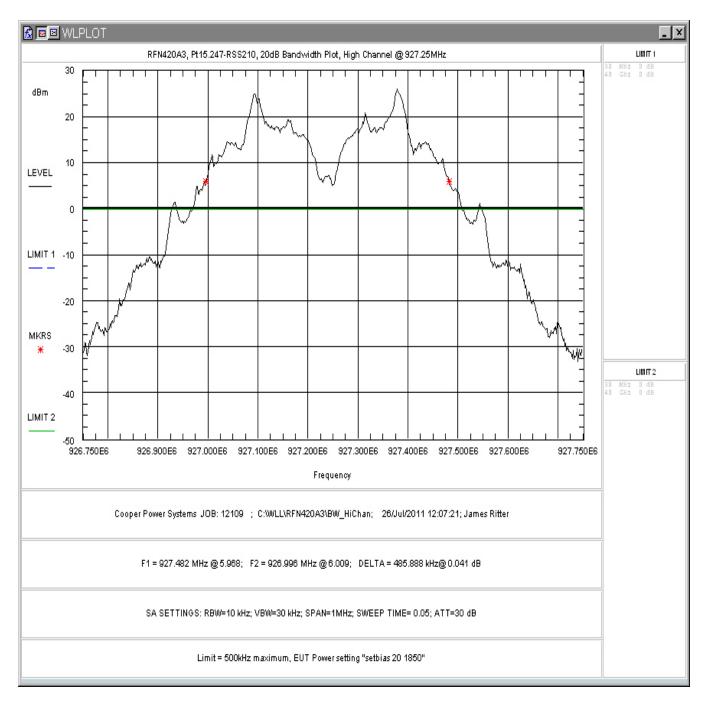


Figure 12: Occupied Bandwidth, High Channel

5.4 Channel Spacing and Number of Hop Channels (FCC Part §15247(a)(1)

Per the FCC requirements, frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth, whichever is greater. The maximum 20dB bandwidth measured is 491.6kHz so the channel spacing must be more than 491.6kHz. In addition, for a 902-928MHz transmitter with an occupied bandwidth greater than 250kHz the minimum number of hopping channels shall be 25.

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 20 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 30 kHz and the video bandwidth was set to 100 kHz. The channel spacing of 2 adjacent channels was measured using a spectrum analyzer span setting of 100kHz. Also, the number of hopping channels was measured from 902-928MHz using a RBW/VBW setting of 30kHz.

The following are plots of the channel spacing and number of hopping channels data. The channel spacing was measured to be 500kHz and the number of channels used is 50.

Note: in the following plots each channel is composed of 2 distinct peaks.

Frequency Result Limit Pass/Fail

Channel Spacing 500kHz 484.5kHz Pass

Number of channels 50 channels 25 channels minimum

Pass/Fail

Table 8: Channel Spacing and Number of Channels Results

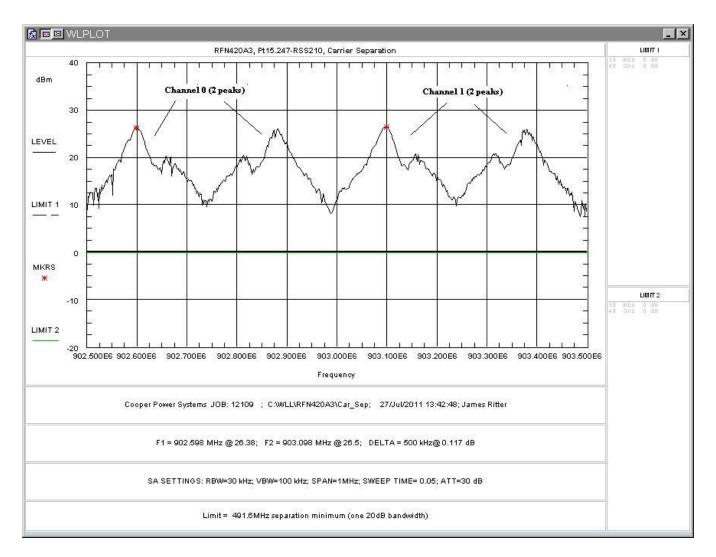
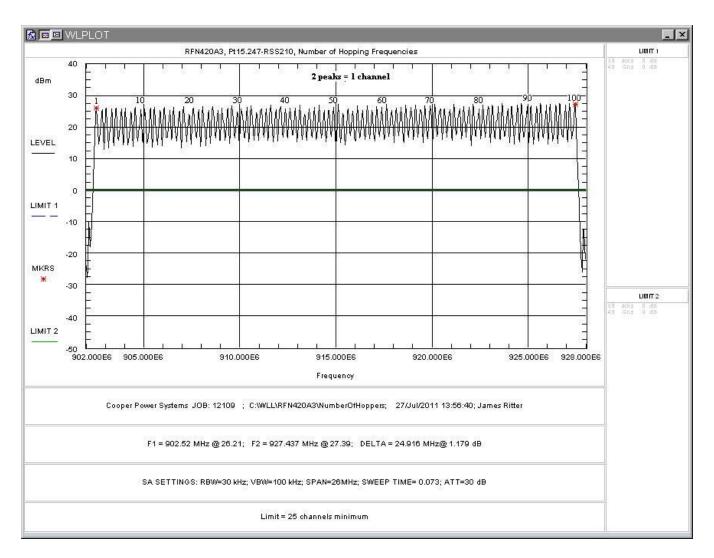



Figure 13: Channel Spacing

Figure 14: Number of Hopping Channels

5.5 Conducted Spurious Emissions at Antenna Terminals (FCC Part §2.1051)

The EUT must comply with requirements for spurious emissions at antenna terminals. Per §15.247(c) all spurious emissions in any 100 kHz bandwidth outside the frequency band in which the spread spectrum device is operating shall be attenuated 20 dB below the highest power level in a 100 kHz bandwidth within the band containing the highest level of the desired power.

The EUT antenna was removed and the cable was connected directly into a spectrum analyzer through a 10 dB attenuator. An offset was programmed into the spectrum analyzer to compensate for the loss of the external attenuator. The spectrum analyzer resolution bandwidth was set to 100 kHz and the video bandwidth was set to 100 kHz. The amplitude of the EUT carrier frequency was measured to determine the emissions limit (20 dB below the carrier frequency amplitude). The emissions outside of the allocated frequency band were then scanned from 30 MHz up to the tenth harmonic of the carrier.

The following are plots of the conducted spurious emissions data.

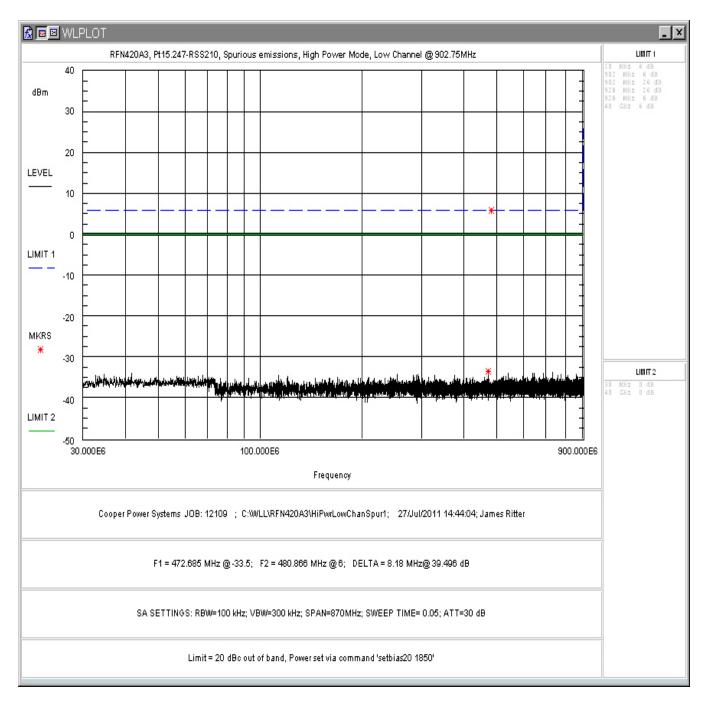


Figure 15: Conducted Spurious Emissions, High Power, Low Channel 30 - 900MHz

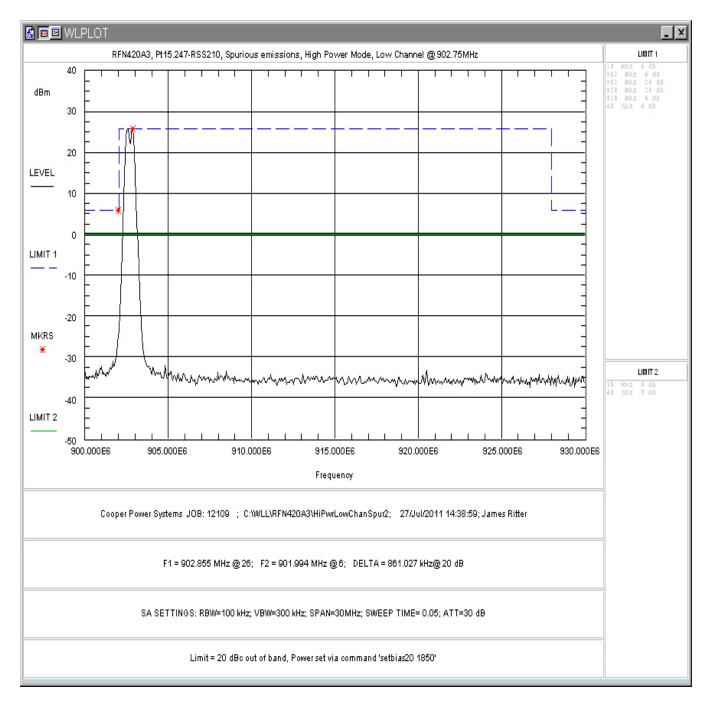


Figure 16: Conducted Spurious Emissions, High Power, Low Channel 900 – 930MHz

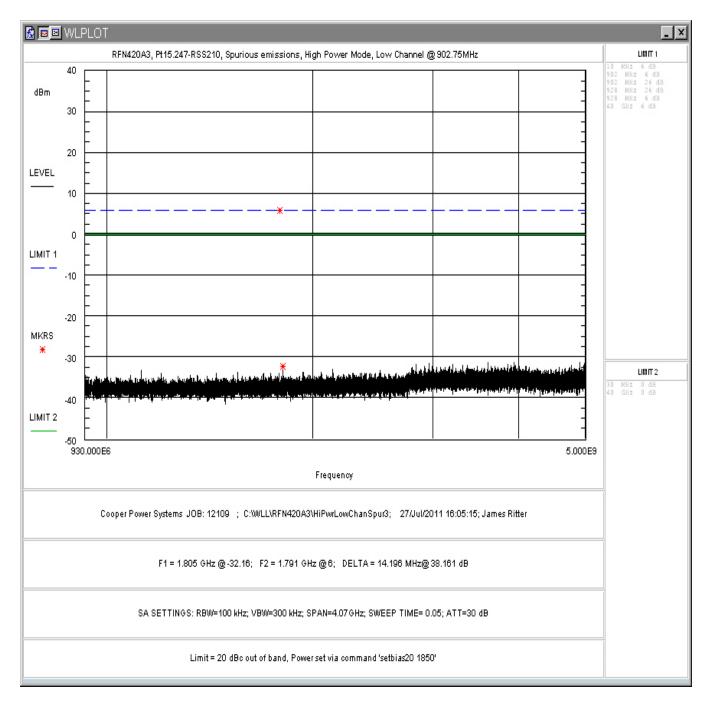


Figure 17: Conducted Spurious Emissions, High Power, Low Channel 930-5000MHz

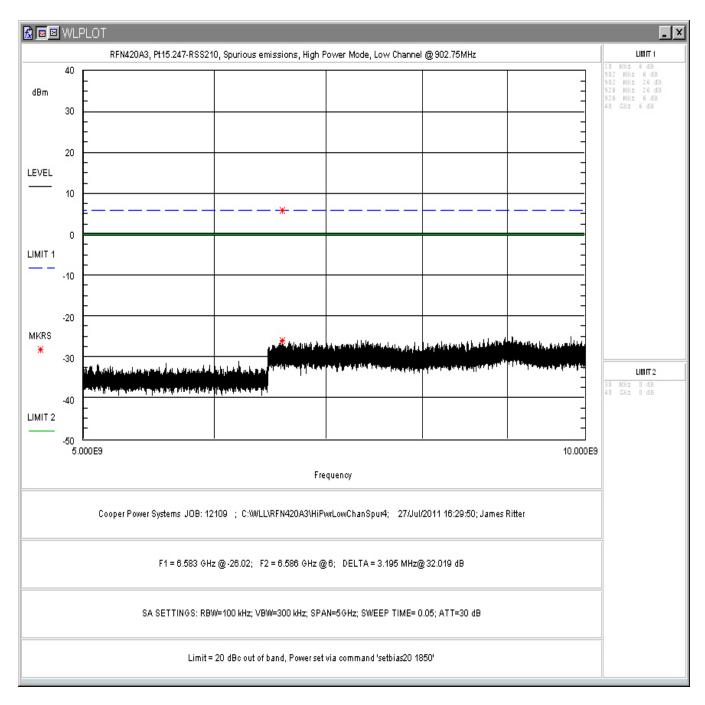


Figure 18: Conducted Spurious Emissions, High Power, Low Channel 5-10GHz

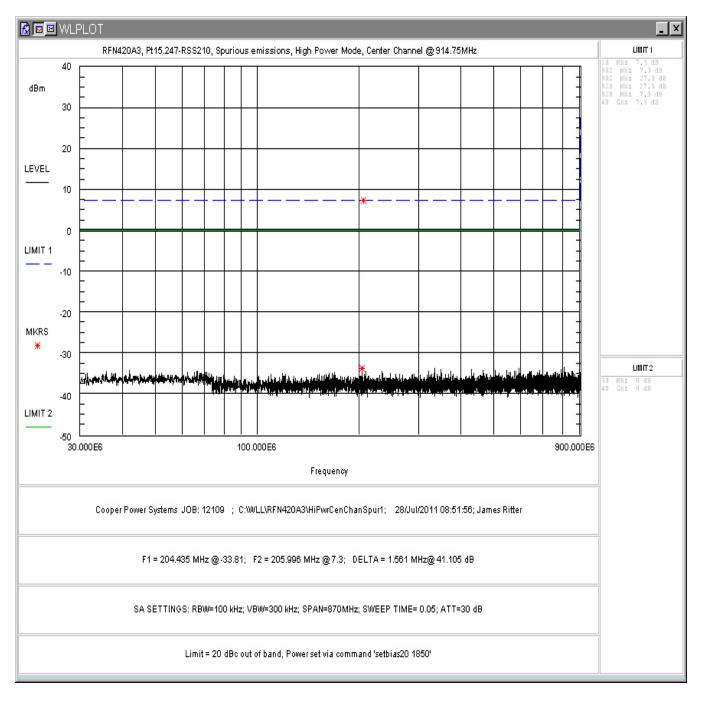


Figure 19: Conducted Spurious Emissions, High Power, Center Channel 30 - 900MHz

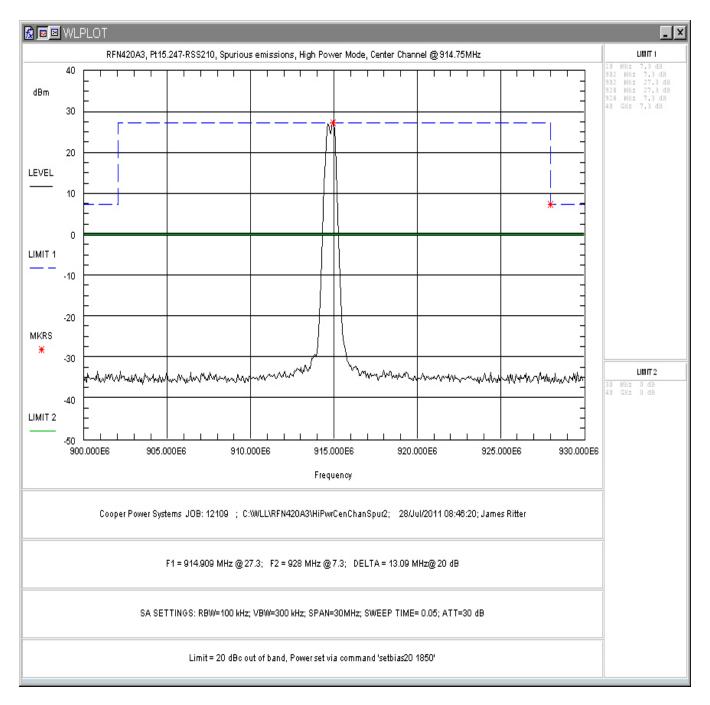


Figure 20: Conducted Spurious Emissions, High Power, Center Channel 900 – 930MHz

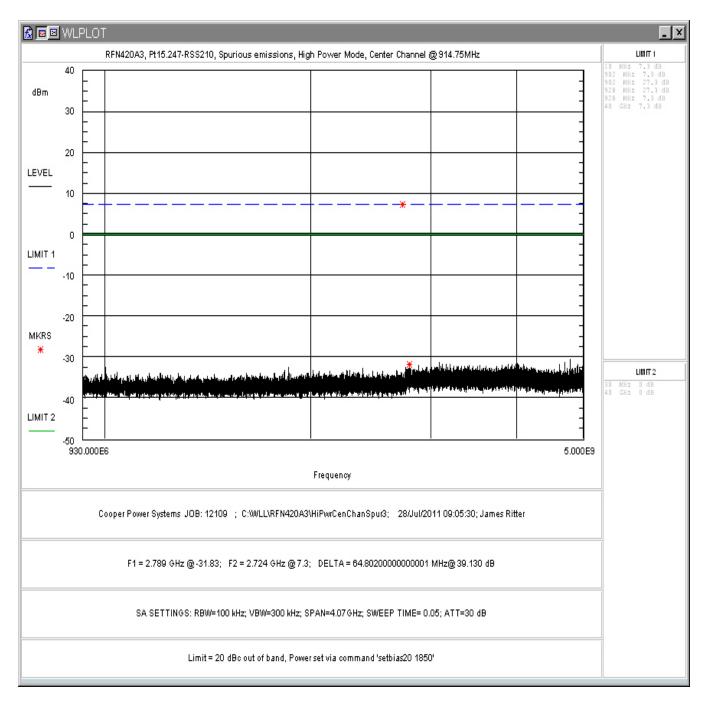


Figure 21: Conducted Spurious Emissions, High Power, Center Channel 930-5000MHz

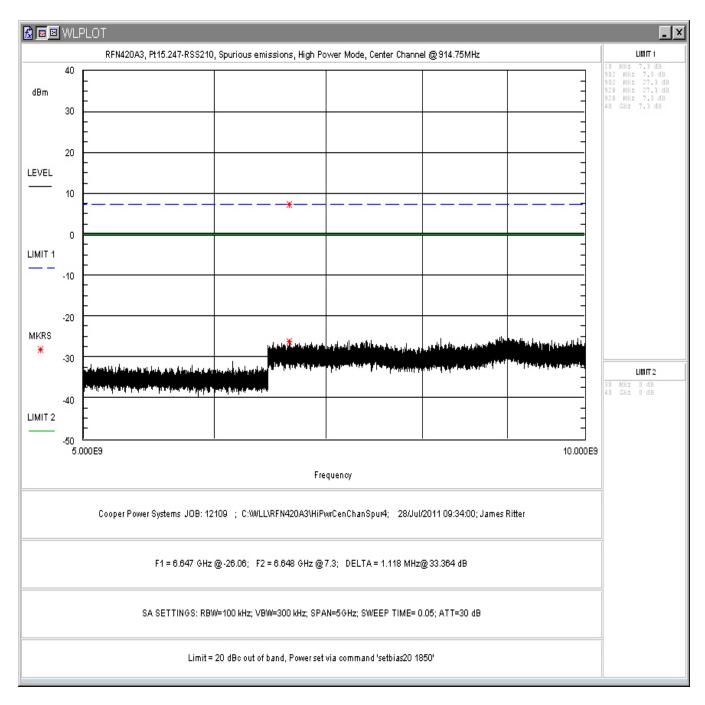


Figure 22: Conducted Spurious Emissions, High Power, Center Channel 5-10GHz