

MPE TEST REPORT

for the

io360

Report# 16237-02 Rev 1

Prepared for:

Mine Safety Appliances (MSA) Company 1000 Cranberry Woods Drive Cranberry Township, Pennsylvania 16066-5208

Prepared By:

Washington Laboratories, Ltd.

4840 Winchester Blvd. Suite 5 Frederick, Maryland 21703

Certificates and reports shall not be reproduced except in full, without the written permission of Washington Laboratories, Ltd

MPE Test Report for the Mine Safety Appliances (MSA) Company io360

Re-Issued FEBRUARY 20, 2020 WLL Report# 16237-02 Rev 1

Prepared by:

P. Repella

John P. Repella Manager, EMC & Wireless Services

Reviewed by:

Sto D.V.

Steven D. Koster President

ABSTRACT

This report has been prepared on behalf of Mine Safety Appliances (MSA) Company to document the findings of the maximum permissible exposure evaluation on the Mine Safety Appliances (MSA) Company io360.

The purpose of this evaluation is to establish a minimum safe distance as per the RF exposure requirements as defined in FCC §1.1307 & §1.1310 and in RSS-102.

This report documents the results of testing to the requirements of:

• CFR Title 47 Volume 1 Practice and Procedure; (1.1307) Environmental Assessments

The Evaluation was performed by Washington Laboratories, Ltd, 4840 Winchester Blvd, Frederick, MD 21703. Washington Laboratories, Ltd. has been accepted as an EMC Conformity Assessment Body (CAB) under the United States/European Union Memorandum of Agreement. Washington Laboratories, Ltd. has been accepted by the FCC and approved by ANAB under Testing Certificate AT-1448 as an independent FCC test laboratory.

Revision History	Description of Change	Date
Rev 0	Initial Release	JANUARY 14, 2020
Rev 1	Added the ISED RSS-102 limits	February 20, 2020

TABLE OF CONTENTS

Abstractii	ii
Table of Contents i	v
List of Tables	v
List of Figures	v
List of Photographs	v
1 Introduction	1
2 Requirements	2
2.1 Transmitter Categories	2
2.1.1 Fixed Installations	2
2.1.2 Mobile Devices	2
2.1.3 Portable Devices	2
2.2 Exposure Categories	2
2.2.1 Occupational/Controlled Exposure	2
2.2.2 General Population/Uncontrolled Exposure	
3 Device Summary	
4 Radio Frequency Radiation Exposure Evaluation	6

LIST OF TABLES

Table 1: MPE Limits (FCC)	3
Table 2: MPE Limits (ISED)	
Table 3: Device Summary of the io360	
Table 4: Transmitter MPE Calculation Summary(FCC)	
Table 5: Transmitter MPE Calculation Summary(ISED)	

LIST OF FIGURES

No table of figures entries found.

LIST OF PHOTOGRAPHS

No table of figures entries found.

1 INTRODUCTION

This report has been prepared on behalf of Mine Safety Appliances (MSA) Company io360

Transmitter to show compliance with the RF exposure requirements as defined in FCC §1.1307 & §1.1310 and in RSS-102.

Testing supporting this evaluation was performed at Washington Laboratories, Ltd, 4840 Winchester Blvd, Frederick, MD 21703. Washington Laboratories, Ltd. has been accepted as an EMC Conformity Assessment Body (CAB) under the United States/European Union Memorandum of Agreement. Washington Laboratories, Ltd. is accredited with ANAB under Testing Certificate AT-1448.

2 **Requirements**

2.1 TRANSMITTER CATEGORIES

2.1.1 Fixed Installations

A fixed location means that the device, including its antenna, is physically secured at a permanent location and is not able to be easily moved to another location. Additionally, distance to humans from the antenna is maintained to at least 2 meters.

2.1.2 Mobile Devices

A mobile device is defined as a transmitting device designed to be used in other than fixed locations and to be generally used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structures and the body of the user or nearby persons. Transmitters designed to be used by consumers or workers that can be easily re-located, such as a wireless modem operating in a laptop computer, are considered mobile devices if they meet the 20-centimeter separation requirement. The FCC rules for evaluating mobile devices for RF compliance are found in 47 CFR §2.1091.

2.1.3 Portable Devices

A portable device is defined as a transmitting device designed to be used so that the radiating structure(s) of the device is/are within 20 centimeters of the body of the user. Portable device requirements are found in Section 2.1093 of the FCC's Rules (47 CFR§2.1093).

2.2 EXPOSURE CATEGORIES

The limits for exposure are determined by the type of situation in which the individual is exposed. Table 1 lists the limits for the particular environment.

2.2.1 Occupational/Controlled Exposure

In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Awareness of the potential for RF exposure in a workplace or similar environment can be provided through specific training as part of a RF safety program. If appropriate, warning signs and labels can also be used to establish such awareness by providing prominent information on the risk of potential exposure and instructions on methods to minimize such exposure risks.

2.2.2 General Population/Uncontrolled Exposure

The general population / uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general-public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category and the general population/uncontrolled exposure limits apply to these devices.

Table 1: MPE Limits (FCC)

Frequency Range (MHz)	Electric field Strength (V/m)	Magnetic field Strength (A/m)	Power density (mW/cm2)	Averaging time (minutes)
(A) Limits for Occu	pational/Controlled Expo	osures		
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f2)	6
30–300	61.4	0.163	1	6
300–1500	N/A	N/A	f/300	6
1500-100,000	N/A	N/A	5	6
(B) Limits for Gene	eral Population/Uncontrol	lled Exposure		
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f2)	30
30–300	27.5	0.073	0.2	30
300–1500	N/A	N/A	f/1500	30
1500-100,000	N/A	N/A	1	30

Table 2: MPE Limits (ISED)

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Reference Period (minutes)
	Limits for General Pop	oulation/Uncontrol	led Exposure	
0.003-10	83	90	-	Instantaneous*
0.1-10	-	0.73/ f	-	6**
1.1-10	$87/f^{0.5}$	-	-	6**
10-20	27.46	0.0728	2	6
20-48	$58.07/f^{0.25}$	$0.1540/f^{0.25}$	$8.944/f^{0.5}$	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619 f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	$616000/f^{1.2}$
150000-300000	$0.158 f^{0.5}$	4.21 x 10-4 f ^{0.5}	6.67 x 10 ⁻⁵ f	616000/ f ^{1.2}
Note: <i>f</i> is frequency i	in MHz.			
*Based on nerve stim	ulation (NS). ** Based on spe	ecific absorption rate	(SAR).	

Frequency Range(MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m2)	Reference Period (minutes)
	Limits for Occupat	ional/Controlled H	Exposures	1
0.003-1023	170	180	-	Instantaneous*
0.1-10	-	1.6/ f	-	6**
1.29-10	193/ f 0.5	-	-	6**
10-20	61.4	0.163	10	6
20-48	129.8/ f 0.25	0.3444/ f 0.25	44.72/ f 0.5	6
48-100	49.33	0.1309	6.455	6
100-6000	15.60 f 0.25	0.04138 f 0.25	0.6455f0.5	6
6000-15000	137	0.364	50	6
15000-150000	137	0.364	50	616000/ f 1.2
150000-300000	0.354 f 0.5	9.40 x 10-4 f 0.5	3.33 x 10-4 <i>f</i>	616000/ f 1.2
		: C: 1		

f in MHz, * Based on nerve stimulation, ** Based on specific absorption rate(SAR)

3 DEVICE SUMMARY

The io360 contains three transceivers, a 13.56-MHz multi-protocol contactless transceiver IC, a certified Bluetooth module (BlueGiga BT121), and a certified 915 MHz radio (DIGI XBP9B-DMWT-002).

Table 2 below summarizes the criteria used to evaluate the io360

Table 3: Device Summary of the io360

Transmitter Category:	Unlicensed
Exposure Category:	General
Antenna Gain:	13.56 IC,(1dBi), 2.4GHz BlueGiga BT121(1dBi), DIGI XBP9B- DMWT-002(0dbi)
Power Output (dBm):	6.99dBm, 11.76dBm, 24.7dBm respectively as referenced above.
Evaluation Distance:	20 cm
Frequency Range:	3 Transmitters, 13.56MHz, 2.4GHz Bluetooth Module, 915MHz
FCC Limit:	0.9791mW/cm ² , 1mW/cm ² , 0.6181mW/cm ²
ISED Limit:	0.2mW/cm ² , 0.543mW/cm ² , 0.280mW/cm ²

4 RADIO FREQUENCY RADIATION EXPOSURE EVALUATION

The highest RF output power of the unit was measured and recorded. According to §1.1310 of the FCC rules, the power density limit for General Population/Uncontrolled Exposure is 1mW/cm². According to §1.1310 of the FCC rules, the power density limit for Occupational/Controlled Exposure is 5mW/cm².

The MPE shall be calculated at 20cm to show compliance with the power density limit. The following formula was used to calculate the Power Density:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = Power Density

P = Output Power at the Antenna Terminals

G = Gain of Transmit Antenna (linear gain-isotropic)

R = Distance from Transmitting Antenna

Table 4: Transmitter MPE Calculation Summary(FCC)

One Transmitter			
Frequency	927.6	MHz	
Limit	0.618	mW/cm^2	
Distance (cm), R =	20	cm	
Power (dBm), P =	24.742	dBm	
TX Ant Gain (dBi), G =	1	dB	
Power Density:	0.0746	mW/cm^2	Separation<20 cm
Minimum Distance:	6.9	cm	
Second Transmitter			
Frequency	2440	MHz	
Limit	1.000	mW/cm^2	
Distance (cm), R =	20	cm	
Power (dBm), P =	11.761	dBm	
TX Ant Gain (dB), G =	1	dB	
Power Density:	0.0038	mW/cm^2	Separation<20 cm
Minimum Distance:	1.2	cm	
Third Transmitter			
Frequency	13.56	MHz	
Limit	0.979	mW/cm^2	
Distance (cm), R =	20	cm	
Power (dBm), P =	6.99	dBm	
TX Ant Gain (dB), G =	0	dB	
Power Density:	0.0010	mW/cm^2	Separation<20 cm
Minimum Distance:	0.6	cm	
Multiple Transmitter Summary			
Power Density:	0.0794	mW/cm^2	Separation<20 cm
Minimum Distance:	8.8	cm	Sum of the Distances

Table 5: Transmitter MPE Calculation Summary(ISED)

One Transmitter			
Frequency	927.6		
Limit		mW/cm^2	
Distance (cm), R =		cm	
Power (dBm), P =	24.742	dBm	
TX Ant Gain (dBi), G =	1	dB	
Power Density:	0.07	mW/cm^2	Separation<20 cm
Minimum Distance:	10.3	cm	
Second Transmitter			
Frequency	2440	MHz	
Limit	0.543	mW/cm^2	
Distance (cm), R =	20	cm	
Power (dBm), P =	11.761	dBm	
TX Ant Gain (dB), G =	1	dB	
Power Density:	0.0038	mW/cm^2	Separation<20 cm
Minimum Distance:	1.7	cm	
Third Transmitter			
Frequency	13.56	MHz	
Limit	0.200	mW/cm^2	
Distance (cm), R =	20	cm	
Power (dBm), P =	6.99	dBm	
TX Ant Gain (dB), G =	0	dB	
Power Density:	0.0010	mW/cm^2	Separation<20 cm
Minimum Distance:	1.4	cm	
Multiple Transmitter Summary			
Multiple Transmitter Summary Power Density:		mW/cm^2	Separation<20 cm
			Separation<20 cm Sum of the Distances