



**FCC CFR47 PART 15 SUBPART C**

**CERTIFICATION TEST REPORT**

**FOR**

**58 KHz ELECTRONIC ARTICLE SURVEILLANCE SYSTEM**

**MODEL OF TEST: WG WF PP**

**MODEL OF DIFFERENCE: WG WF PG, WG WF AG, WG WF AGX and WG WF LG**

**REPORT NUMBER: 13U16686 -1, REVISION C**

**FCC ID: P9I-WGWF58**

**ISSUE DATE: MARCH 10, 2015**

*Prepared for*

**WG SECURITY PRODUCTS, INC.  
2105 S. BASCOM AVE. SUITE 316  
CAMPBELL, CA 95008, U.S.A.**

*Prepared by*

**UL VERIFICATION SERVICES INC.  
47173 BENICIA STREET  
FREMONT, CA 94538, U.S.A.  
TEL: (510) 771-1000  
FAX: (510) 661-0888**

**NVLAP**<sup>®</sup>

NVLAP LAB CODE 200065-0

Revision History

| Rev. | Issue Date | Revisions                                                               | Revised By |
|------|------------|-------------------------------------------------------------------------|------------|
| --   | 03/06/2014 | Initial Issue                                                           | T. Chan    |
| A    | 12/03/2014 | Address TCB Reviewer's Questions of Section 7.1                         | M. Mekuria |
| B    | 12/10/2014 | Address TCB Reviewer's Questions of Sections 5.2, 5.5, 5.6, 7.1 and 7.2 | O. Su      |
| C    | 03/10/2015 | Address TCB Reviewer's Questions of Section 5.5 and 7.1                 | T. Chu     |

---

## TABLE OF CONTENTS

|                                                        |           |
|--------------------------------------------------------|-----------|
| <b>1. ATTESTATION OF TEST RESULTS .....</b>            | <b>4</b>  |
| <b>2. TEST METHODOLOGY .....</b>                       | <b>5</b>  |
| <b>3. FACILITIES AND ACCREDITATION .....</b>           | <b>5</b>  |
| <b>4. CALIBRATION AND UNCERTAINTY .....</b>            | <b>5</b>  |
| 4.1. <i>MEASURING INSTRUMENT CALIBRATION .....</i>     | 5         |
| 4.2. <i>SAMPLE CALCULATION .....</i>                   | 5         |
| 4.3. <i>MEASUREMENT UNCERTAINTY .....</i>              | 6         |
| <b>5. EQUIPMENT UNDER TEST .....</b>                   | <b>7</b>  |
| 5.1. <i>DESCRIPTION OF EUT .....</i>                   | 7         |
| 5.2. <i>DESCRIPTION OF MODELS DIFFERENCES .....</i>    | 7         |
| 5.3. <i>DESCRIPTION OF AVAILABLE ANTENNAS .....</i>    | 7         |
| 5.4. <i>SOFTWARE AND FIRMWARE .....</i>                | 7         |
| 5.5. <i>WORST-CASE CONFIGURATION AND MODE .....</i>    | 8         |
| 5.6. <i>DESCRIPTION OF TEST SETUP .....</i>            | 9         |
| <b>6. TEST AND MEASUREMENT EQUIPMENT .....</b>         | <b>10</b> |
| <b>7. EMISSIONS LIMITS AND RESULTS .....</b>           | <b>11</b> |
| 7.1. <i>RADIATED EMISSIONS .....</i>                   | 11        |
| 7.2. <i>TX SPURIOUS EMISSIONS 0.15 TO 30 MHz .....</i> | 12        |
| 7.3. <i>RADIATED EMISSIONS 30 to 1000 MHz .....</i>    | 13        |
| 7.4. <i>AC MAINS LINE CONDUCTED EMISSIONS .....</i>    | 14        |
| <b>8. SETUP PHOTOS .....</b>                           | <b>21</b> |
| 8.1. <i>RADIATED EMISSIONS BELOW 30 MHz .....</i>      | 21        |
| 8.2. <i>RADIATED EMISSIONS ABOVE 30MHz .....</i>       | 22        |
| 8.3. <i>AC MAINS LINE CONDUCTED EMISSIONS .....</i>    | 23        |

## 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** WG SECURITY PRODUCTS, INC.  
2105 S. BASCOM AVE. SUITE 316  
CAMPBELL, CA 95008, U.S.A.

**EUT DESCRIPTION:** 58 KHz ELECTRONIC ARTICLE SURVEILLANCE SYSTEM

**MODEL OF TEST:** WG WF PP

**\*MODEL OF DIFFERENCE:** WG WF PG, WG WF AG, WG WF AGX and WG WF LG

**SERIAL NUMBER:** 13/11 00001

**DATE TESTED:** DECEMBER 16 -20, 2013

| APPLICABLE STANDARDS  |  | TEST RESULTS |
|-----------------------|--|--------------|
| STANDARD              |  | TEST RESULTS |
| FCC PART 15 SUBPART C |  | Pass         |

\* Models differences are explained within the body of this report.

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For  
UL Verification Services Inc. By:



Thu Chan  
Operation Manager  
UL Verification Services Inc.

Tested By:



Oliver Su  
Senior Engineer  
UL Verification Services Inc.

## 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15 and ANSI C63.10-2009.

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street               | 47266 Benicia Street                          |
|------------------------------------|-----------------------------------------------|
| <input type="checkbox"/> Chamber A | <input checked="" type="checkbox"/> Chamber D |
| <input type="checkbox"/> Chamber B | <input type="checkbox"/> Chamber E            |
| <input type="checkbox"/> Chamber C | <input type="checkbox"/> Chamber F            |

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://ts.nist.gov/standards/scopes/2000650.htm>

## 4. CALIBRATION AND UNCERTAINTY

### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

### 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

$$\begin{aligned} \text{Field Strength (dBuV/m)} &= \text{Measured Voltage (dBuV)} + \text{Antenna Factor (dB/m)} + \\ &\text{Cable Loss (dB)} - \text{Preamp Gain (dB)} \\ 36.5 \text{ dBuV} + 18.7 \text{ dB/m} + 0.6 \text{ dB} - 26.9 \text{ dB} &= 28.9 \text{ dBuV/m} \end{aligned}$$

### 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | 3.52 dB     |
| Radiated Disturbance, 30 to 1000 MHz  | 4.94 dB     |

Uncertainty figures are valid to a confidence level of 95%.

## 5. EQUIPMENT UNDER TEST

### 5.1. DESCRIPTION OF EUT

The EUT is a 58 kHz article surveillance system and consists of a pedestal, detection tag and external “smart” power supply module. The principle of operation is as follows: receiver software provides a control signal to the transmitter to send out a 1.6 ms TX burst periodically in a random sequence, and then reads in the received signal, which is, in turn, processed to determine whether it is a tag signal or noise. The receiver software compares the tag signal sequence with the transmitting sequence. If the two sequences match, the software triggers activation of visual and audio alarms.

The EUT is powered by an external “smart” power supply, input rating 100-120/220-240 V, 50-60 Hz, output rating 26 VAC, 1.9 A.

### 5.2. DESCRIPTION OF MODELS DIFFERENCES

The WG WF PP version is the largest of the five models. The manufacturer confirmed that the all models have the same internal components, same power supply SPS-24 and differ only in the antenna and enclosure sizes. Each model contains two TX/RX coils - a figure-8 coil set (TX) and a loop coil set (RX). The differences in the TX/RX coil parameters are as follows:

| Model     | Loop coil<br>antenna area (m <sup>2</sup> ) |       | Length,<br>single turn (m) |       | Number<br>of turns |      | Length, all turns<br>(m) |        |
|-----------|---------------------------------------------|-------|----------------------------|-------|--------------------|------|--------------------------|--------|
|           | Figure-8                                    | Loop  | Figure-8                   | Loop  | Figure-8           | Loop | Figure-8                 | Loop   |
| WG WF PP  | <0.64                                       | <0.64 | 4.62                       | 3.62  | 7                  | 8    | 32.34                    | 28.96  |
| WG WF PG  | <0.42                                       | <0.42 | 3.91                       | 3.2   | 8                  | 9    | 31.28                    | 28.80  |
| WG WF AGX | <0.49                                       | <0.38 | 4.02                       | 2.915 | 8                  | 9    | 32.16                    | 26.235 |
| WG WF AG  | <0.29                                       | <0.22 | 3.47                       | 2.88  | 9                  | 10   | 31.23                    | 28.80  |
| WG WF LG  | <0.4                                        | <0.4  | 3.45                       | 2.65  | 9                  | 10   | 31.05                    | 26.50  |

### 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The EUT utilizes an integrated loop antenna.

### 5.4. SOFTWARE AND FIRMWARE

Not Applicable.

## 5.5. WORST-CASE CONFIGURATION AND MODE

The following configurations were investigated during testing:

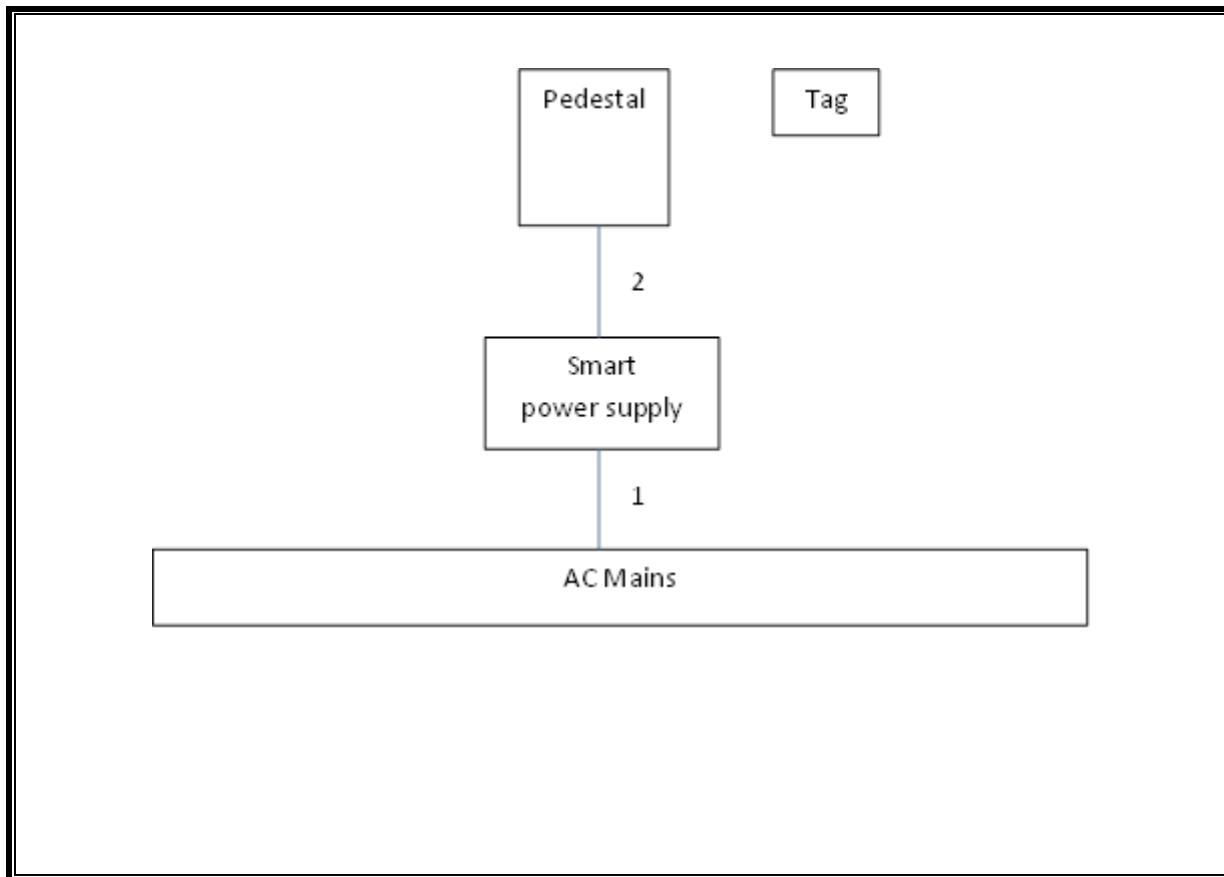
| EUT Configuration              | Description                                                                                                                                                               |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Idle (Continuous Transmission) | Antenna assembly and control box were connected to 24 VAC power supply. No tag was placed inside the field of the antenna assembly.                                       |
| Alarm ON Configuration         | Antenna assembly and control box were connected to 24 VAC power supply. Tag was placed inside the field of the antenna assembly in order to trigger an alarm ("beep on"). |

Based on the investigation at 3 meter distance, see data below, model WG WF PP is determined to be the worst case on below and above 30 MHz, TX/RX without tag; therefore, WG WF PP was used to perform on all final testing.

| Models<br>Items                                    | WG WF PP | WG WF AGX | WG WF PG | WG WF LG | WG WF AG |
|----------------------------------------------------|----------|-----------|----------|----------|----------|
| Fundamental<br>(58KHz)<br>measured<br>level (dBuv) | 106.438  | 104.98    | 104.487  | 104.065  | 100.32   |
| Tx Ant size<br>Figure-8,<br>Area (m <sup>2</sup> ) | <0.64    | <0.49     | <0.42    | <0.4     | <0.29    |
| Rx Ant size,<br>Loop Area<br>(m <sup>2</sup> )     | <0.64    | <0.38     | <0.42    | <0.4     | <0.22    |

Notes: The model WG WF PP represented for all other models WG WF PG, WG WF AGX, WG WF AG and WG WF LG in this test. Because of all models have the same AC power supply and circuitries, except for the antenna size.

## 5.6. DESCRIPTION OF TEST SETUP


### SUPPORT EQUIPMENT

The EUT was a stand-alone device (also called pedestal) and powered by an external "smart" power supply, WG Security, Model SPS-24, input rating 100-120/220-240 V 50-60 Hz, output rating 26 VAC, 1.9 A. No other support equipment was required for operation.

### I/O CABLES

| I/O CABLE LIST |                            |                      |                 |            |              |         |
|----------------|----------------------------|----------------------|-----------------|------------|--------------|---------|
| Cable No.      | Port                       | # of Identical Ports | Connector Type  | Cable Type | Cable Length | Remarks |
| 1              | Mains Input                | 1                    | 3-Prong         | Unshielded | 1.5 m        | None    |
| 2              | 26 VAC Output and I/O Line | 1                    | 2 and 4-Pin SIP | Unshielded | 1 m          | None    |

### SETUP DIAGRAM FOE TESTS



## 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List             |                |             |        |          |
|---------------------------------|----------------|-------------|--------|----------|
| Description                     | Manufacturer   | Model       | Asset  | Cal Due  |
| Preamplifier, 1300 MHz          | Agilent / HP   | 8447D       | C00558 | 05/21/14 |
| Antenna, Biconolog, 30MHz-1 GHz | Sunol Sciences | JB3         | F00027 | 03/07/14 |
| Spectrum Analyzer, 44GHz        | Agilent        | N9030A      | F00129 | 02/22/15 |
| LISN, 30 MHz                    | FCC            | 50/250-25-2 | C00626 | 01/14/15 |
| Antenna, Loop, 30 MHz           | ETS Lindgren   | 6502        | F00366 | 10/04/14 |
| EMI Test Receiver, 9KHz-7GHz    | R & S          | ESCI 7      | T284   | 09/05/14 |
| EMI Test Receiver, 30 MHz       | R & S          | ESHS20      | N02396 | 03/23/14 |

## 7. EMISSIONS LIMITS AND RESULTS

### 7.1. RADIATED EMISSIONS

#### TEST PROCEDURE

ANSI C63.10.

The EUT is an intentional radiator that incorporates a digital device. The highest fundamental frequency generated or used in the device is 58 KHz, while the highest frequency generated or used in the device is 24 MHz. Therefore, the frequency range was investigated from 9 KHz to 1000 MHz.

#### LIMIT

FCC §15.209 (a)

| Frequency (MHz) | Field Strength (microvolts/meter) | Measurement Distance (m) |
|-----------------|-----------------------------------|--------------------------|
| 0.009–0.490     | 2400/F(kHz)                       | 300                      |
| 0.490–1.705     | 24000/F(kHz)                      | 30                       |
| 1.705–30.0      | 30                                | 30                       |
| 30–88           | 100                               | 3                        |
| 88 to 216       | 150                               | 3                        |
| 216 to 960      | 200                               | 3                        |
| Above 960 MHz   | 500                               | 3                        |

Note: The lower limit shall apply at the transition frequency.

#### RESULTS

## 7.2. TX SPURIOUS EMISSIONS 9 KHz TO 30 MHz

| FCC Part 15, Subpart B & C |              |              |              |            |          |                             |                                  |                                  |                      | 10 Meter Distance Measurement At Open Field |                   |                   |              |  |
|----------------------------|--------------|--------------|--------------|------------|----------|-----------------------------|----------------------------------|----------------------------------|----------------------|---------------------------------------------|-------------------|-------------------|--------------|--|
| Frequency<br>(MHz)         | PK<br>(dBuV) | QP<br>(dBuV) | AV<br>(dBuV) | AF<br>dB/m | CL<br>dB | Distance<br>Correction (dB) | PK Corrected<br>Reading (dBuV/m) | AV Corrected<br>Reading (dBuV/m) | PK Limit<br>(dBuV/m) | AV Limit<br>(dBuV/m)                        | PK Margin<br>(dB) | AV Margin<br>(dB) | Notes        |  |
| Loop Antenna Face On:      |              |              |              |            |          |                             |                                  |                                  |                      |                                             |                   |                   |              |  |
| 0.058                      | 93.74        | 87.6         | 77.8         | 11.06      | 0.05     | -59.08                      | 39.63                            | 29.83                            | 52.34                | 32.34                                       | -12.7             | -2.5              | 10m distance |  |
| 0.116                      | 35.58        | 27.72        | 23.85        | 10.49      | 0.05     | -59.08                      | -20.83                           | -24.70                           | 46.32                | 26.32                                       | -67.1             | -51.0             | 10m distance |  |
| 0.174                      | 66.89        | 55.6         | 36.59        | 10.44      | 0.05     | -59.08                      | 7.01                             | -12.00                           | 42.79                | 22.79                                       | -35.8             | -34.8             | 10m distance |  |
| 0.232                      | 48.7         | 38.6         | 31.94        | 10.4       | 0.05     | -59.08                      | -10.03                           | -16.69                           | 40.29                | 20.29                                       | -50.3             | -37.0             | 10m distance |  |
| 0.29                       | 59.51        | 48.62        | 42.03        | 10.36      | 0.05     | -59.08                      | -0.06                            | -6.65                            | 38.36                | 18.36                                       | -38.4             | -25.0             | 10m distance |  |
| 0.348                      | 47.6         | 38.21        | 29.54        | 10.31      | 0.05     | -59.08                      | -10.51                           | -19.18                           | 36.77                | 16.77                                       | -47.3             | -36.0             | 10m distance |  |
| 0.406                      | 54.31        | 46.54        | 30.8         | 10.27      | 0.05     | -59.08                      | -2.22                            | -17.96                           | 35.43                | 15.43                                       | -37.7             | -33.4             | 10m distance |  |
| 0.464                      | 47.21        | 36.7         | 27.9         | 10.23      | 0.05     | -59.08                      | -12.11                           | -20.91                           | 34.27                | 14.27                                       | -46.4             | -35.2             | 10m distance |  |
| Loop Antenna Face Off:     |              |              |              |            |          |                             |                                  |                                  |                      |                                             |                   |                   |              |  |
| 0.058                      | 73.97        | 66.95        | 53.6         | 11.06      | 0.05     | -59.08                      | 18.98                            | 5.63                             | 52.34                | 32.34                                       | -33.4             | -26.7             | 10m distance |  |
| 0.116                      | 26.15        | 20.19        | 19.8         | 10.49      | 0.05     | -59.08                      | -28.36                           | -28.75                           | 46.32                | 26.32                                       | -74.7             | -55.1             | 10m distance |  |
| 0.174                      | 48.6         | 39.26        | 33.14        | 10.44      | 0.05     | -59.08                      | -9.33                            | -15.45                           | 42.79                | 22.79                                       | -52.1             | -38.2             | 10m distance |  |
| 0.232                      | 41.87        | 36.6         | 31.06        | 10.4       | 0.05     | -59.08                      | -12.03                           | -17.57                           | 40.29                | 20.29                                       | -52.3             | -37.9             | 10m distance |  |
| 0.29                       | 49.5         | 41.1         | 32.9         | 10.36      | 0.05     | -59.08                      | -7.58                            | -15.78                           | 38.36                | 18.36                                       | -45.9             | -34.1             | 10m distance |  |
| 0.348                      | 41.85        | 35.42        | 29.1         | 10.31      | 0.05     | -59.08                      | -13.30                           | -19.62                           | 36.77                | 16.77                                       | -50.1             | -36.4             | 10m distance |  |
| 0.406                      | 43           | 35.11        | 28.7         | 10.27      | 0.05     | -59.08                      | -13.65                           | -20.06                           | 35.43                | 15.43                                       | -49.1             | -35.5             | 10m distance |  |
| 0.464                      | 39.1         | 32.65        | 27.65        | 10.23      | 0.05     | -59.08                      | -16.16                           | -21.16                           | 34.27                | 14.27                                       | -50.4             | -35.4             | 10m distance |  |

\* No more emissions were found up to 30MHz

Note: The emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000Mhz. Radiated emission limits in these three bands are based on measurements employing an average detector.

P.K. = Peak  
Q.P. = Quasi Peak Reading  
A.F. = Antenna factor

Below 150kHz => RBW=VBW=200 or 300Hz  
Above 150kHz =>RBW=VBW=9 or 10kHz (Average => VBW=10Hz)

### 7.3. RADIATED EMISSIONS 30 to 1000 MHz

#### RADIATED EMISSIONS 30 TO 1000 MHz (MODEL: WG WF PP, WORST-CASE)

| Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | AF T407 dB/m | Amp/Cbl<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Class B QPk Limit<br>(dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------------------|----------------------------|-----|--------------|-----------------|----------------------------------|-------------------------------|----------------|-------------------|----------------|----------|
| 65.2358            | 56.15                      | QP  | 8            | -31.8           | 32.35                            | 40                            | -7.65          | 147               | 285            | H        |
| 74.1259            | 59.87                      | QP  | 8.3          | -31.8           | 36.37                            | 40                            | -3.63          | 204               | 196            | V        |
| 78.1877            | 54.61                      | QP  | 8            | -31.7           | 30.91                            | 40                            | -9.09          | 171               | 191            | H        |
| 78.7825            | 61.88                      | QP  | 7.8          | -31.7           | 37.98                            | 40                            | -2.02          | 15                | 235            | V        |
| 138.0715           | 52.68                      | QP  | 13.1         | -31.4           | 34.38                            | 43.52                         | -9.14          | 256               | 165            | V        |
| 199.097            | 37.35                      | QP  | 12.2         | -31.1           | 18.45                            | 43.52                         | -25.07         | 65                | 102            | H        |

QP - Quasi-Peak detector

## 7.4. AC MAINS LINE CONDUCTED EMISSIONS

### TEST PROCEDURE

ANSI C63.10

The EUT was tested while connected to 120 V, 60 Hz.

### LIMITS

§15.107 (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu$ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the band edges.

| Frequency range<br>(MHz) | Limits (dB $\mu$ V) |          |
|--------------------------|---------------------|----------|
|                          | Quasi-peak          | Average  |
| 0.15 to 0.50             | 66 to 56            | 56 to 46 |
| 0.50 to 5                | 56                  | 46       |
| 5 to 30                  | 60                  | 50       |

Notes:

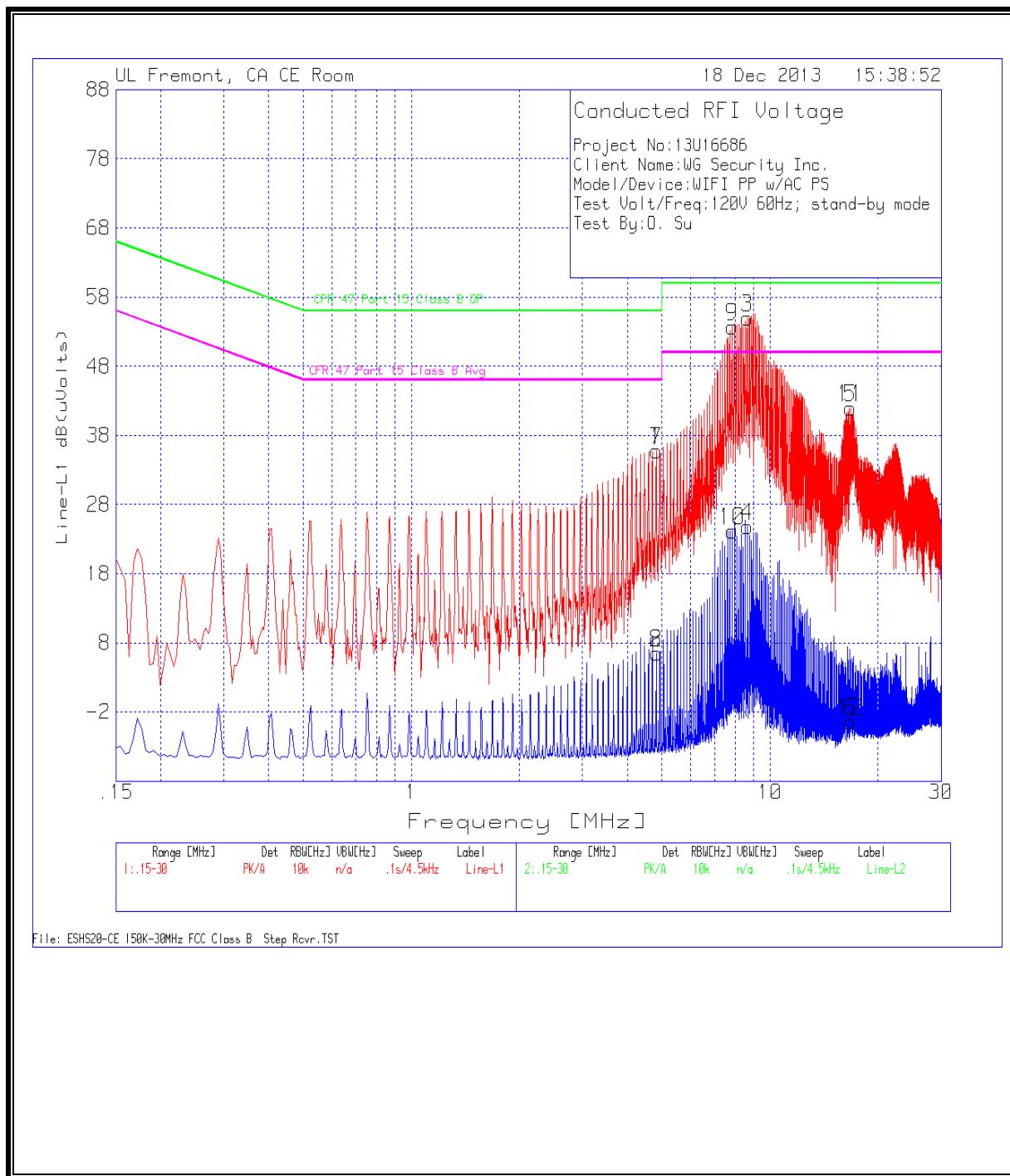
1. The lower limit shall apply at the transition frequencies
2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

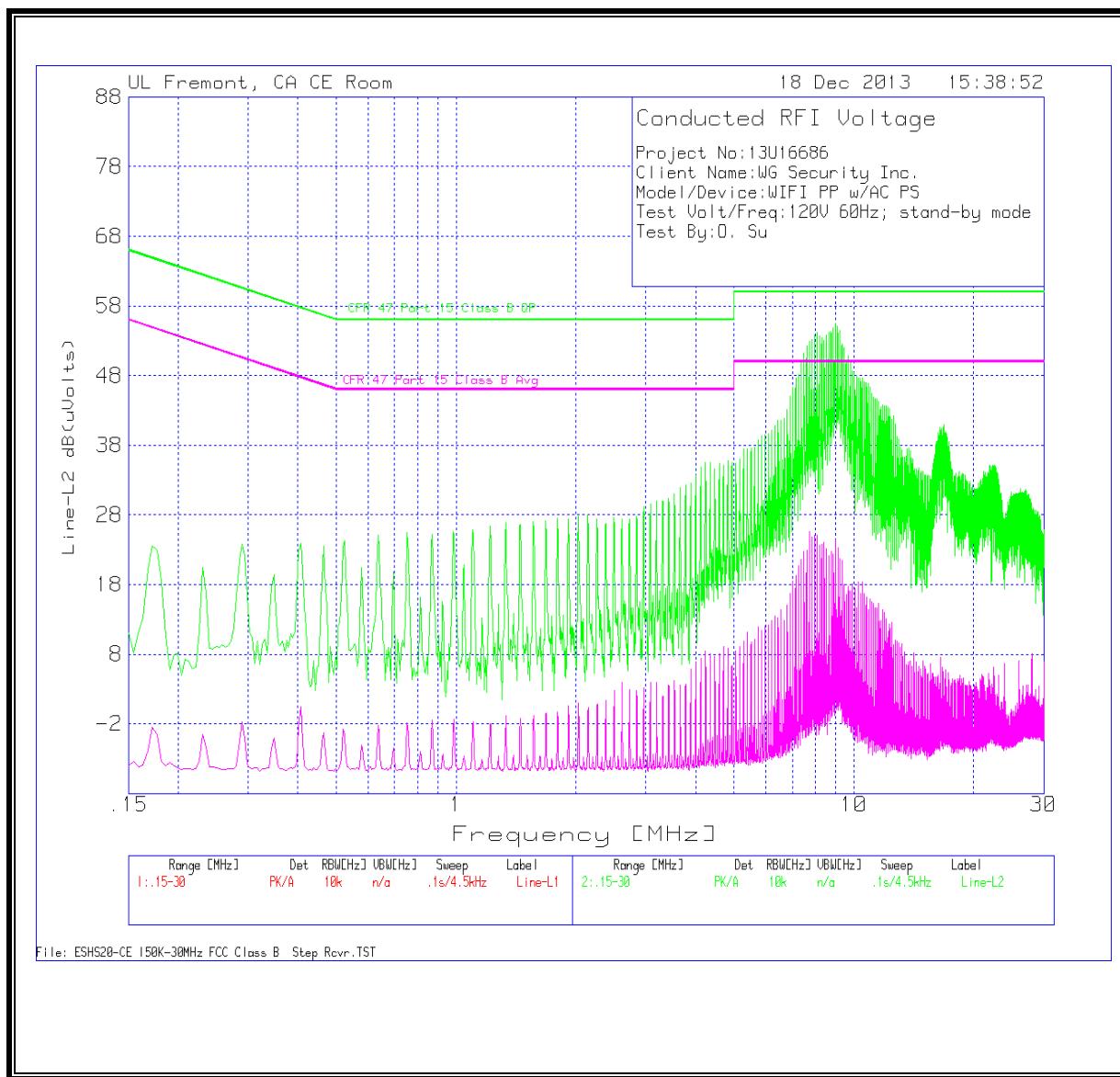
### TEST AND MEASUREMENT EQUIPMENT

| TEST EQUIPMENT LIST                                       |              |                 |               |                 |
|-----------------------------------------------------------|--------------|-----------------|---------------|-----------------|
| Description                                               | Manufacturer | Model           | Serial Number | Calibration Due |
| <input checked="" type="checkbox"/> EMI Test Receiver     | R & S        | ESHS 20         | 827129/006    | 08/09/2014      |
| <input checked="" type="checkbox"/> LISN, 10 kHz - 30 MHz | FCC          | LISN50/250-25-2 | 2023          | 01/14/2015      |

**RESULTS****WG WF PP, BEEP OFF**

Line-L1 .15 - 30MHz


**Trace Markers**


| Marker | Frequency (MHz) | Meter Reading (dBuV) | Det | T24 IL L1 (dB) | LC Cables 1&3 (dB) | Corrected Reading dB(uVolts) | CFR 47 Part 15 Class B QP | Margin to Limit (dB) | CFR 47 Part 15 Class B Avg | Margin to Limit (dB) |
|--------|-----------------|----------------------|-----|----------------|--------------------|------------------------------|---------------------------|----------------------|----------------------------|----------------------|
| 1      | 4.8165          | 35.61                | PK  | .1             | .1                 | 35.81                        | 56                        | -20.19               | -                          | -                    |
| 2      | 4.8165          | 6.37                 | Av  | .1             | .1                 | 6.57                         | -                         | -                    | 46                         | -39.43               |
| 3      | 8.646           | 54.74                | PK  | .1             | .1                 | 54.94                        | 60                        | -5.06                | -                          | -                    |
| 4      | 8.646           | 24.62                | Av  | .1             | .1                 | 24.82                        | -                         | -                    | 50                         | -25.18               |
| 5      | 16.737          | 41.52                | PK  | .2             | .2                 | 41.92                        | 60                        | -18.08               | -                          | -                    |
| 6      | 16.737          | -3.84                | Av  | .2             | .2                 | -3.44                        | -                         | -                    | 50                         | -53.44               |

Line-L2 .15 - 30MHz

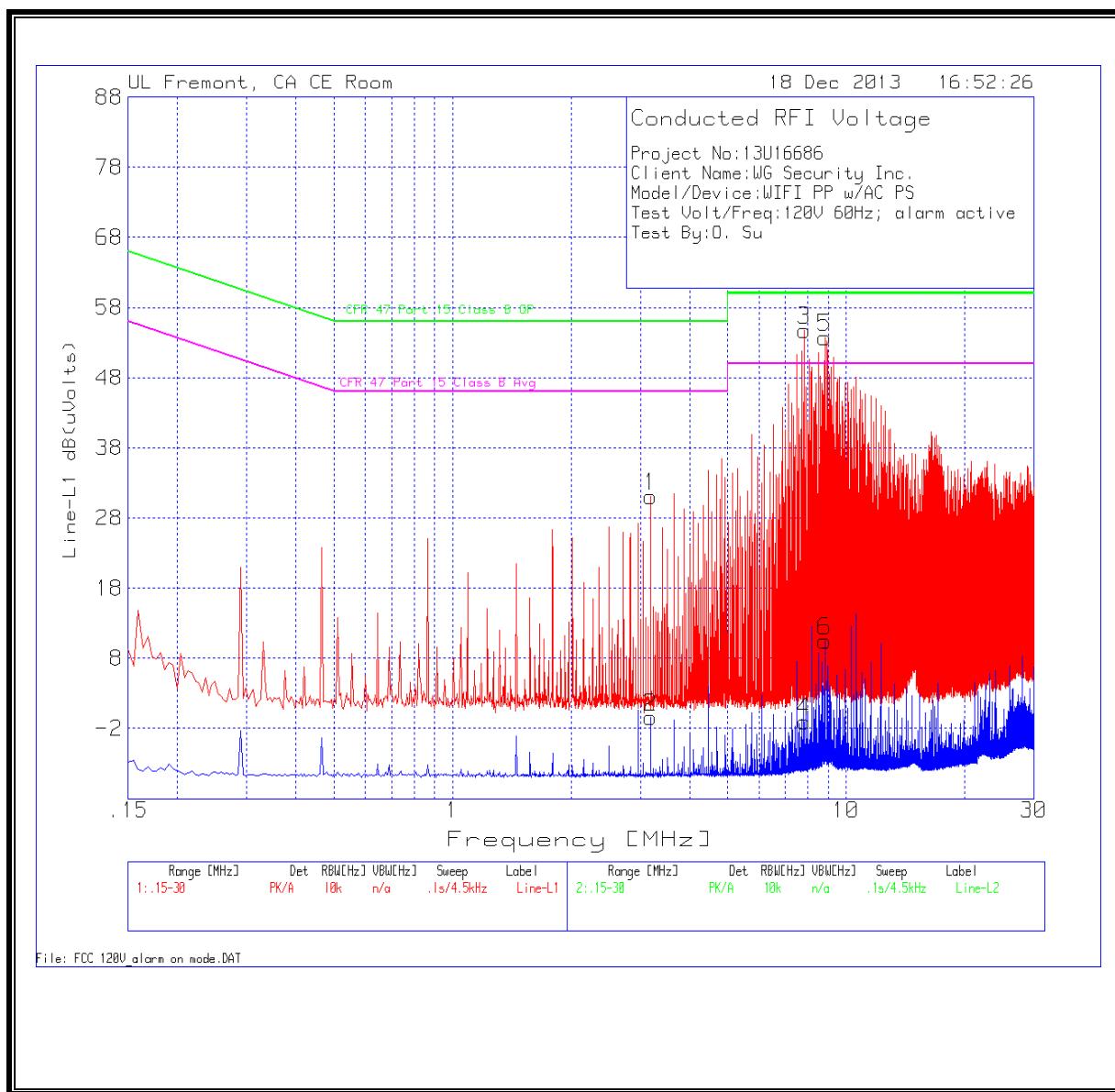
**Trace Markers**

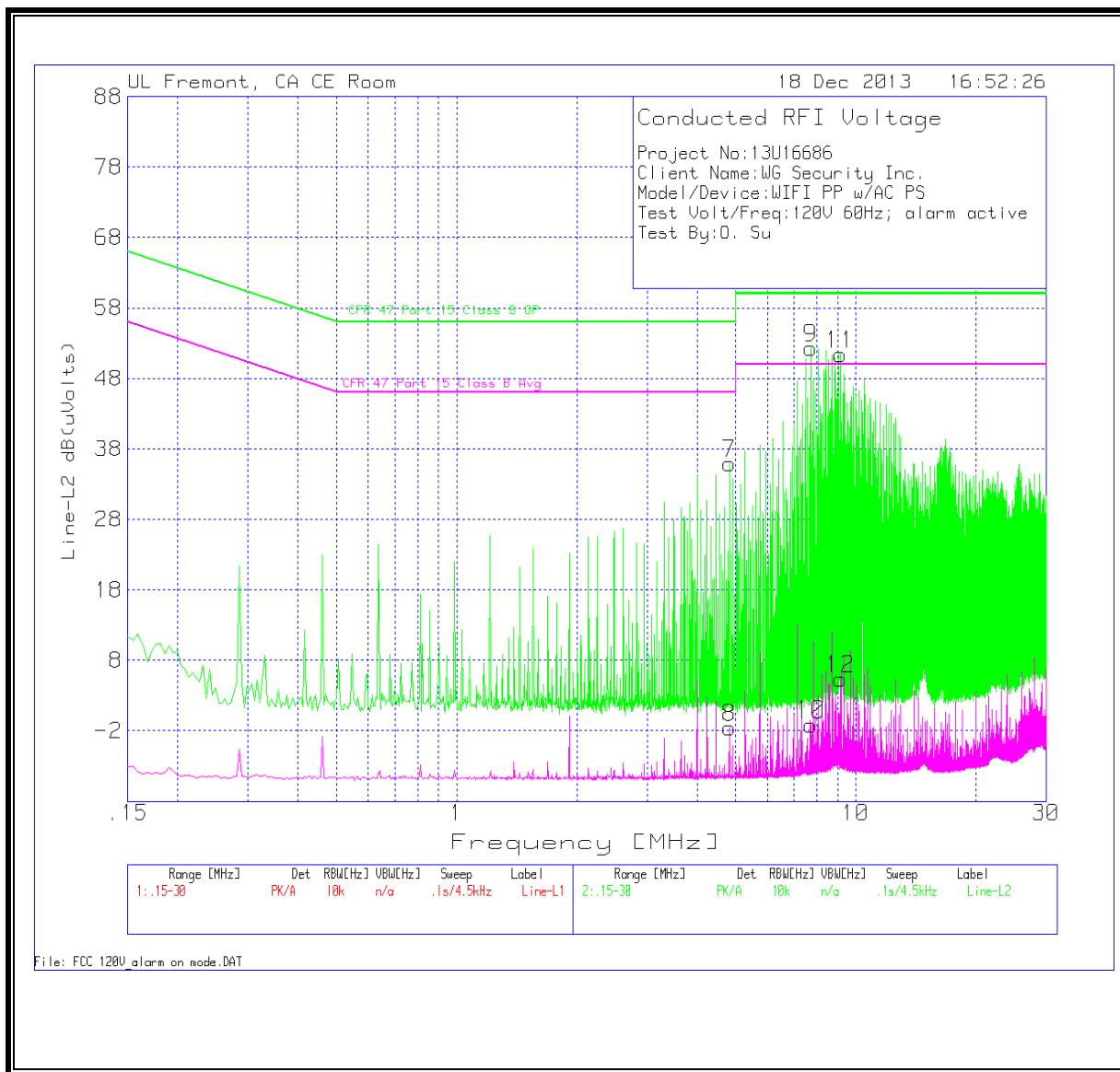
| Marker | Frequency (MHz) | Meter Reading (dBuV) | Det | T24 IL L1 (dB) | LC Cables 1&3 (dB) | Corrected Reading dB(uVolts) | CFR 47 Part 15 Class B QP | Margin to Limit (dB) | CFR 47 Part 15 Class B Avg | Margin to Limit (dB) |
|--------|-----------------|----------------------|-----|----------------|--------------------|------------------------------|---------------------------|----------------------|----------------------------|----------------------|
| 7      | 4.8165          | 35.61                | PK  | .1             | .1                 | 35.81                        | 56                        | -20.19               | -                          | -                    |
| 8      | 4.8165          | 6.37                 | Av  | .1             | .1                 | 6.57                         | -                         | -                    | 46                         | -39.43               |
| 9      | 7.8315          | 53.53                | PK  | .1             | .1                 | 53.73                        | 60                        | -6.27                | -                          | -                    |
| 10     | 7.8315          | 23.98                | Av  | .1             | .1                 | 24.18                        | -                         | -                    | 50                         | -25.82               |
| 11     | 16.737          | 41.52                | PK  | .2             | .2                 | 41.92                        | 60                        | -18.08               | -                          | -                    |
| 12     | 16.737          | -3.84                | Av  | .2             | .2                 | -3.44                        | -                         | -                    | 50                         | -53.44               |

**LINE 1 RESULTS**

**LINE 2 RESULTS**

**WG WF PP, BEEP ON****Line-L1 .15 - 30MHz****Trace Markers**


| Marker | Frequency (MHz) | Meter Reading (dBuV) | Det | T24 IL L1 (dB) | LC Cables 1&3 (dB) | Corrected Reading dB(uVolts) | CFR 47 Part 15 Class B QP | Margin to Limit (dB) | CFR 47 Part 15 Class B Avg | Margin to Limit (dB) |
|--------|-----------------|----------------------|-----|----------------|--------------------|------------------------------|---------------------------|----------------------|----------------------------|----------------------|
| 1      | 3.1875          | 30.92                | PK  | .1             | .1                 | 31.12                        | 56                        | -24.88               | -                          | -                    |
| 2      | 3.1875          | -.57                 | Av  | .1             | .1                 | -.37                         | -                         | -                    | 46                         | -46.37               |
| 3      | 7.836           | 54.49                | PK  | .1             | .1                 | 54.69                        | 60                        | -5.31                | -                          | -                    |
| 4      | 7.836           | -1.19                | Av  | .1             | .1                 | -.99                         | -                         | -                    | 50                         | -50.99               |
| 5      | 8.826           | 53.49                | PK  | .1             | .1                 | 53.69                        | 60                        | -6.31                | -                          | -                    |
| 6      | 8.826           | 10.24                | Av  | .1             | .1                 | 10.44                        | -                         | -                    | 50                         | -39.56               |


**Line-L2 .15 - 30MHz****Trace Markers**

| Marker | Frequency (MHz) | Meter Reading (dBuV) | Det | T24 IL L2 (dB) | LC Cables 2&3 (dB) | Corrected Reading dB(uVolts) | CFR 47 Part 15 Class B QP | Margin to Limit (dB) | CFR 47 Part 15 Class B Avg | Margin to Limit (dB) |
|--------|-----------------|----------------------|-----|----------------|--------------------|------------------------------|---------------------------|----------------------|----------------------------|----------------------|
| 7      | 4.8165          | 35.78                | PK  | .1             | .1                 | 35.98                        | 56                        | -20.02               | -                          | -                    |
| 8      | 4.8165          | -1.73                | Av  | .1             | .1                 | -1.53                        | -                         | -                    | 46                         | -47.53               |
| 9      | 7.71            | 52.11                | PK  | .1             | .1                 | 52.31                        | 60                        | -7.69                | -                          | -                    |
| 10     | 7.71            | -1.31                | Av  | .1             | .1                 | -1.11                        | -                         | -                    | 50                         | -51.11               |
| 11     | 9.1725          | 51.08                | PK  | .1             | .2                 | 51.38                        | 60                        | -8.62                | -                          | -                    |
| 12     | 9.1725          | 5.09                 | Av  | .1             | .2                 | 5.39                         | -                         | -                    | 50                         | -44.61               |

PK - Peak detector

Av - average detection

**LINE 1 RESULTS**

**LINE 2 RESULTS**