
FCC PART 22H AND 24E MEASUREMENT AND TEST REPORT

For

Mobicom Corporation

960 Holmdel Road
Holmdel, NJ 08817, USA

**FCC ID: P8D-PLUSII
Model: Plus II**

Report Type:	Product Type:
<input checked="" type="checkbox"/> Original Report	GSM 850/1900 Dual-band Bar-type Cellular Phone with NFC
Test Engineer:	Xiao Ming Hu
Report Number:	R0802053-2224
Testing Date(s):	2008-02-07, 2008-02-08, 2008-02-11, 2008-02-20
Report Date:	2008-03-03
Reviewed By:	James Ma, RF Test Engineer
Prepared By: (12)	Bay Area Compliance Laboratories Corp. (BACL) 1274 Anvilwood Avenue Sunnyvale, CA 94089 Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	4
1.2	EUT PHOTO.....	4
1.3	MECHANICAL DESCRIPTION.....	4
1.4	OBJECTIVE	4
1.5	RELATED SUBMITTAL(S)/GRANT(S).....	5
1.6	TEST METHODOLOGY	5
1.7	MEASUREMENT UNCERTAINTY.....	5
1.8	TEST FACILITY.....	5
2	SYSTEM TEST CONFIGURATION	7
2.1	JUSTIFICATION	7
2.2	EUT EXERCISE SOFTWARE	7
2.3	SPECIAL ACCESSORIES.....	7
2.4	EQUIPMENT MODIFICATIONS	7
2.5	REMOTE SUPPORT EQUIPMENT	7
2.6	LOCAL SUPPORT EQUIPMENT.....	7
2.7	POWER SUPPLY AND LINE FILTERS	7
2.8	INTERFACE PORTS AND CABLING (THIS IS ONLY NEEDED FOR FCC15.225)	7
2.9	TEST SETUP BLOCK DIAGRAM FOR RADIATED EMISSIONS TESTS.....	8
3	SUMMARY OF TEST RESULTS	9
4	§2.1047 - MODULATION CHARACTERISTIC	10
4.1	APPLICABLE STANDARD	10
5	§1.1307(B) (1) & §2.1093 - RF EXPOSURE	11
5.1	APPLICABLE STANDARD	11
5.2	TEST RESULT	11
6	§2.1053 - SPURIOUS RADIATED EMISSIONS.....	12
6.1	APPLICABLE STANDARD	12
6.2	TEST PROCEDURE	12
6.3	TEST EQUIPMENT LIST AND DETAILS.....	12
6.4	SUMMARY OF TEST RESULTS	13
	TEST DATA	13
7	§2.1046, §22.913(A), & §24.232 – RF OUTPUT POWER.....	14
7.1	APPLICABLE STANDARD	14
7.2	TEST PROCEDURE	14
7.3	TEST EQUIPMENT LIST AND DETAILS.....	14
7.4	SUMMARY OF TEST RESULTS	15
7.5	RADIATED POWER:	16
8	§2.1049, §22.917, §22.905, & §24.238 - OCCUPIED BANDWIDTH.....	20
8.1	APPLICABLE STANDARD	20
8.2	TEST PROCEDURE	20
8.3	TEST EQUIPMENT LIST AND DETAILS.....	20
8.4	SUMMARY OF TEST RESULTS	21
8.5	TEST DATA & PLOTS	22
9	§2.1051, §22.917, & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	25
9.1	APPLICABLE STANDARD	25
9.2	TEST PROCEDURE	25
9.3	TEST EQUIPMENT LIST AND DETAILS.....	25
9.4	TEST RESULTS	25

10	§2.1055 (A), §2.1055 (D), §22.355, & §24.235 - FREQUENCY STABILITY	30
10.1	APPLICABLE STANDARD	30
10.2	TEST PROCEDURE	30
10.3	TEST EQUIPMENT LIST AND DETAILS.....	31
10.4	TEST RESULTS	31
§22.917 & §24.238 – BAND EDGE	33	
10.5	APPLICABLE STANDARD	33
10.6	TEST PROCEDURE	33
10.7	TEST EQUIPMENT LIST AND DETAILS.....	33
10.8	TEST RESULTS	33
11	EXHIBIT A - FCC ID LABELING AND WARNING STATEMENT.....	36
11.1	APPLICABLE STANDARD	36
11.2	REQUIRED FCC ID LABEL CONTENTS	36
11.3	PROPOSED LABEL LOCATION ON EUT	37
12	EXHIBIT B - TEST SETUP PHOTOGRAPHS	38
12.1	RADIATED EMISSIONS - FRONT VIEW	38
12.2	RADIATED EMISSIONS - REAR VIEW	39
13	EXHIBIT C - EUT PHOTOGRAPHS.....	40
13.1	EUT- FRONT SIDE VIEW	40
13.2	EUT- BACK SIDE VIEW	40
13.3	EUT – BOTTOM/ INTERFACE PORT VIEW	41
13.4	EUT – TOP VIEW	41
13.5	EUT – RIGHT SIDE VIEW	42
13.6	EUT – LEFT SIDE VIEW	42
13.7	EUT – BATTERY COMPARTMENT VIEW (BACK COVER REMOVED)	43
13.8	EUT BATTERY	43
13.9	EUT – USB INTERFACE CABLE	44
13.10	EUT AC/DC POWER ADAPTER	44
13.11	EUT INTERNAL – PCB SIDE ONE WITH LCD AND RF SHEILDING	45
13.12	EUT INTERNAL – PCB SIDE ONE, LCD AND RF SHEILDING REMOVED.....	46
13.13	EUT INTERNAL – PCB SIDE TWO	47
13.14	EUT INTERNAL – PCB SIDE TWO, ANTENNA AND RF SHEILDING REMOVED	48
13.15	EUT INTERNAL – NFC ANTENNA	49
13.16	EUT INTERNAL – GSM 850/1900 ANTENNA.....	49

1 GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

This measurement and test report has been compiled on behalf of *Mobicom Corp.* and their product model: *PLUS II, FCC ID: P8D-PLUSII* which is a GSM 850/1900 Dual-band Bar Type Cellular Phone with NFC (near field communication) credit card payment capability. This measurement and test report only pertains to the GSM 950/1900 portion of the EUT; for measurement and test results pertaining to the NFC function please see BACL report R0802053-225.

1.2 EUT Photo

Additional Photos in Exhibit C

1.3 Mechanical Description

The *Mobicom Corp.* product model: *PLUS II, FCC ID: P8D-PLUSII* or the "EUT" as referred to in this report is a mobile phone. The EUT measures approximately 68 mm (L) x 40.5 mm (W) x 13.4 mm (H), and weighs approximately 46 g.

** The test data gathered is from production samples, serial numbers: GP01J7A23AA0067 and GP01J7A23AA0001, assigned by the manufacturer.*

1.4 Objective

This type approval report is prepared on behalf of *Mobicom Corp.* in accordance with Part 2, Subpart J, Part 22 Subpart H, and Part 24 Subpart E of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for RF output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, frequency stability, band edge, and conducted and radiated margin.

This measurement and test report only pertains to the GSM 950/1900 portion of the EUT; for measurement and test results pertaining to the NFC function please see BACL report R0802053-225.

1.5 Related Submittal(s)/Grant(s)

No Related Submittals

1.6 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Cellular Radiotelephone Service

Part 24 Subpart E - PCS

Applicable Standards: TIA/EIA603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.7 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

Detailed instrumentation measurement uncertainties can be found in BACL Corp. report QAP-018.

1.8 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at <http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm>.

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing according to TIA/EIA 603-C.

The final qualification test was performed with the EUT operating at normal mode.

2.2 EUT Exercise Software

An RFID simulation program was provided by the customer.

2.3 Special Accessories

N/A

2.4 Equipment Modifications

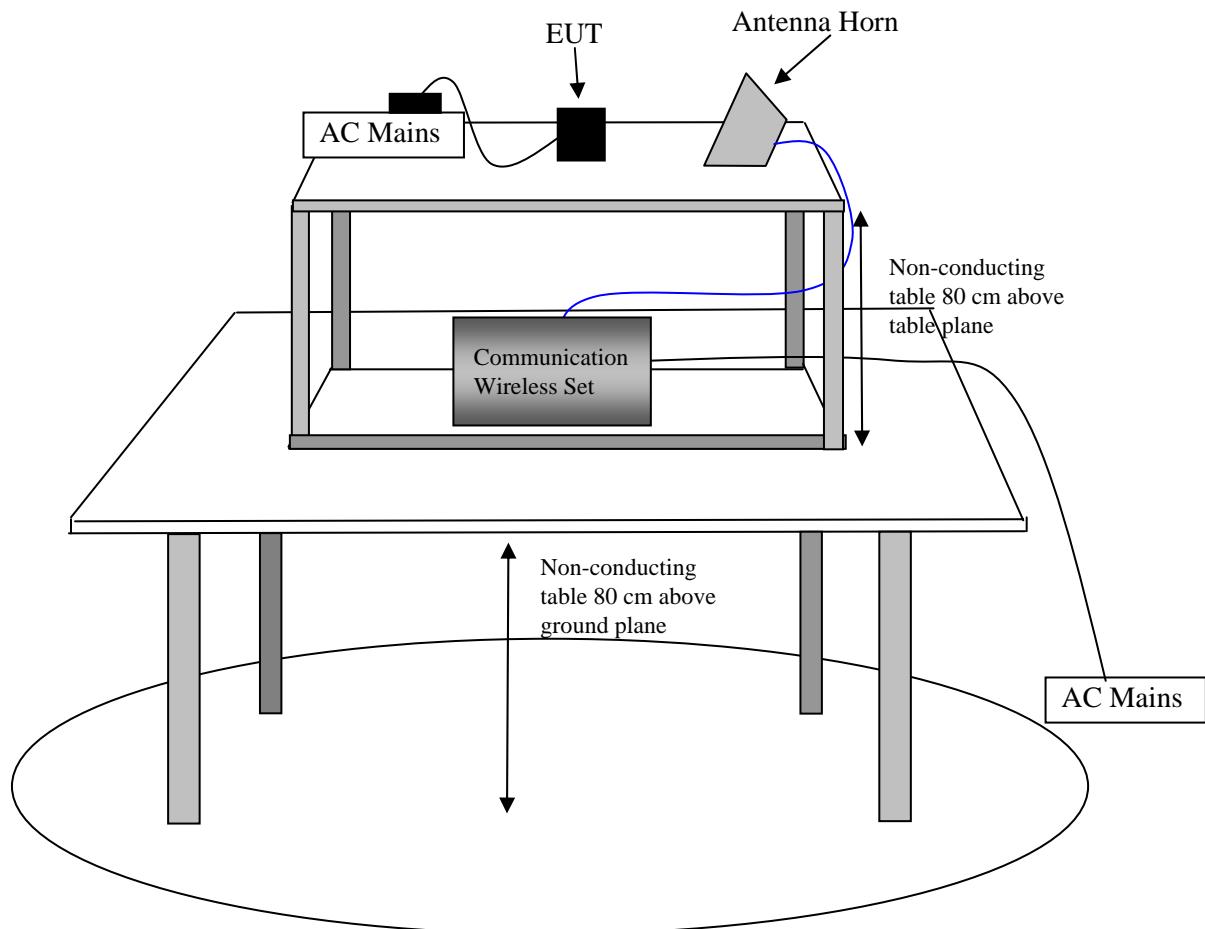
No modifications were made to the EUT

2.5 Remote Support Equipment

N/A

2.6 Local Support Equipment

Manufacturer	Description	Model	Serial Number
Philips	RF ID Reader	Mifare Pegoda	70103966
Dell	Laptop	Inspiron 1300	-


2.7 Power Supply and Line Filters

Manufacturer	Description	Model	Serial Number
AC/DC Adapter	USB version AC/DC Adapter	ZXTSC01	Shenzhen ZhongXinTong Industrial Co. Ltd.

2.8 Interface Ports and Cabling (this is only needed for FCC15.225)

Cable Description	Length (M)	From	To
USB cable	1m	EUT	Laptop USB port

2.9 Test setup Block Diagram for radiated emissions tests

3 SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§ 2.1047	Modulation Characteristics	N/A
§ 2.1053 & § 22.917 (a) § 24.238 (a)	Field Strength of Spurious Radiation	Compliant
§2.1093	RF Exposure	Compliant Please See SAR report R0802053-SAR
§ 2.1046, § 22.913 § 24.232	RF Output Power	Compliant
§ 2.1049 § 22.917 § 24.238	Out of Band Emissions, Occupied Bandwidth	Compliant
§ 2.1051, § 22.917 § 24.238(a)	Spurious Emissions at Antenna Terminals	Compliant
§ 2.1055 (a) § 2.1055 (d) § 22.355 § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant
§ 22.917 §24.238	Band Edge	Compliant

4 §2.1047 - MODULATION CHARACTERISTIC

4.1 Applicable Standard

According to FCC § 2.1047(d), part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

5 §1.1307(b) (1) & §2.1093 - RF EXPOSURE

5.1 Applicable Standard

According to §1.1310 and §2.1093 RF exposure is calculated.

5.2 Test Result

Compliant: The EUT is a hand portable device and thus requires SAR evaluation, please see BACL SAR report R0802053-SAR for measurement and testing details.

6 §2.1053 - SPURIOUS RADIATED EMISSIONS

6.1 Applicable Standard

Requirements: CFR 47, § 2.1053, § 22.917, § 24.238.

6.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = $10 \lg (\text{TXpwr in Watts}/0.001)$ – the absolute level

Spurious attenuation limit in dB = $43 + 10 \log_{10} (\text{power out in Watts})$

6.2.1 Environmental Conditions

Temperature:	20 °C
Relative Humidity:	45 %
ATM Pressure:	101.2 kPa

* The testing was performed by Xiao Ming Hu on 2008-03-07.

6.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
HP	Amplifier, Pre	8447D	2944A10198	2007-12-19
HP	Amplifier, Pre, Microwave	8449B	3147A00400	2007-11-02
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2007-04-20
HP	Generator, Signal	83650B	3614A00276	2007-05-10
A.R.A.	Antenna, Horn	DRG-118/A	1132	2007-06-18
Agilent	Wireless Communication Test Set	8960 Series 10	GB44051221	2007-08-08

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.4 Summary of Test Results

Worst case reading as follows:

Cellular band/ PCS bands

Mode: GSM		
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)
-14.72	1673.2	Horizontal

Test Data

Run # 1: 30MHz -10GHz Cellular Band Middle Channel (836.6 MHz)

Indicated		Azimuth Degrees	Test Antenna		Substituted				Absolute Level (dBm)	Limit (dBm)	Margin (dB)
Frequency (MHz)	Amplitude (dBuV)		Height (m)	Polar (H/V)	Frequency (MHz)	Level dBm	Antenna Gain Correction	Cable Loss (dB)			
1673.2	69.92	165	1.14	H	1673.2	-33.5	8	2.22	-27.72	-13	-14.72
2510	56.7	202	1	H	2510	-41.3	10	2.25	-33.55	-13	-20.55
1673.2	64.77	7	1	V	1673.2	-40.3	8	2.22	-34.52	-13	-21.52
2510	55.52	352	2.34	V	2510	-44.5	10	2.25	-36.75	-13	-23.75
3346.4	52.38	345	1.62	V	3346.4	-49	10.1	2.3	-41.2	-13	-28.2
3346.4	49.87	167	1.91	H	3346.4	-51	10.1	2.3	-43.2	-13	-30.2

Run # 2: 30MHz -20GHz PCS Band Middle Channel (1880 MHz)

Besides the fundamental frequencies at 1880 MHz, no other frequencies were found when scanning up to 20 GHz

7 §2.1046, §22.913(a), & §24.232 – RF OUTPUT POWER

7.1 Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (a), in no case may the peak output power of a base station transmitter exceed 2 watt.

7.2 Test Procedure

Conducted:

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

7.2.1 Environmental Conditions

Temperature:	20 °C
Relative Humidity:	58 %
ATM Pressure:	101.8 kPa

* The testing was performed by Xiao Ming Hu on 2008-02-08.

7.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2007-04-20
HP	Generator, Signal	83650B	3614A00276	2007-05-10
A.R.A.	Antenna, Horn	DRG-118/A	1132	2007-06-18
Agilent	Wireless Communication Test Set	8960 Series 10	GB44051221	2007-08-08

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Summary of Test Results

7.4.1 Cellular band FCC Part 22H

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Limit (dBm)
LOW	824.25	33.11	2046.4	38.45
MIDDLE	836.58	33.22	2098.9	38.45
HIGH	848.79	33.23	2103.8	38.45

7.4.2 PCS band FCC Part 24E:

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Limit (dBm)
LOW	1850.1	28.85	767.4	33
MIDDLE	1880.1	28.45	699.8	33
HIGH	1909.7	28.32	679.2	33

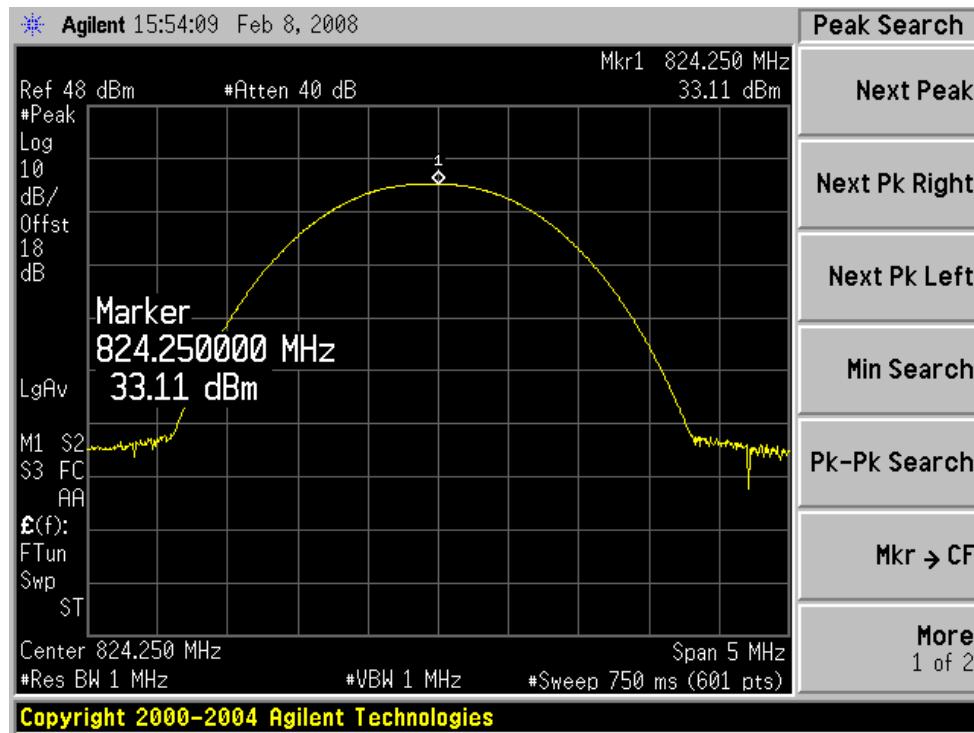
7.5 Radiated Power:

7.5.1 Cellular Band FCC Part 22H

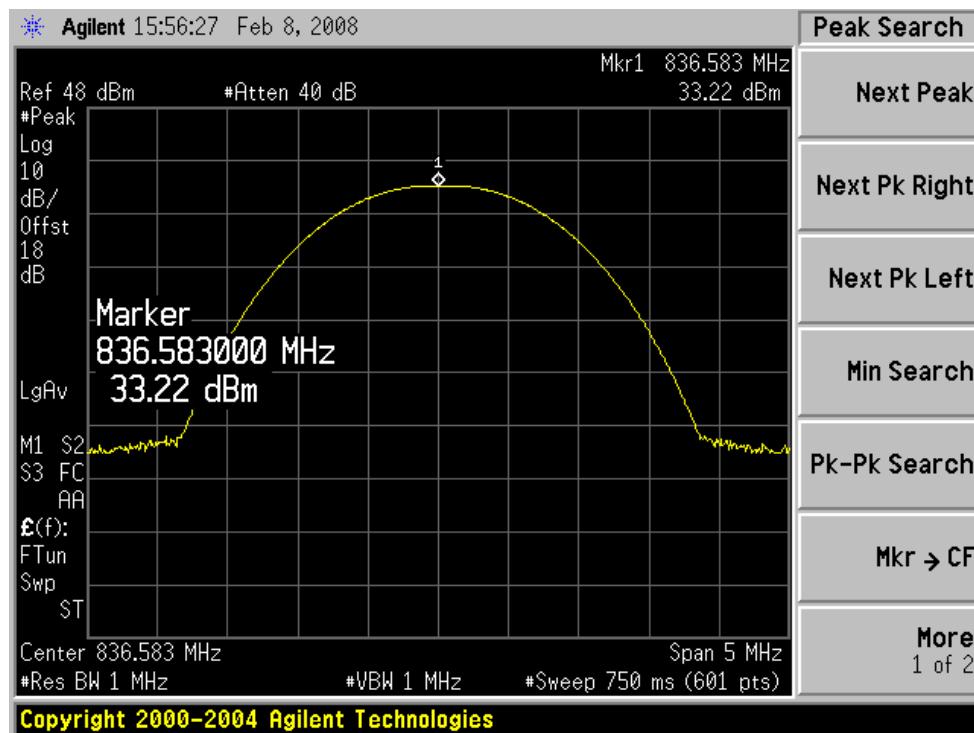
EUT				Substitution				FCC22H ERP		
Indicated		Table Azimuth Degrees	Test Antenna		Freq. (MHz)	Path Loss* (dB)	Amp. (dBm)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
Freq. (MHz)	Amp. (dB μ V)		Height (m)	Polar (H/V)						
824.20	103.80	125.00	1.00	V	824.20	33.20	-3.20	30.00	38.45	-8.45
824.20	95.70	223.00	1.00	H	824.20	30.00	-11.30	18.70	38.45	-19.75
836.60	104.10	227.00	1.00	V	836.60	33.20	-2.90	30.30	38.45	-8.15
836.60	99.78	120.00	1.00	H	836.60	30.00	-7.22	22.78	38.45	-15.67
848.80	104.20	233.00	1.00	V	848.80	33.20	-2.80	30.40	38.45	-8.05
848.80	97.36	133.00	1.34	H	848.80	30.00	-9.64	20.36	38.45	-18.09

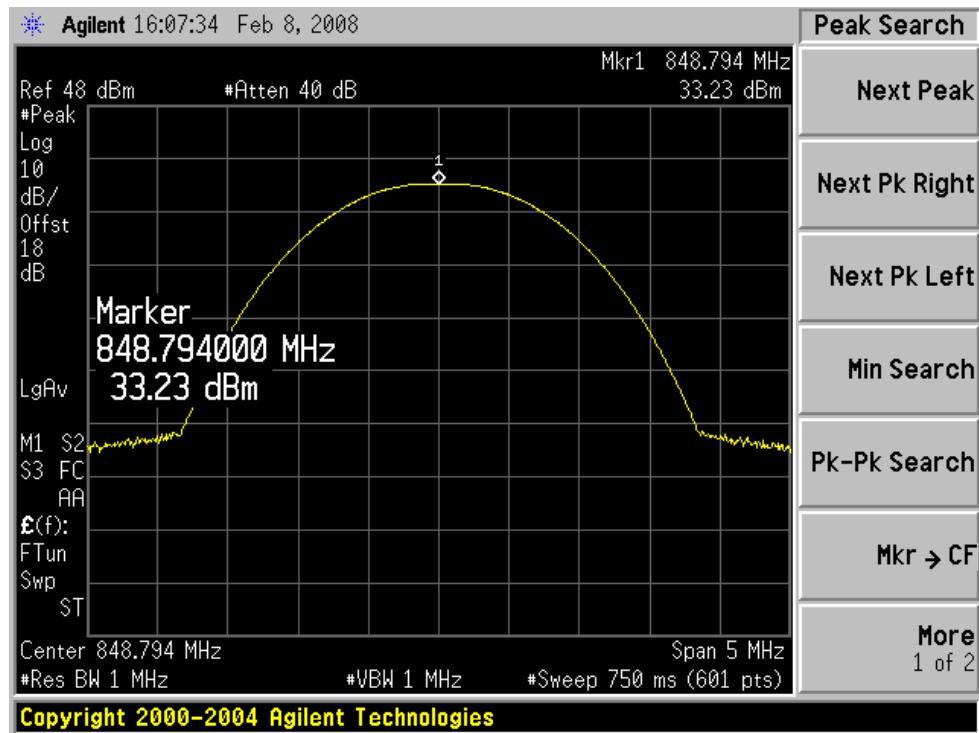
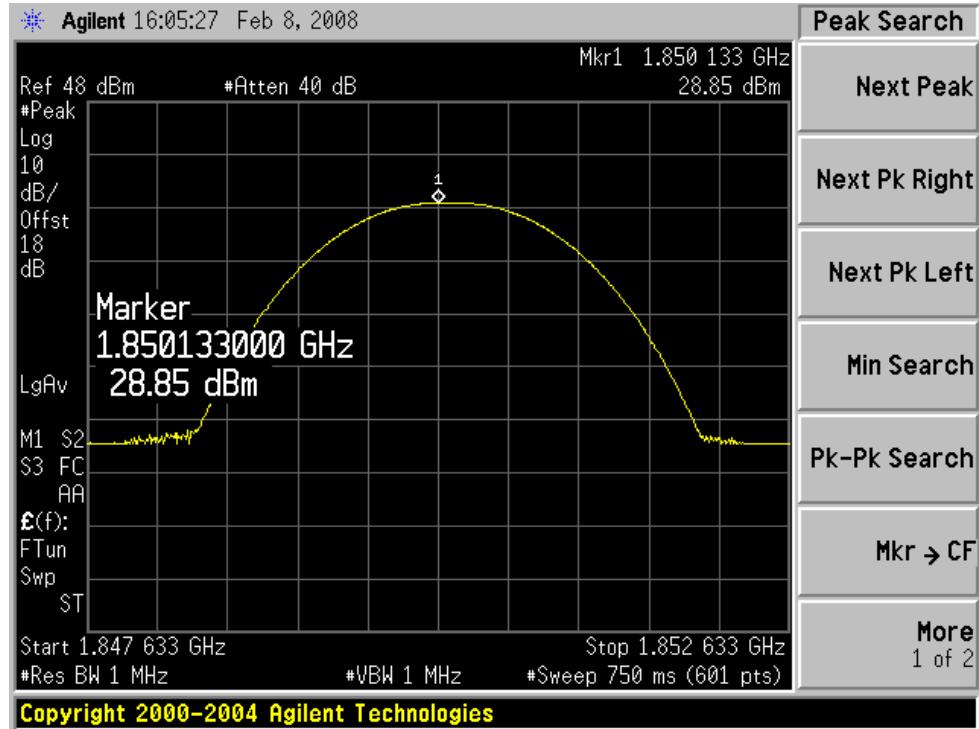
PCS Band FCC Part 24E:

EUT				Substitution				FCC24E EIRP		
Indicated		Table Azimuth Degrees	Test Antenna		Freq. (MHz)	Path Loss* (dB)	Amp. (dBm)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
Freq. (MHz)	Amp. (dB μ V)		Height (m)	Polar (H/V)						
1850.20	99.19	154.00	1.39	V	1850.20	35.00	-7.81	27.19	33.00	-5.81
1850.20	94.92	42.00	1.39	H	1850.20	35.00	-12.08	22.92	33.00	-10.08
1880.00	98.77	180.00	1.00	V	1880.00	35.00	-8.23	26.77	33.00	-6.23
1880.00	96.18	150.00	1.56	H	1880.00	35.00	-10.82	24.18	33.00	-8.82
1909.80	98.08	160.00	1.51	V	1909.80	35.00	-8.92	26.08	33.00	-6.92
1909.80	94.20	33.00	1.37	H	1909.80	35.00	-12.80	22.20	33.00	-10.80

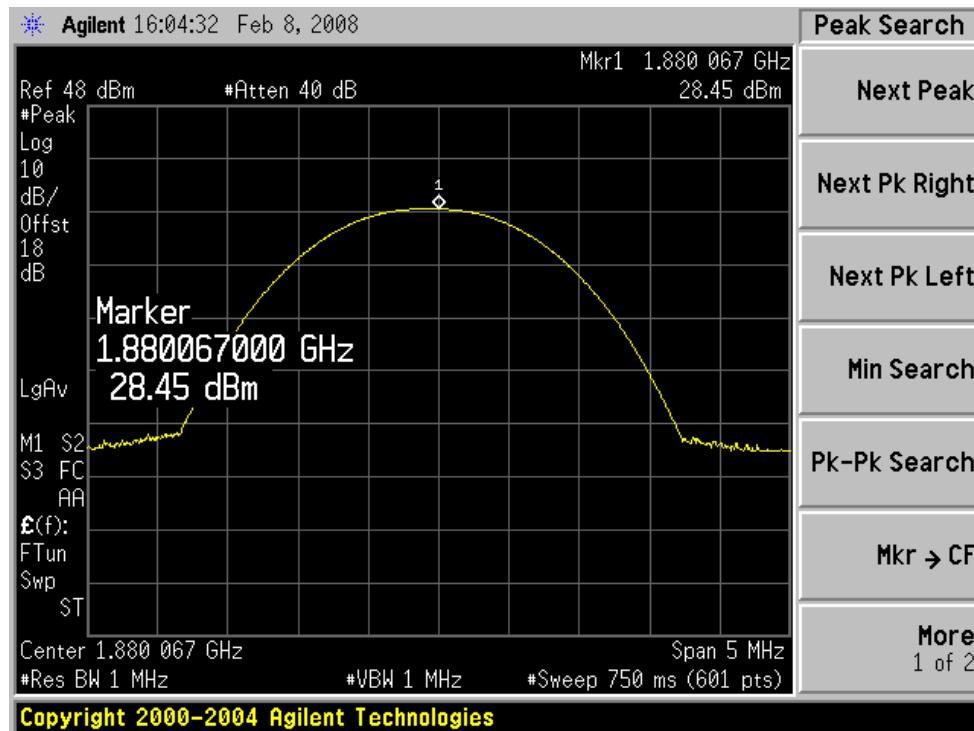

*Note:

Path loss for GSM band 33.2dB for Vertical receiving antenna and 30dB for Horizontal receiving antenna.

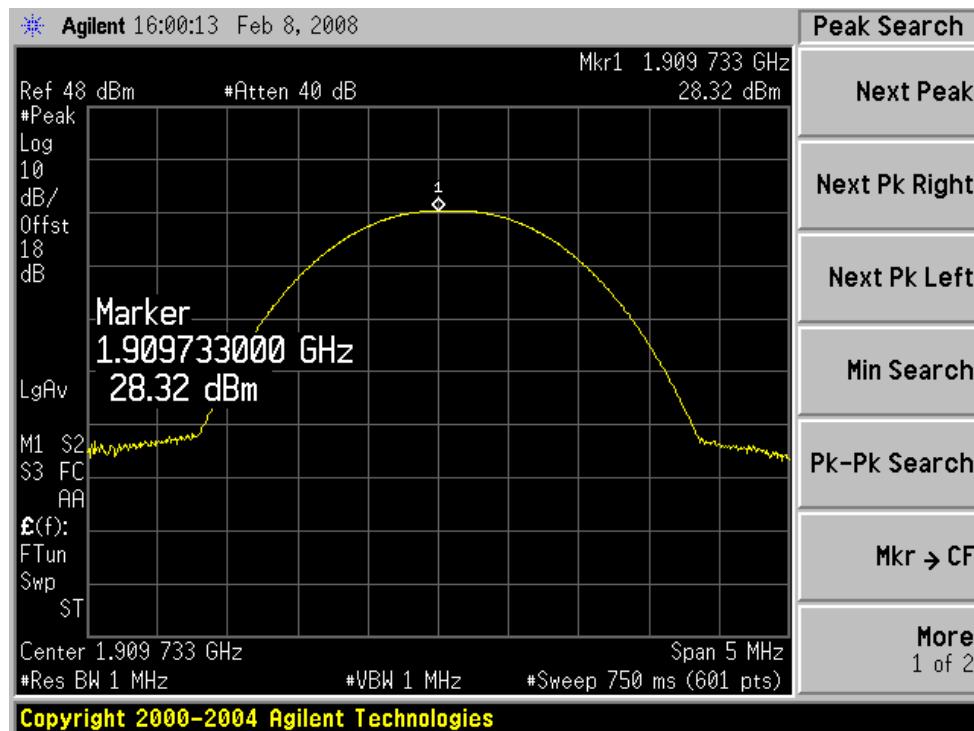

Path loss for PCS band 35dB for Vertical receiving antenna and 35dB for Horizontal receiving antenna.



7.5.2 Plots of Conducted Output Power for FCC Part 22H

Low Channel



Middle Channel



High Channel**7.5.3 Plots of Conducted Output Power for FCC Part 24E****Low Channel**

Middle Channel

High Channel

8 §2.1049, §22.917, §22.905, & §24.238 - OCCUPIED BANDWIDTH

8.1 Applicable Standard

Requirements: CFR 47, Section 2.1049, Section 22.901, Section 22.917 and Section 24.238.

8.2 Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 3 kHz (Cellular /PCS) and the -26 dB bandwidth was recorded.

8.2.1 Environmental Conditions

Temperature:	20 °C
Relative Humidity:	58 %
ATM Pressure:	101.8 kPa

* The testing was performed by Xiao Ming Hu on 2008-02-08.

8.3 Test Equipment List and Details

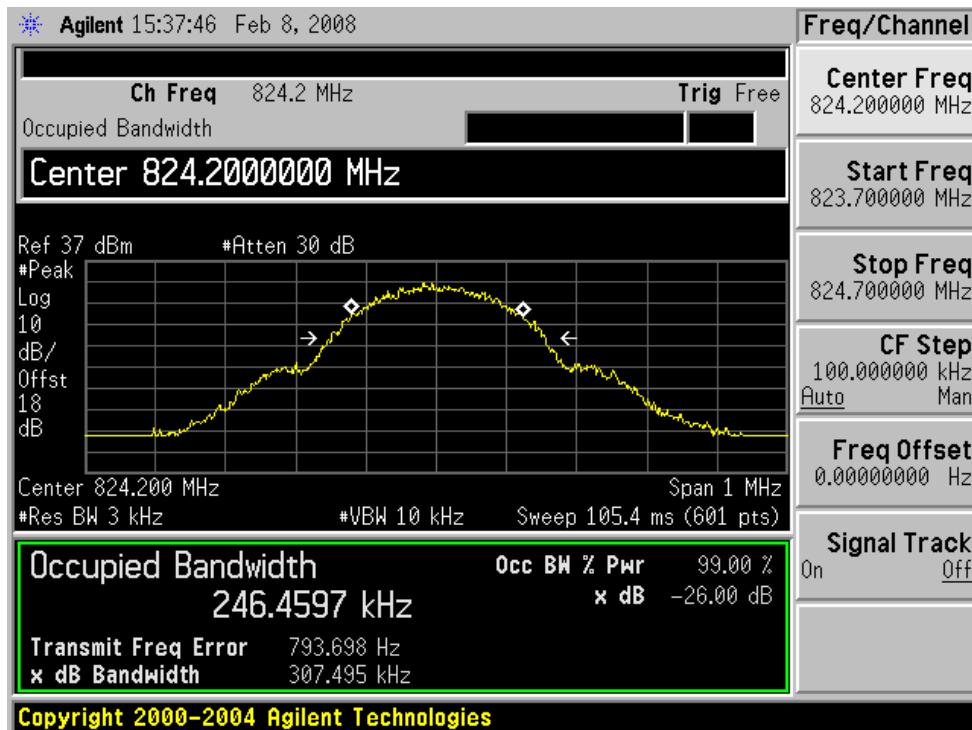
Manufacturer	Description	Model	Serial Number	Cal. Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
Agilent	Wireless Communication Test Set	8960 Series 10	GB44051221	2007-08-08

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

8.4 Summary of Test Results

8.4.1 Cellular Band (Part22H):

Channel	Frequency (MHz)	26dB Bandwidth (kHz)
LOW	824.2	307.495
MIDDLE	836.6	316.085
HIGH	848.8	308.692


8.4.2 PCS Band (Part24E):

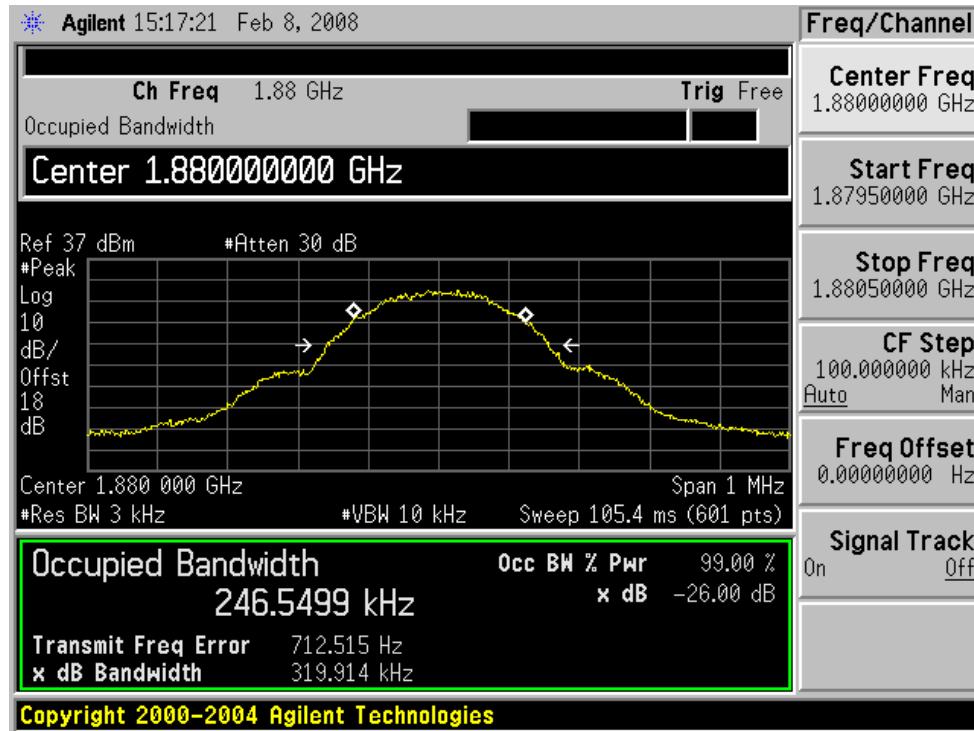
Channel	Frequency (MHz)	26dB Bandwidth (kHz)
LOW	1880.0	319.914
MIDDLE	1850.2	306.117
HIGH	1909.8	305.575

8.5 Test Data & Plots

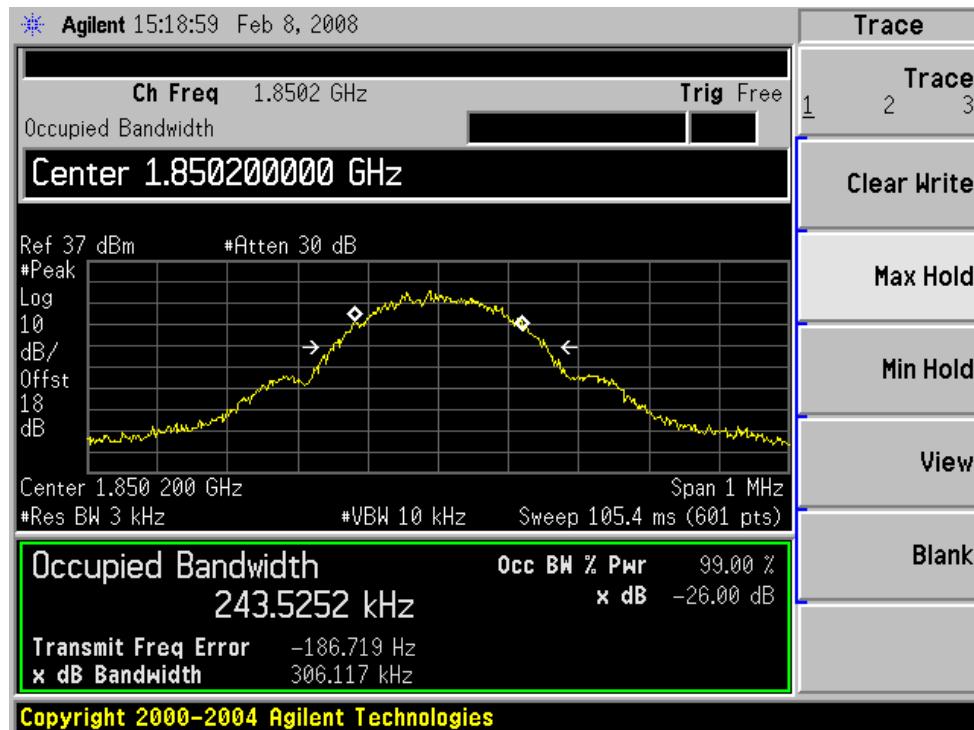
8.5.1 Plots of Occupied Bandwidth for FCC Part 22H

Low Channel

Middle Channel



High Channel



8.5.2 Plots of Occupied Bandwidth for FCC Part 24E

Low Channel

Middle Channel

High Channel

9 §2.1051, §22.917, & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

9.1 Applicable Standard

Requirements: CFR 47, § 2.1051. § 22.917 & §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1057.

9.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

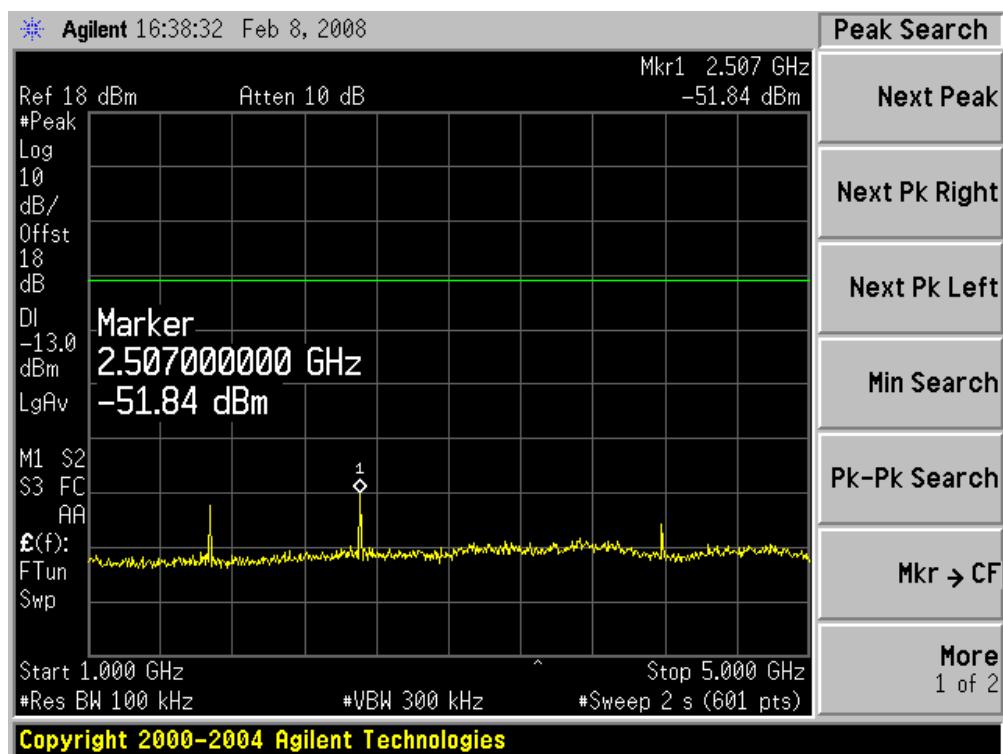
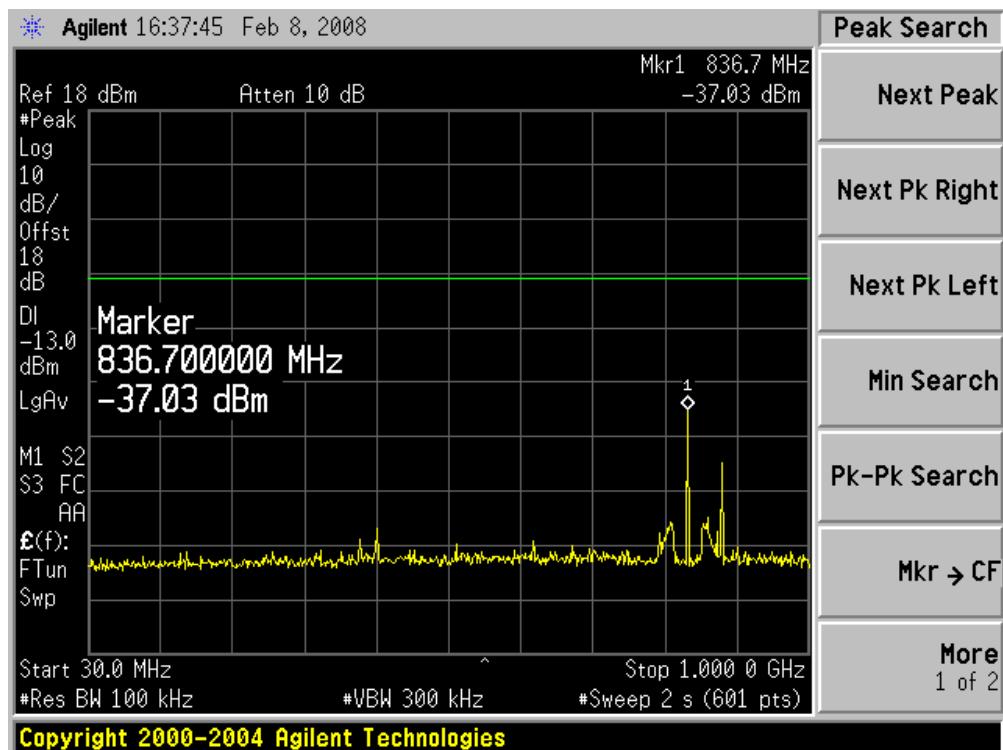
9.2.1 Environmental Conditions

Temperature:	20 °C
Relative Humidity:	58 %
ATM Pressure:	101.8 kPa

* The testing was performed by Xiao Ming Hu on 2008-02-08.

9.3 Test Equipment List and Details

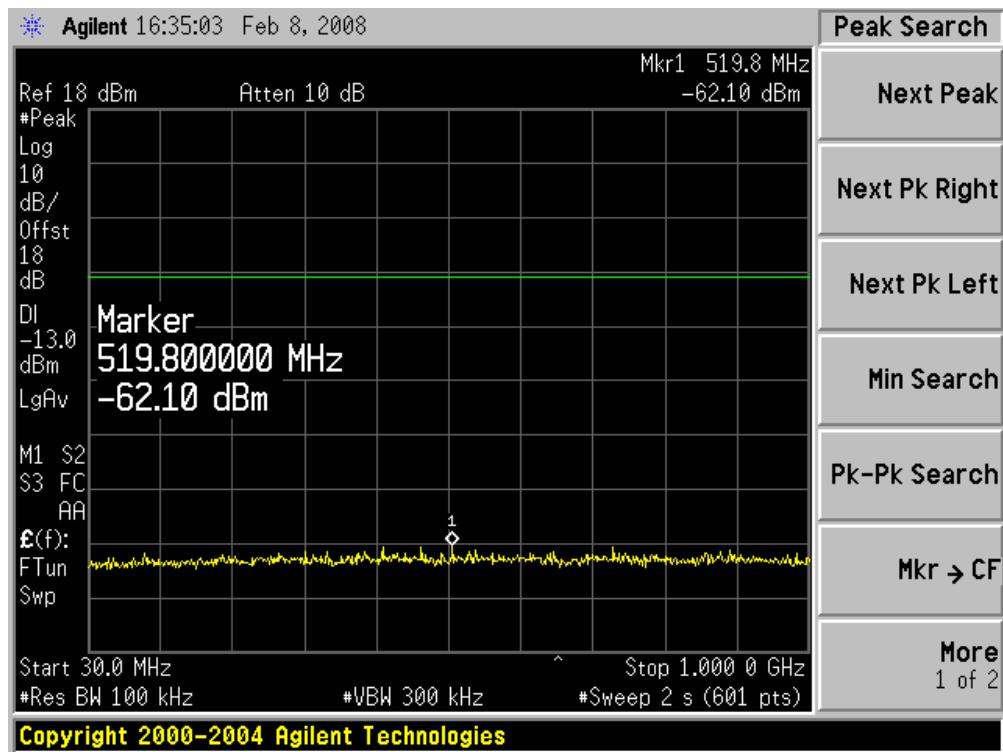
Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
Agilent	Wireless Communication Test Set	8960 Series 10	GB44051221	2007-08-08

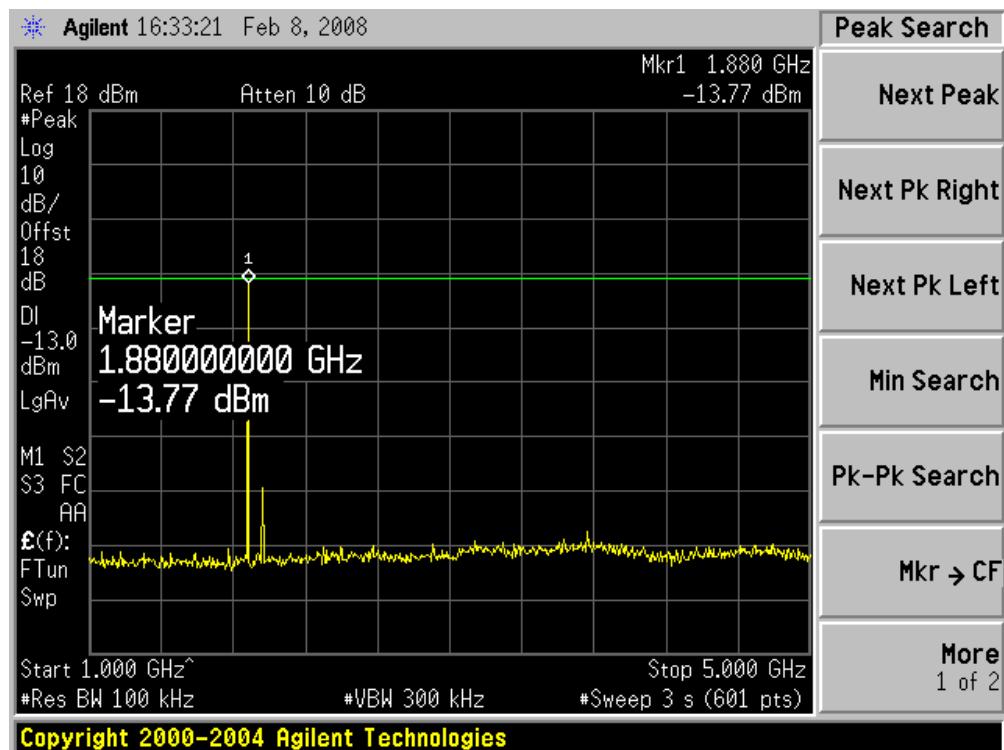
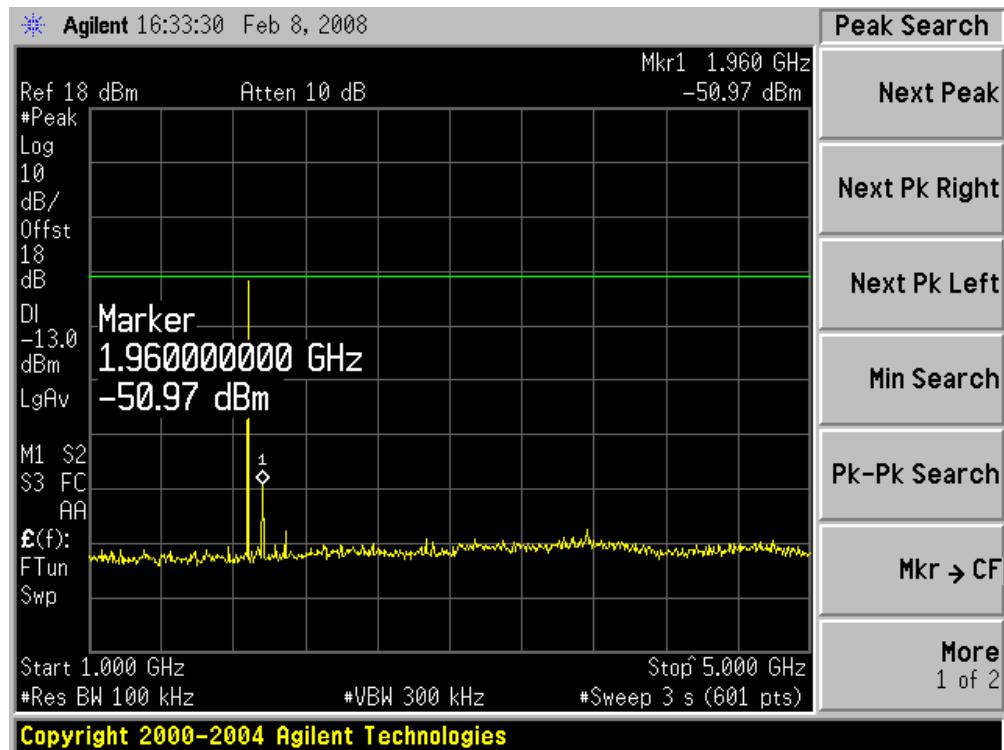


* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

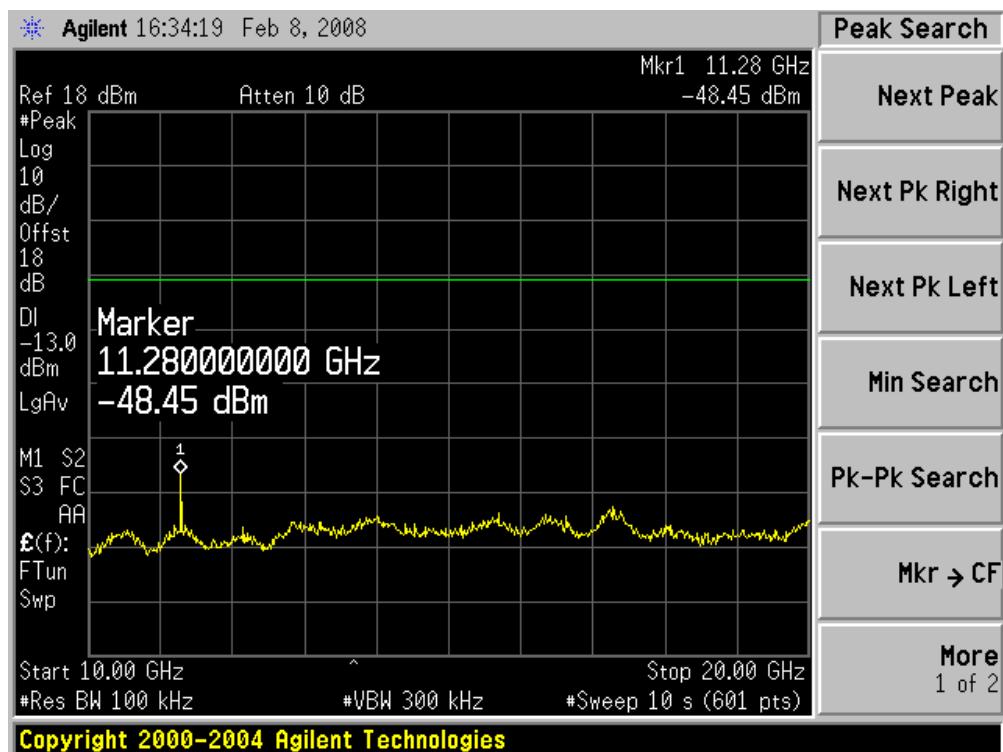
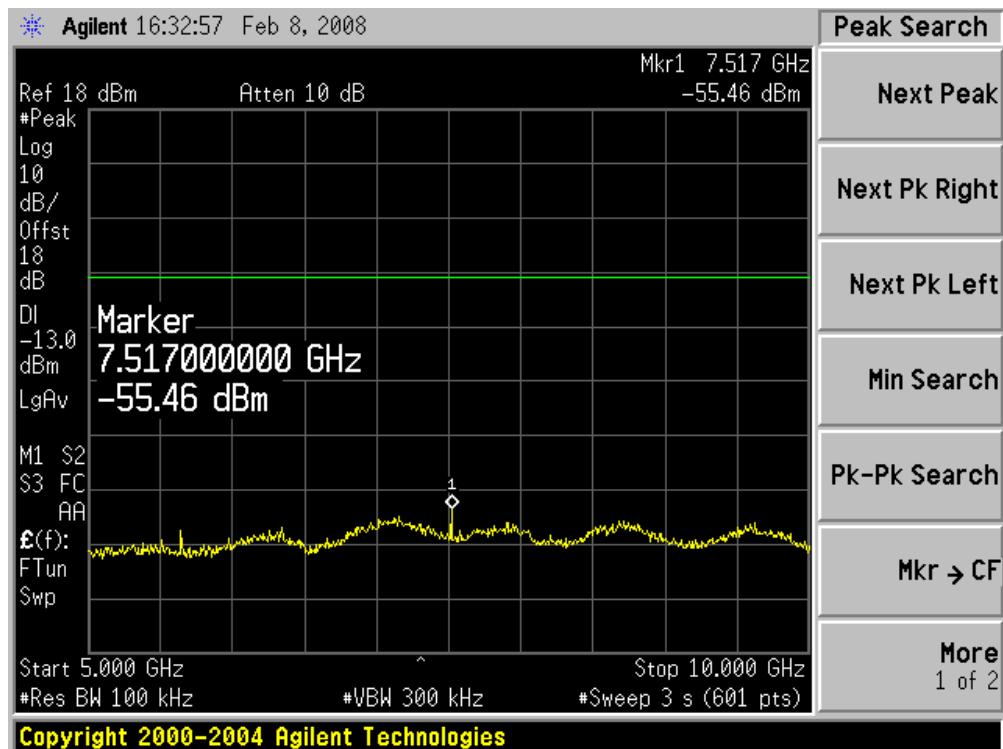
9.4 Test Results

Please refer to the plots featured hereinafter

9.4.1 Plots of Spurious Emissions for FCC Part 22H


Middle Channel (f = 836.6 MHz)

9.4.2 Plots of Spurious Emissions for FCC Part 24E

Middle Channel (f = 1880 MHz)

10 §2.1055 (a), §2.1055 (d), §22.355, & §24.235 - FREQUENCY STABILITY

10.1 Applicable Standard

Requirements: FCC § 2.1055 (a), § 2.1055 (d) & following:

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Table C-1_Frequency Tolerance for Transmitters in the Public Mobile Services

Table C-1_Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency range (MHz)	Base, fixed (ppm)	Mobile [le]3 watts (ppm)	Mobile [le]3 watts (ppm)
25 to 50.....	20.0	20.0	50.0
50 to 450.....	5.0	5.0	50.0
450 to 512.....	2.5	5.0	5.0
821 to 896.....	1.5	2.5	2.5
928 to 929.....	5.0	n/a	n/a
929 to 960.....	1.5	n/a	n/a
2110 to 2220.....	10.0	n/a	n/a

According to §24.235, The frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

10.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

10.2.1 Environmental Conditions

Temperature:	20 °C
Relative Humidity:	58 %
ATM Pressure:	101.8 kPa

* The testing was performed by Xiao Ming Hu on 2008-02-20.

10.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
ESPEC	Temp/ Humidity chamber	ESL-4CA	018010	2007-12-12
Agilent	Wireless Communication Test Set	8960 Series 10	GB44051221	2007-08-08

* **Statement of Traceability:** BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Test Results

Cellular Band FCC Part 22H:

Frequency Stability versus Temperature (battery operated mode)

Reference Frequency: 836.6 MHz, Limit: 2.5ppm			
Environment Temperature (°C)	Power Supplied (DC)	Frequency Measure with Time Elapsed	
		Measured Frequency (MHz)	Error (ppm)
50	3.7	836.5983	-2.03
40	3.7	836.5981	-2.27
30	3.7	836.5992	-0.96
20	3.7	836.5991	-1.076
10	3.7	836.6010	1.20
0	3.7	836.6012	1.43
-10	3.7	836.6015	1.79
-20	3.7	836.6017	2.03
-30	3.7	836.5984	-1.91

Frequency Stability versus Voltage (battery operated mode)

Reference Frequency: 836.6 MHz, Limit: 2.5ppm			
Power Supplied (DC)	Environment Temperature (°C)	Measured Frequency (MHz)	Error (ppm)
3.15	20	836.5981	-2.27
4.25	20	836.6001	0.12

10.4.1 PCS Band FCC Part 24E:*Frequency Stability versus Temperature (battery operated mode)*

Reference Frequency: 1880 MHz, Limit: 2.5ppm			
Environment Temperature (°C)	Power Supplied (VDC)	Frequency Measure with Time Elapsed	
		Measured Frequency (MHz)	Error (ppm)
50	3.7	1880.0043	2.29
40	3.7	1880.0042	2.23
30	3.7	1880.0042	2.23
20	3.7	1880.0041	2.18
10	3.7	1879.9959	-2.18
0	3.7	1880.0046	2.45
-10	3.7	1880.0042	2.23
-20	3.7	1880.0041	2.18
-30	3.7	1879.9987	-0.69

Frequency Stability versus Voltage (battery operated mode)

Reference Frequency: 1880 MHz, Limit: 2.5ppm			
Power Supplied (VDC)	Environment Temperature (°C)	Measured Frequency (MHz)	Error (ppm)
3.15	20	1880.0042	2.23
4.25	20	1880.0043	2.29

§22.917 & §24.238 – BAND EDGE

10.5 Applicable Standard

According to § 22.917, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to §24.238, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

10.6 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.

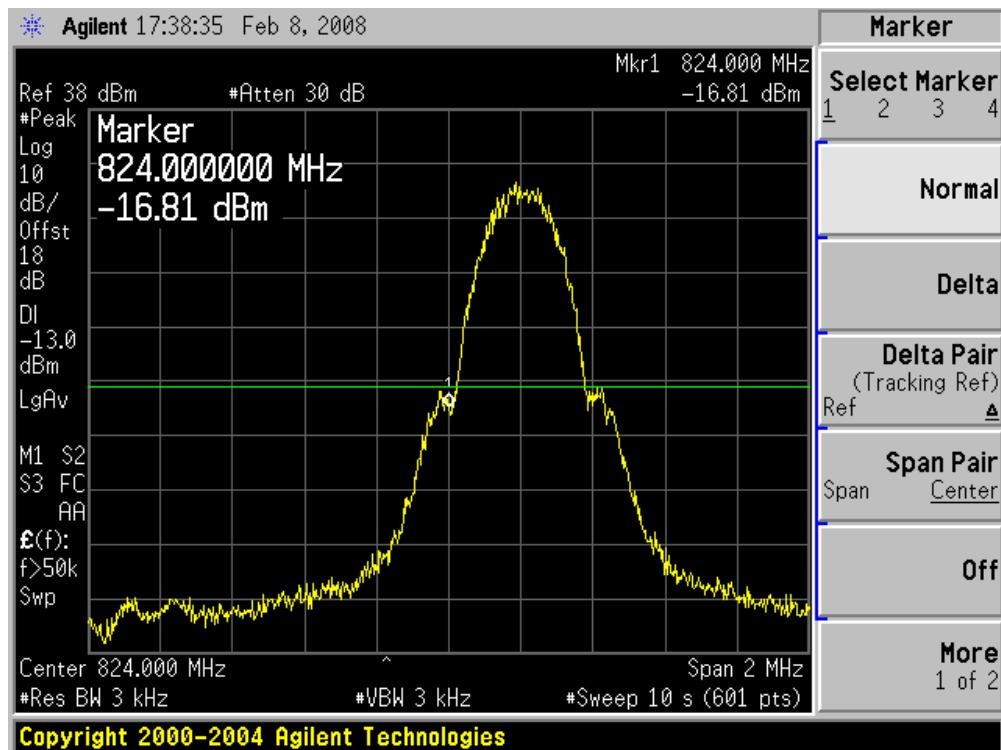
10.6.1 Environmental Conditions

Temperature:	19 °C
Relative Humidity:	51 %
ATM Pressure:	101.8 kPa

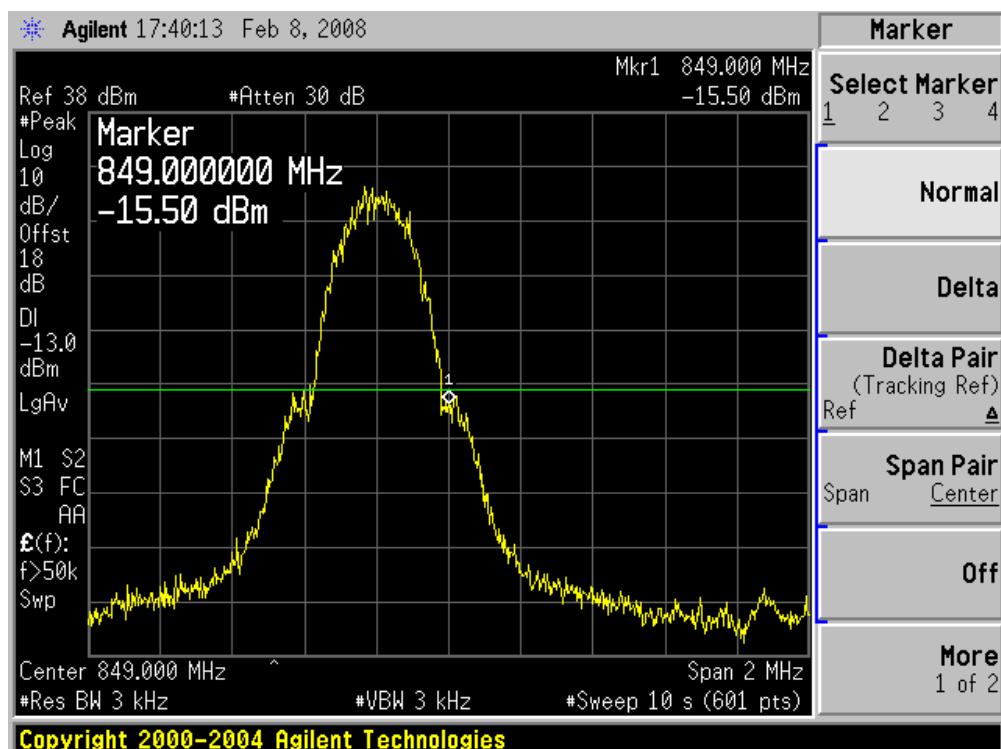
* The testing was performed by Xiao Ming Hu on 2008-02-11.

10.7 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	2007-04-26
Agilent	Wireless Communication Test Set	8960 Series 10	GB44051221	2007-08-08

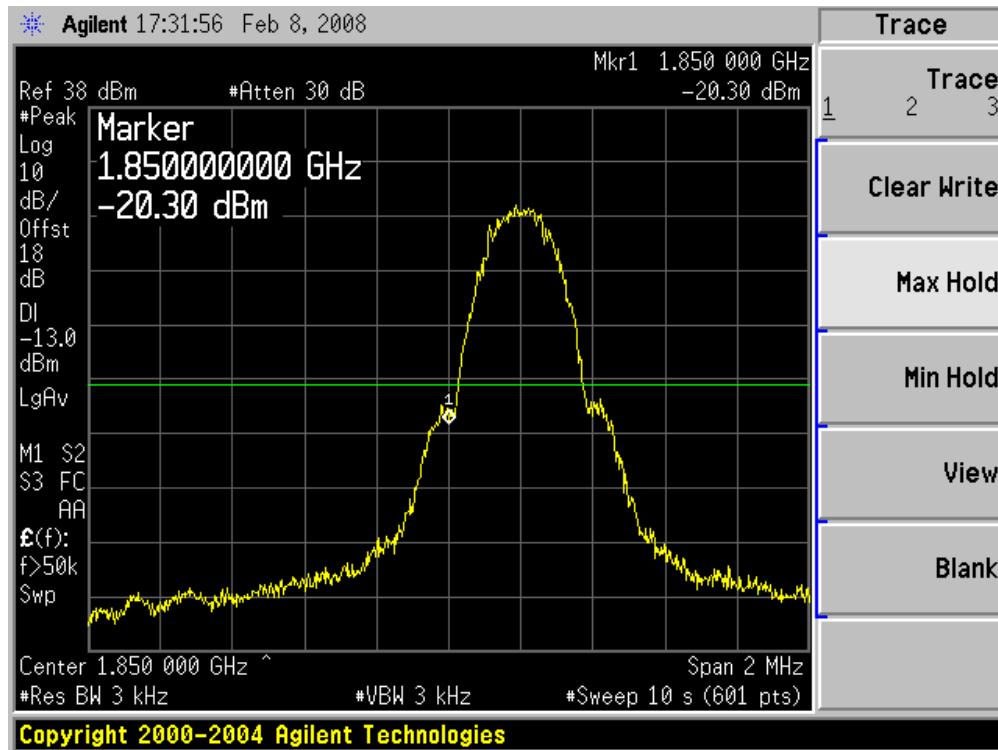

* **Statement of Traceability:** **BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.8 Test Results

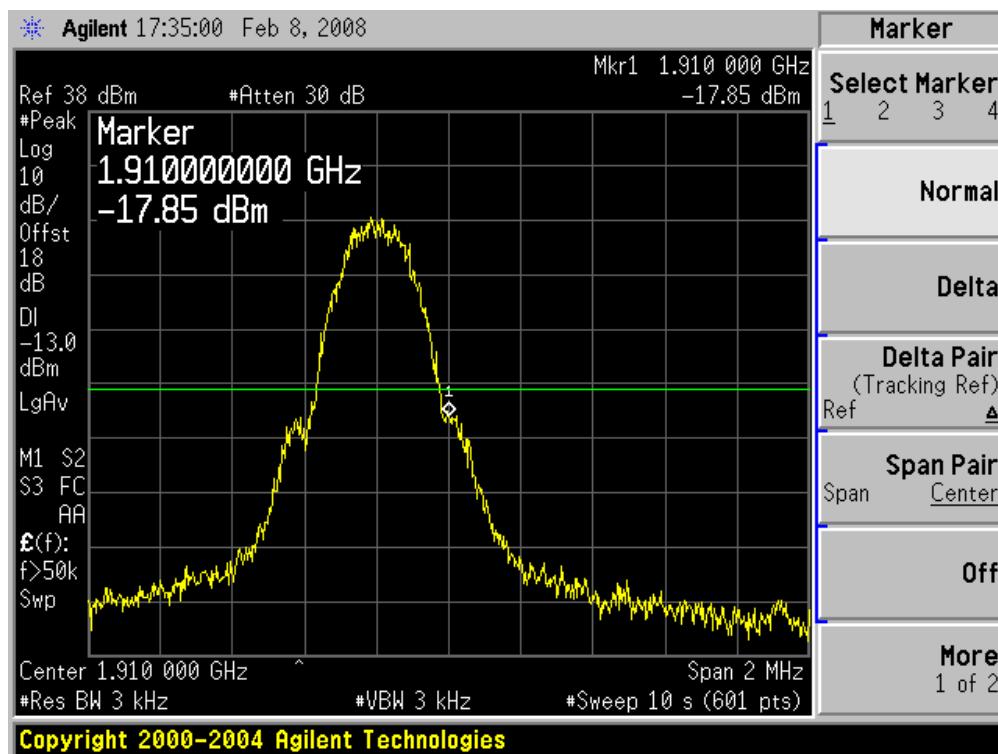

Please refer to the following plots.

10.8.1 Plots of Band Edge for Part 22H

Low Channel



High Channel



10.8.2 Plots of Band Edge for Part 24E

Low Channel

High Channel

