

Swapna Murala

SAR Compliance Test Report

Test report no.: FCC_RM-389V_02 Date of report: 2009-07-03

Template version: 13.0 Number of pages: 51

Testing laboratory: TCC Nokia Copenhagen Client: Nokia Corporation
Laboratory Beacon Hill Road

Frederikskaj Church Crookham 1790 COPENHAGEN V Hampshire

1790 COPENHAGEN V Hampshire
DENMARK United Kin

DENMARK United Kingdom, GU52 8DY Tel. +45 33 292929 Tel. +44 1252 611000 Fax. +45 33 292934 Fax. +44 1252 611300

Responsible test Jesper Nielsen Product contact engineer: Product contact person:

Measurements made by: P. Runchel, L. Klysner & J. Nielsen

Tested device: RM-389V

FCC ID: P7QRM-389V IC: 4299A-RM389V

Supplement reports: SAR_Photo_RM-389V_03

Testing has been carried out in accordance with:

47CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency

Electromagnetic Fields

RSS-102

Evaluation Procedure for Mobile and Portable Radio Transmitters with Respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields

IEEE 1528 - 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:

Measurement Technique

Documentation: The documentation of the testing performed on the tested devices is archived for 15 years at

TCC Nokia.

Test results: The tested device complies with the requirements in respect of all parameters subject to the

test. The test results and statements relate only to the items tested. The test report shall not

be reproduced except in full, without written approval of the laboratory.

Date and signatures:

For the contents:

CONTENTS

1.	SUMMARY OF SAR TEST	REPORT	3
	1.1 TEST DETAILS		3
		rtion	
		figuration	
		Incertainty	
2.		EVICE UNDER TEST	
		Antenna	
3.	IEST CONDITIONS		6
	3.1 TEMPERATURE AND H	UMIDITY	6
		NCIES AND OUTPUT POWER	
	3.3 TEST CASES AND TEST	MINIMISATION	6
4.	DESCRIPTION OF THE T	EST EQUIPMENT	9
	4.1 MEASUREMENT SYSTE	M AND COMPONENTS	C
		I Probe Type ES3DV3	
	•		
		t Recipes	
		ig	
		ts used in the Measurements	
5.	DESCRIPTION OF THE T	EST PROCEDURE	14
	5.1 DEVICE HOLDER		14
		om Head	
		ifiguration	
	_		
	5.4 SAR AVERAGING MET	HODS	15
6.	MEASUREMENT UNCERT	AINTY	16
7.	RESULTS		17
АΓ		NG SCANS	
AF	PPENDIX B: MEASUREMENT	SCANS	25
ΑF	PPENDIX C: CONDUCTED AV	ERAGE POWER MEASUREMENTS FOR WCDMA AND HSUPA	48
ΑF	PPENDIX D: RELEVANT PAG	ES FROM PROBE CALIBRATION REPORT(S)	50
ΑF	PPENDIX E: RELEVANT PAGI	S FROM DIPOLE VALIDATION KIT REPORT(S)	51
SA	AR Report		Type: RM-389V
	CC_RM-389V_02		5

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Period of test	2009-06-30 to 2009-07-03
SN, HW and SW numbers of tested	SN: 004401/10/625347/5, HW: 3.6, SW: 300.01, DUT: 25059
device	311. 004401/10/023347/3, 1111. 3.0, 311. 300.01, 001. 23039
Batteries used in testing	BL-4UV, DUT: 25050, 25051, 25052, 25053
Headsets used in testing	-
Other accessories used in testing	-
State of sample	Prototype unit
Notes	-

1.2 Maximum Results

The maximum measured SAR values for Head configuration and Body Worn configuration are given in section 1.2.1 and 1.2.2 respectively. The device conforms to the requirements of the standard(s) when the maximum measured SAR value is less than or equal to the limit.

1.2.1 Head Configuration

Mode	Ch / f (MHz)	Conducted power	Position	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS 850	190 / 836.6	30.5 dBm	Right, Cheek	0.537 W/kg	0.60 W/kg	1.6 W/kg	PASSED
WCDMA 850	4233 / 846.6	22.5 dBm	Right, Cheek	0.350 W/kg	0.39 W/kg	1.6 W/kg	PASSED
2-slot GPRS 1900	810 / 1909.8	29.5 dBm	Left, Cheek	0.397 W/kg	0.44 W/kg	1.6 W/kg	PASSED
WCDMA 1900	9538 / 1907.6	22.0 dBm	Left, Cheek	0.343 W/kg	0.38 W/kg	1.6 W/kg	PASSED

1.2.2 Body Worn Configuration

Mode	Ch / f (MHz)	Conducted power	Separation distance	Measured SAR value (1g avg)	Scaled* SAR value (1g avg)	SAR limit (1g avg)	Result
2-slot GPRS 850	251 / 848.8	30.5 dBm	1.5 cm	0.636 W/kg	0.71 W/kg	1.6 W/kg	PASSED
WCDMA 850	4233 / 846.6	22.5 dBm	1.5 cm	0.358 W/kg	0.40 W/kg	1.6 W/kg	PASSED
2-slot GPRS 1900	810 / 1909.8	29.5 dBm	1.5 cm	0.325 W/kg	0.36 W/kg	1.6 W/kg	PASSED
WCDMA 1900	9538 / 1907.6	22.0 dBm	1.5 cm	0.269 W/kg	0.30 W/kg	1.6 W/kg	PASSED

^{*} SAR values are scaled up by 12% to cover measurement drift. As a consequence of this upwards correction of the SAR values, the contribution of measurement drift to the overall measurement uncertainty (Section 6) is reduced to zero.

1.2.3 Maximum Drift

Maximum drift covered by 12% scaling up of the SAR values	Maximum drift during measurements
0.5dB	0.39 dB

1.2.4 Measurement Uncertainty

Expanded Uncertainty (k=2) 95%	± 25.8%

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	Portable
Exposure environment	General population / uncontrolled

Modes of Operation	Bands	Modulation Mode	Duty Cycle	Transmitter Frequency Range (MHz)
GSM	850 1900	GMSK	1/8	824 - 849 1850 - 1910
GPRS	850 1900	GMSK	1/8 to 3/8	824 - 849 1850 - 1910
EGPRS	850 1900	GMSK / 8PSK	1/8 to 3/8	824 - 849 1850 - 1910
WCDMA	850 (Band V) 1900 (Band II)		1	826 - 847 1852 - 1908
HSUPA	850 (Band V) 1900 (Band II)		1	826 - 847 1852 - 1908
ВТ	2450	GFSK	1	2402 – 2480

Outside of USA and Canada, the transmitter of the device is capable of operating also in GSM/GPRS/EGPRS900, GSM/GPRS/EGPRS1800, WCDMA800 and WCDMA2100 bands which are not part of this filing.

This device has Dual Transfer Mode capability for use at the ear. Therefore, SAR for multi slot GPRS mode was evaluated against the head profile of the phantom. Dual Transfer Mode is a feature that utilises the multi-slot GPRS capability in this device; it allows simultaneous transmission of voice and data during the same call, using the same transmitter and antenna.

This is a WCDMA HSUPA device, but SAR tests for HSUPA mode have not been performed as no HSUPA Sub-test mode has an average power > 0.25dB above the basic WCDMA 12.2kbps RMC mode. Appendix C of this report gives a summary of the measured WCDMA and HSUPA average powers; a detailed report of these WCDMA and HSUPA conducted power tests is submitted separately.

2.1 Description of the Antenna

The device has an internal antenna for cellular use. The cellular antenna is located at the bottom in the back section of the keypad flip.

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C):	20.5 to 22.5
Ambient humidity (RH %):	35 to 55

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

The transmission mode of the device in all WCDMA tests was configured to 12.2kbps RMC with all TPC bits set as "1".

In all operating bands the measurements were performed on lowest, middle and highest channels.

The radiated output power of the device was measured by a separate test laboratory on the same unit(s) as used for SAR testing. The results are given in the EMC report supporting this application.

3.3 Test Cases and Test Minimisation

The tested device examined in this report may not incorporate all of the features described in the text that follows, but its SAR evaluation will have been subjected to the same considerations and test logic described below.

Whilst it's possible to identify the maximum SAR test cases from inspection of the conducted power levels given in the Results tables (Section 7), different modes in the same band and multi-slot transmit GSM/GPRS modes can create some difficulties. Therefore the sequence of the SAR tests made in evaluating this device has used test logic that is based on measured SAR values. Comparison of measured SAR values in this way, can also allow some test minimization (i.e. test elimination) to be made.

For example, when SAR testing multi-slot GSM/GPRS/EGPRS modes, it is an inefficient use of test resources to fully SAR test every test configuration in each of the different modes as these modes have a fixed power relationship between them that is the same, irrespective of the test configuration. In the case of multi-slot GSM/GPRS modes, a single comparative SAR test - using the same test channel and test configuration – is made in each of the n-slot modes; the mode with the highest measured SAR value is then subjected to full SAR testing in all test configurations. These comparative SAR tests (same frequency, same test configuration) are regarded as extremely accurate as they are relative tests in which the tested device changes neither its frequency nor its position between tests. For different modes that operate in the same band and use the same antenna e.g. GSM/GPRS850 and WCDMA850, full SAR testing is carried out in the GSM/GPRS850 mode but WCDMA850 testing is limited to 3 channel testing in the maximum SAR test configuration for GSM/GPRS850.

Multi-slot SAR testing against the Head is always performed whenever such a device offers Push to Talk over cellular with the internal earpiece active, Dual Transfer Mode (i.e. the ability to transmit voice and data simultaneously using the same transmitter) or has WLAN (which enables a Voice over IP call to take place whilst the device can simultaneously transmit data on a cellular band). Whenever a device has an intended multi-slot use against the head, it is also Head SAR tested in EGPRS mode. It should be noted that EGPRS transmit modes can have either GMSK or 8PSK modulation but, when tested, only 8PSK EGPRS will appear explicitly in the results tables, as GMSK EGPRS mode has identical time-averaged power to the reported GPRS mode.

Devices that have flips or slides are fully SAR tested in all device configurations consistent with their intended usage. For example, flip phones that can receive a call in closed mode are SAR tested against the head in both open and closed configurations. Similarly, slide phones are fully SAR tested in all slide configurations in which calls are intended to be made or received.

In the results tables in Section 7, the maximum SAR value for the 'basic' tests (i.e. left cheek, left tilt, right cheek and right tilt in Head SAR testing; with and without headset with the back &/or display side facing the flat phantom in Body SAR testing) is bolded for each band. In some cases, after full testing of the basic SAR test configurations has been completed, additional checking SAR tests are made. These checking tests are always based on the bolded result from the 'basic' testing. When the SAR value of a checking test exceeds the maximum value from the basic tests, it is also bolded and used as the basis for any further checking tests that might be needed.

Checking tests are largely voluntary and can cover optional batteries, different camera slide positions, optional covers, etc. In the case of optional batteries, if the construction of the optional battery is significantly different to the battery used in the full testing e.g. if the outer can is floating electrically rather than grounded, then the maximum SAR test configuration in each band is tested with the optional battery in 3 channels. For camera slides, if the slide material is metal, then checking tests in 3 channels are again run for the maximum SAR test configuration in each band. For plastic camera slides, SAR checking is only carried out in the channel that provided the maximum SAR value for the original. Optional front and back covers are tested if their shape differs significantly from the original or if their metallic content varies by more than 15% from the original; in the former case, the testing depends on the extent of the physical differences, whereas in the latter case, 3 channel SAR testing is performed in every band in the max SAR test configuration..

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY4, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test Equipment	Serial Number	Calibration interval	Calibration expiry
DAE3	501	12 months	2010-03
E-field Probe ES3DV3	3116	12 months	2010-03
Dipole Validation Kit, D835V2	4d042	24 months	2010-09
Dipole Validation Kit, D1900V2	5d026	24 months	2010-03
DASY4 software	Version 4.7	-	-

Additional test equipment used in testing:

Test Equipment	Model	Serial Number	Calibration interval	Calibration expiry
Signal Generator	SME06	829445/008	36 months	2012-02
Amplifier	2100-BBS3Q8CCJ	1003	-	-
Power Meter	NRP	100293	24 months	2009-07
Power Sensor	NRP-Z51	100830	24 months	2009-07
Call Tester	CMU200	105900	-	-
Call Tester	CMU200	110735	-	-
Vector Network Analyzer	AT8753ES	MY40001091	12 months	2009-08
Dielectric Probe Kit	HP85070B	US33020403	-	-

4.1.1 Isotropic E-field Probe Type ES3DV3

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., butyl

diglycol)

Calibration Calibration certificate in Appendix C

Frequency 10 MHz to 4 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in HSL (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm

Tip length: 20 mm Body diameter: 12 mm Tip diameter: 3.9 mm

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twinheaded "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to 0ET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 \pm 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue simulant(s):

800MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	39.74	55.97
HEC	0.25	1.21
Sugar	58.31	41.76
Preservative	0.15	0.27
Salt	1.55	0.79

1900MHz band

	17001 IIIZ Dalla	
Ingredient	Head (% by weight)	Body (% by weight)
Deionised Water	54.88	69.02
Butyl Diglycol	44.91	30.76
Salt	0.21	0.22

4.3.2 System Checking

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

System checking, head tissue simulant

		SAR [W/kg],	Dielectric F	Parameters	Temp
f [MHz]	Description	1 g	εr	σ [S/m]	[°C]
	Reference result	2.38	41.4	0.90	
	$\pm10\%$ window	2.14 - 2.62			
835	2009-06-30	2.59	40.9	0.90	21.9
	2009-07-03	2.50	40.6	0.89	21.8
	Reference result	10.3	40.2	1.47	
	$\pm10\%$ window	9.3 - 11.3			
1900	2009-07-02	10.9	39.0	1.48	21.8

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

Head tissue simulant measurements

f		Dielectric F	arameters	Temp
[MHz]	Description	Er	σ [S/m]	[°C]
	Recommended value	41.5	0.90	
	± 5% window	39.4 – 43.6	0.86 - 0.95	
835	2009-06-30	40.9	0.90	21.9
	2009-07-03	40.6	0.89	21.8
	Recommended value	41.5	0.90	
	\pm 5% window	39.4 – 43.6	0.86 – 0.95	
836	2009-06-30	40.9	0.90	21.9
	2009-07-03	40.6	0.89	21.8
	Recommended value	40.0	1.40	
	\pm 5% window	38.0 – 42.0	1.33 - 1.47	
1880	2009-07-02	39.1	1.45	21.8

Body tissue simulant measurements

f		Dielectric F	arameters	Temp
[MHz]	Description	εr	σ [S/m]	[°C]
	Recommended value	55.2	0.97	
	± 5% window	52.4 – 58.0	0.92 - 1.02	
835	2009-06-30	53.8	0.98	22.2
	Recommended value	55.2	0.97	
836	± 5% window 2009-06-30	52.4 - 58.0 53.8	0.92 - 1.02 0.98	22.2
	Recommended value	53.3	1.52	
	± 5% window	50.6 - 56.0	1.44 - 1.60	
1880	2009-07-02	52.8	1.50	22.3

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

A Nokia designed spacer (illustrated below) was used to position the device within the SPEAG holder. The spacer positions the device so that the holder has minimal effect on the test results but still holds the device securely. The spacer was removed before the tests.

Nokia spacer

5.2 Test Positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder using the Nokia spacer and placed below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance indicated in Section 1.2.2 using a separate flat spacer that was removed before the start of the measurements. The device was oriented with both sides facing the phantom to find the highest results.

5.3 Scan Procedures

First, area scans were used for determination of the field distribution. Next, a zoom scan, a minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy4 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

6. MEASUREMENT UNCERTAINTY

Table 6.1 – Measurement uncertainty evaluation

Uncertainty Component	Section in IEEE 1528	Tol. (%)	Prob Dist	Div	Ci	Ci .Ui (%)	Vi
Measurement System							
Probe Calibration	E2.1	±5.9	N	1	1	±5.9	∞
Axial Isotropy	E2.2	±4.7	R	√3	$(1-c_p)^{1/2}$	±1.9	∞
Hemispherical Isotropy	E2.2	±9.6	R	√3	$(c_p)^{1/2}$	±3.9	∞
Boundary Effect	E2.3	± 1.0	R	√3	1	±0.6	∞
Linearity	E2.4	±4.7	R	√3	1	±2.7	∞
System Detection Limits	E2.5	±1.0	R	√3	1	±0.6	∞
Readout Electronics	E2.6	± 1.0	N	1	1	±1.0	∞
Response Time	E2.7	±0.8	R	√3	1	±0.5	∞
Integration Time	E2.8	±2.6	R	√3	1	±1.5	8
RF Ambient Conditions - Noise	E6.1	±3.0	R	√3	1	±1.7	∞
RF Ambient Conditions - Reflections	E6.1	±3.0	R	√3	1	±1.7	∞
Probe Positioner Mechanical Tolerance	E6.2	±0.4	R	√3	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	E6.3	±2.9	R	√3	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E5	±3.9	R	√3	1	±2.3	8
Test sample Related							
Test Sample Positioning	E4.2	±6.0	N	1	1	±6.0	11
Device Holder Uncertainty	E4.1	±5.0	N	1	1	±5.0	7
Output Power Variation - SAR drift	6.6.3	± 0.0	R	√3	1	±0.0	∞
measurement							
Phantom and Tissue Parameters							
Phantom Uncertainty (shape and thickness tolerances)	E3.1	±4.0	R	√3	1	±2.3	∞
Conductivity Target - tolerance	E3.2	±5.0	R	√3	0.64	±1.8	∞
Conductivity - measurement uncertainty	E3.3	±5.5	N	1	0.64	±3.5	5
Permittivity Target - tolerance	E3.2	±5.0	R	√3	0.6	±1.7	∞
Permittivity - measurement uncertainty	E3.3	±2.9	N	1	0.6	±1.7	5
Combined Standard Uncertainty			RSS			±12.9	116
Coverage Factor for 95%			k=2				
Expanded Uncertainty						±25.8	

7. RESULTS

The measured Head SAR values for the test device are tabulated below:

850 MHz Head SAR results

			SAR, averaged over 1g (W/kg)				
Option	Test conf	iguration	Ch 128	Ch 190	Ch 251		
used			824.2 MHz	836.6 MHz	848.8 MHz		
GSM	Conducte	ed Power	-	32.5 dBm	-		
	Left	Cheek	-	0.376	-		
Flip open		Tilt	-	-	-		
	Right	Cheek	-	-	-		
		Tilt	-	-	-		
2-slot GPRS	Conducte	ed Power	30.5 dBm	30.5 dBm	30.5 dBm		
	Left	Cheek	-	0.498	-		
Flip open		Tilt	-	0.190	-		
	Right	Cheek	0.423	0.537	0.519		
		Tilt	-	0.211	-		
3-slot GPRS	Conducte	ed Power	-	28.5 dBm	-		
	Left	Cheek	-	0.407	-		
Flip open		Tilt	-	-	-		
	Right	Cheek	-	-	-		
		Tilt	-	-	-		
2-slot 8PSK EGPRS	Conducte	ed Power	-	26.5 dBm	-		
	Left	Cheek	-	-	-		
Flip open		Tilt	-	-	-		
	Right	Cheek	-	0.092	-		
		Tilt	-	-	-		
Option used	Test conf	iguration	Ch 4132 826.4 MHz	Ch 4175 835.0 MHz	Ch 4233 846.6 MHz		
WCDMA	Conducte	ed Power	22.5 dBm	22.5 dBm	22.5 dBm		
	Left	Cheek	-	-	-		
Flip open		Tilt	-	-	-		
	Right	Cheek	0.321	0.336	0.350		
		Tilt	-	-	-		

1900 MHz Head SAR results

			SAR, av	eraged over 1g	(W/kg)
Option	Test conf	iguration	Ch 512	Ch 661	Ch 810
used			1850.2 MHz	1880.0 MHz	1909.8 MHz
GSM	Conducte	ed Power	-	29.5 dBm	-
	Left	Cheek	-	0.180	-
Flip open		Tilt	-	-	-
	Right	Cheek	-	-	-
		Tilt	-	-	-
2-slot GPRS	Conducte	ed Power	29.5 dBm	29.5 dBm	29.5 dBm
	Left	Cheek	0.315	0.350	0.397
Flip open		Tilt	-	0.086	-
	Right	Cheek	-	0.118	-
		Tilt	-	0.055	-
3-slot GPRS	Conducte	ed Power	-	27.7 dBm	-
	Left	Cheek	-	0.348	-
Flip open		Tilt	-	-	-
	Right	Cheek	-	-	-
		Tilt	-	-	-
2-slot 8PSK EGPRS	Conducte	ed Power	-	-	25.5 dBm
	Left	Cheek	-	-	0.153
Flip open		Tilt	-	-	-
	Right	Cheek	-	-	-
		Tilt	-	-	-
Option used	Test conf	iguration	Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz
WCDMA	Conducte	ed Power	22.0 dBm	22.0 dBm	22.0 dBm
	Left	Cheek	0.272	0.293	0.343
Flip open		Tilt	-	-	-
	Right	Cheek	-	-	-
		Tilt	-	-	-

The measured Body SAR values for the test device are tabulated below:

Note: this device does not support the use of a wired headset.

850 MHz Body SAR results

			SAR, ave	raged over 1	g (W/kg)
Option used	Device	Test	Ch 128	Ch 190	Ch 251
	orientation	configuration	824.2 MHz	836.6 MHz	848.8 MHz
2-slot GPRS		Conducted Power	30.5 dBm	30.5 dBm	30.5 dBm
	Display facing	Without headset	-	0.301	-
Flip closed	phantom	Headset	-	-	-
	Back facing	Without headset	0.578	0.602	0.636
	phantom	Headset	-	-	-
Option used	Device	Test	Ch 4132	Ch 4175	Ch 4233
	orientation	configuration	826.4 MHz	835.0 MHz	846.6 MHz
WCDMA		Conducted Power	22.5 dBm	22.5 dBm	22.5 dBm
	Display facing	Without headset	-	-	-
Flip closed	phantom	Headset	-	-	-
	Back facing	Without headset	0.306	0.351	0.358
	phantom	Headset	-	-	-

1900 MHz Body SAR results

			SAR, ave	SAR, averaged over 1g (W/kg)		
Option used	Device	Test	Ch 512	Ch 661	Ch 810	
	orientation	configuration	1850.2 MHz	1880.0 MHz	1909.8 MHz	
2-slot GPRS		Conducted Power	29.5 dBm	29.5 dBm	29.5 dBm	
	Display facing	Without headset	0.323	0.321	0.325	
Flip closed	phantom	Headset	-	1	-	
	Back facing	Without headset	-	0.252	-	
	phantom	Headset	-	-	-	
Option used	Device	Test	Ch 9262	Ch 9400	Ch 9538	
Option used	Device orientation	Test configuration	Ch 9262 1852.4 MHz	Ch 9400 1880.0 MHz	Ch 9538 1907.6 MHz	
Option used WCDMA						
		configuration	1852.4 MHz	1880.0 MHz	1907.6 MHz	
	orientation	configuration Conducted Power	1852.4 MHz 22.0 dBm	1880.0 MHz 22.0 dBm	1907.6 MHz 22.0 dBm	
WCDMA	orientation Display facing	configuration Conducted Power Without headset	1852.4 MHz 22.0 dBm	1880.0 MHz 22.0 dBm	1907.6 MHz 22.0 dBm	

Plots of the Measurement scans are given in Appendix B.

APPENDIX A: SYSTEM CHECKING SCANS

See the following pages

Date/Time: 2009-06-30 10:00:20

Test Laboratory: TCC Nokia Type: D835V2; Serial: 4d042

Communication System: CW835Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 835; Medium Notes: Medium Temperature: 21.9 C

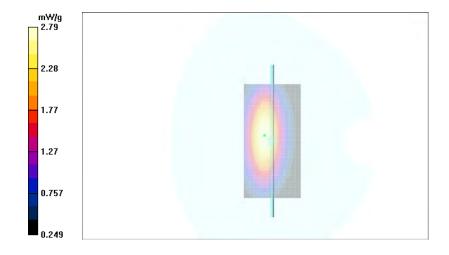
Medium parameters used: f = 835 MHz; $\sigma = 0.904$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=15mm, Pin=250mW/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 2.79 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.5 V/m Peak SAR (extrapolated) = 3.90 W/kg

SAR(1 g) = 2.59 mW/g SAR(10 g) = 1.68 mW/g Power Drift = 0.022 dB

Maximum value of SAR (measured) = 2.79 mW/g

Date/Time: 2009-07-03 07:19:39

Test Laboratory: TCC Nokia Type: D835V2; Serial: 4d042

Communication System: CW835Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Head 850; Medium Notes: Medium Temperature: 21.8 C

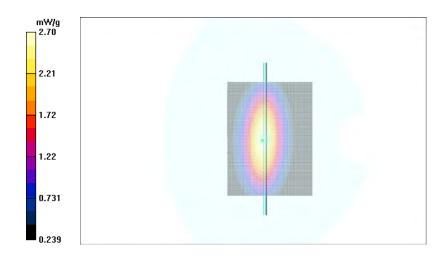
Medium parameters used: f = 835 MHz; σ = 0.894 mho/m; ε_r = 40.6; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=15mm, Pin=250mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 2.68 mW/g

d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.5 V/m Peak SAR (extrapolated) = 3.79 W/kg

SAR(1 g) = 2.5 mW/g SAR(10 g) = 1.62 mW/g Power Drift = -0.045 dB

Maximum value of SAR (measured) = 2.70 mW/g

Date/Time: 2009-07-02 09:17:59

Test Laboratory: TCC Nokia

Type: D1900V2; Serial: 5d026

Communication System: CW1900 Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

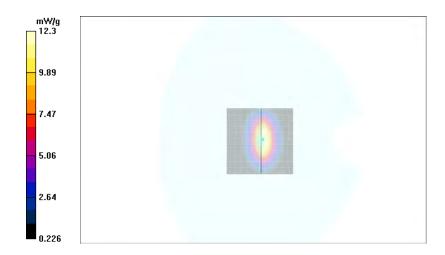
Medium parameters used: f = 1900 MHz; σ = 1.48 mho/m; ε_r = 39; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

d=10mm, Pin=250mW/Area Scan (71x71x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (interpolated) = 12.5 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.0 V/m Peak SAR (extrapolated) = 20.3 W/kg

SAR(1 g) = 10.9 mW/g SAR(10 g) = 5.65 mW/g Power Drift = -0.068 dB

Maximum value of SAR (measured) = 12.3 mW/g

APPENDIX B: MEASUREMENT SCANS

See the following pages

Date/Time: 2009-06-30 11:00:13

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: GSM850

Frequency: 836.6 MHz; Duty Cycle: 1:8.3

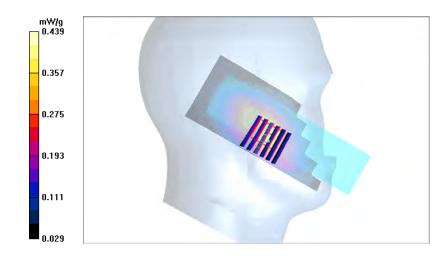
Medium: Head 835; Medium Notes: Medium Temperature: 21.9 C

Medium parameters used: f = 837 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position – Middle – Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.417 mW/g

Cheek position - Middle - Flip open/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 11.7 V/m Peak SAR (extrapolated) = 0.598 W/kg

SAR(1 g) = 0.376 mW/g SAR(10 g) = 0.242 mW/g Power Drift = -0.386 dB

Maximum value of SAR (measured) = 0.439 mW/g

Date/Time: 2009-07-03 08:03:53

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

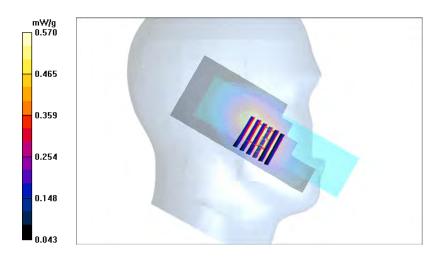
Medium: Head 850; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 837 MHz; $\sigma = 0.896$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.544 mW/g

Cheek position - Middle - Flip open/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 9.73 V/m Peak SAR (extrapolated) = 0.840 W/kg

SAR(1 g) = 0.498 mW/g SAR(10 g) = 0.328 mW/g Power Drift = -0.020 dB

Maximum value of SAR (measured) = 0.570 mW/g

Date/Time: 2009-06-30 12:58:33

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

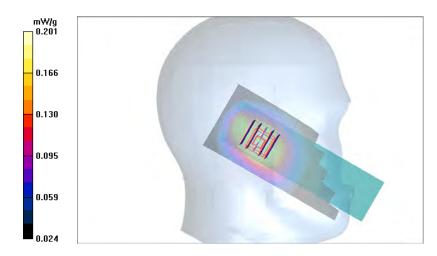
Medium: Head 835; Medium Notes: Medium Temperature: 21.9 C

Medium parameters used: f = 837 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Tilt position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.200 mW/g

Tilt position - Middle - Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 12.9 V/m Peak SAR (extrapolated) = 0.241 W/kg

SAR(1 g) = 0.190 mW/g SAR(10 g) = 0.140 mW/g Power Drift = -0.315 dB

Maximum value of SAR (measured) = 0.201 mW/g

Date/Time: 2009-06-30 14:03:30

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

Medium: Head 835; Medium Notes: Medium Temperature: 21.9 C

Medium parameters used: f = 837 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

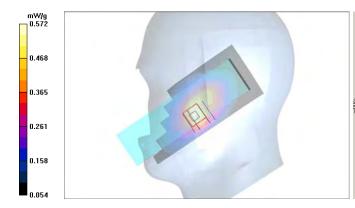
Phantom section: Right Section

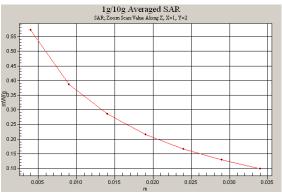
DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.552 mW/g

Cheek position - Middle - Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 11.6 V/m Peak SAR (extrapolated) = 0.875 W/kg


SAR(1 g) = 0.537 mW/gSAR(10 g) = 0.342 mW/g

Power Drift = -0.365 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.572 mW/g

Date/Time: 2009-06-30 14:45:17

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

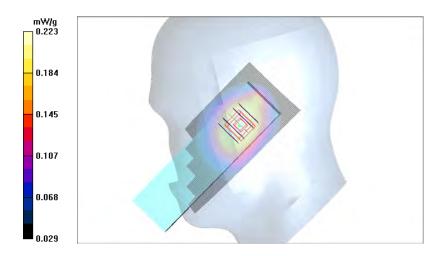
Medium: Head 835; Medium Notes: Medium Temperature: 21.9 C

Medium parameters used: f = 837 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Tilt position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.224 mW/g

Tilt position - Middle – Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 13.2 V/m Peak SAR (extrapolated) = 0.267 W/kg

SAR(1 g) = 0.211 mW/g SAR(10 g) = 0.157 mW/g Power Drift = -0.208 dB

Maximum value of SAR (measured) = 0.223 mW/g

Date/Time: 2009-06-30 12:38:46

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 3-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:2.8

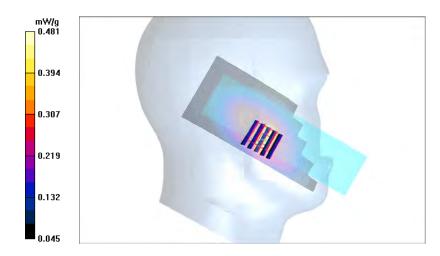
Medium: Head 835; Medium Notes: Medium Temperature: 21.9 C

Medium parameters used: f = 837 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.456 mW/g

Cheek position - Middle - Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 11.4 V/m Peak SAR (extrapolated) = 0.662 W/kg

SAR(1 g) = 0.407 mW/g SAR(10 g) = 0.259 mW/g Power Drift = -0.256 dB

Maximum value of SAR (measured) = 0.481 mW/g

Date/Time: 2009-06-30 17:38:04

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot 8PSK EGPRS850

Frequency: 836.6 MHz; Duty Cycle: 1:4.2

Medium: Head 835; Medium Notes: Medium Temperature: 21.9 C

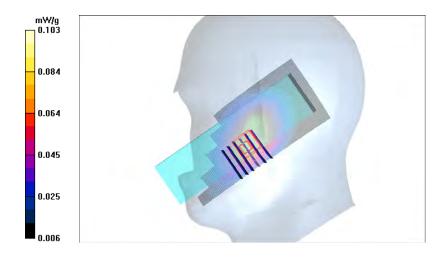
Medium parameters used: f = 837 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.080 mW/g


Cheek position - Middle - Flip open/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.01 V/m Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.092 mW/g SAR(10 g) = 0.060 mW/g Power Drift = -0.203 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.103 mW/g

Date/Time: 2009-06-30 18:40:47

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: WCDMA850 Frequency: 846.6 MHz; Duty Cycle: 1:1

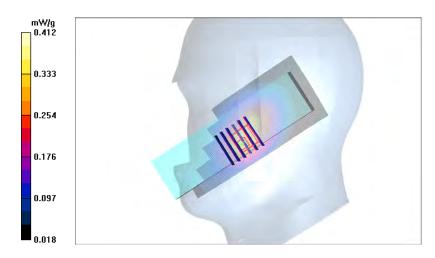
Medium: Head 835; Medium Notes: Medium Temperature: 21.9 C

Medium parameters used: f = 847 MHz; $\sigma = 0.916$ mho/m; $\varepsilon_r = 40.7$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.9, 5.9, 5.9); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 4; Type: Twin Phantom; Serial: TP-1410
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - High - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.299 mW/g

Cheek position - High - Flip open/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 7.58 V/m Peak SAR (extrapolated) = 0.596 W/kg

SAR(1 g) = 0.350 mW/g SAR(10 g) = 0.217 mW/g Power Drift = 0.035 dB

Maximum value of SAR (measured) = 0.412 mW/g

Date/Time: 2009-07-02 09:58:44

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: GSM 1900 Frequency: 1880 MHz; Duty Cycle: 1:8.3

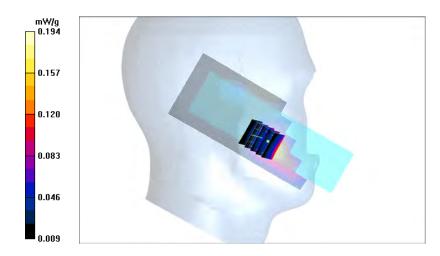
Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.196 mW/g

Cheek position - Middle - Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.10 V/m Peak SAR (extrapolated) = 0.318 W/kg

SAR(1 g) = 0.180 mW/g SAR(10 g) = 0.104 mW/g Power Drift = 0.080 dB

Maximum value of SAR (measured) = 0.194 mW/g

Date/Time: 2009-07-02 14:28:04

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS1900 Frequency: 1909.8 MHz; Duty Cycle: 1:4.2

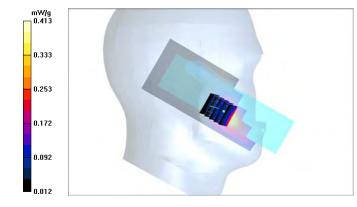
Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

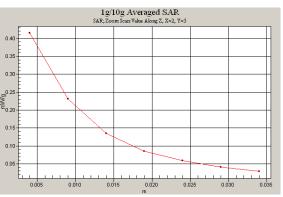
Medium parameters used: f = 1910 MHz; σ = 1.49 mho/m; ε_r = 39; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - High - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.447 mW/g


Cheek position - High - Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.98 V/m Peak SAR (extrapolated) = 0.719 W/kg

SAR(1 g) = 0.397 mW/g SAR(10 g) = 0.226 mW/g Power Drift = -0.028 dB

Maximum value of SAR (measured) = 0.413 mW/g

Date/Time: 2009-07-02 13:43:10

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

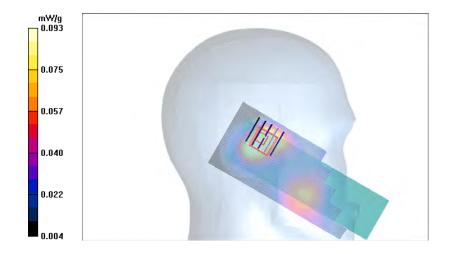
Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Tilt position – Middle – Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.117 mW/g


Tilt position - Middle – Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 7.27 V/m Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.086 mW/g SAR(10 g) = 0.056 mW/g Power Drift = -0.005 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.093 mW/g

Date/Time: 2009-07-02 12:30:47

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:4.2

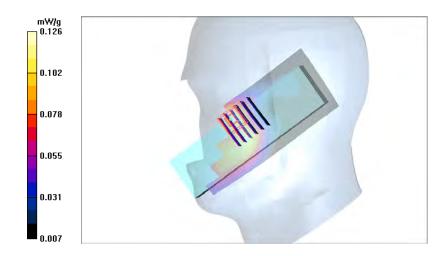
Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\epsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.131 mW/g

Cheek position - Middle - Flip open/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.10 V/m Peak SAR (extrapolated) = 0.179 W/kg

SAR(1 g) = 0.118 mW/g SAR(10 g) = 0.079 mW/g Power Drift = 0.067 dB

Maximum value of SAR (measured) = 0.126 mW/g

Date/Time: 2009-07-02 13:30:02

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:4.2

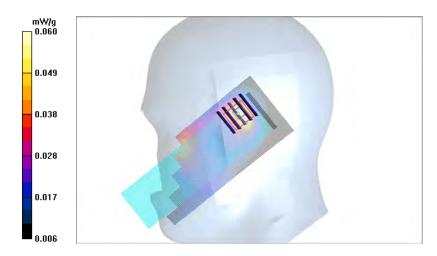
Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\epsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Tilt position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.065 mW/g

Tilt position - Middle – Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 5.16 V/m Peak SAR (extrapolated) = 0.086 W/kg

SAR(1 g) = 0.055 mW/g SAR(10 g) = 0.034 mW/g Power Drift = 0.149 dB

Maximum value of SAR (measured) = 0.060 mW/g

Date/Time: 2009-07-02 10:31:11

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 3-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:2.8

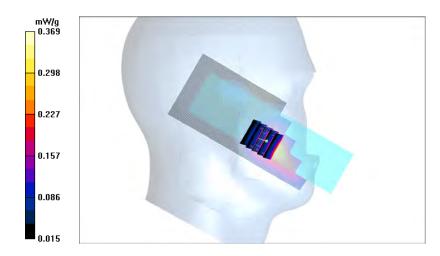
Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 1880 MHz; $\sigma = 1.45 \text{ mho/m}$; $\varepsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - Middle - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.389 mW/g

Cheek position - Middle - Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 4.21 V/m Peak SAR (extrapolated) = 0.609 W/kg

SAR(1 g) = 0.348 mW/g SAR(10 g) = 0.203 mW/g Power Drift = -0.041 dB

Maximum value of SAR (measured) = 0.369 mW/g

Date/Time: 2009-07-02 14:49:05

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot 8PSK EGPRS1900

Frequency: 1909.8 MHz; Duty Cycle: 1:4.2

Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

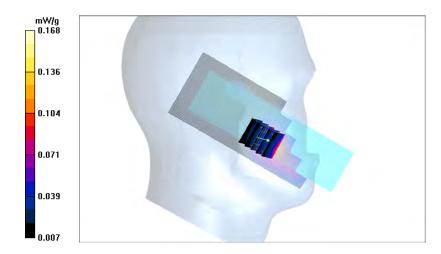
Medium parameters used: f = 1910 MHz; $\sigma = 1.49 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek position - High - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.164 mW/g

Cheek position - High - Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 2.67 V/m Peak SAR (extrapolated) = 0.289 W/kg

SAR(1 g) = 0.153 mW/g SAR(10 g) = 0.086 mW/g Power Drift = 0.232 dB

Maximum value of SAR (measured) = 0.168 mW/g

Date/Time: 2009-07-02 15:41:12

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: WCDMA1900 Frequency: 1907.6 MHz; Duty Cycle: 1:1

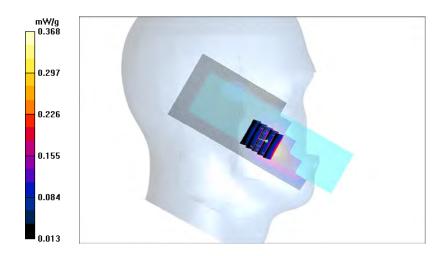
Medium: Head 1900; Medium Notes: Medium Temperature: 21.8 C

Medium parameters used: f = 1908 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.88, 4.88, 4.88); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 2; Type: Twin Phantom; Serial: TP-1037
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Cheek position - High - Flip open/Area Scan (51x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.389 mW/g

Cheek position - High - Flip open/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 3.76 V/m Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.343 mW/g SAR(10 g) = 0.192 mW/g Power Drift = 0.117 dB

Maximum value of SAR (measured) = 0.368 mW/g

Date/Time: 2009-06-30 21:21:37

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS850 Frequency: 836.6 MHz; Duty Cycle: 1:4.2

Medium: Body 835; Medium Notes: Medium Temperature: 22.2 C

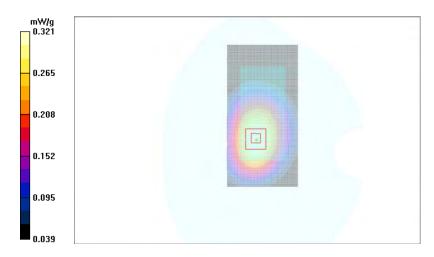
Medium parameters used: f = 837 MHz; σ = 0.98 mho/m; ε_r = 53.7; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.79, 5.79, 5.79); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501; Calibrated: 2009-03-12
- Phantom: SAM 5; Type: Twin Phantom; Serial: TP-1412
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle - No Accessory - Flip closed - Display facing phantom/Area Scan (51x101x1): Measurement grid: dx=15mm, dv=15mm


Maximum value of SAR (interpolated) = 0.326 mW/g

Body - Middle - No Accessory - Flip closed - Display facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 17.5 V/m
Peak SAR (extrapolated) = 0.395 W/kg
SAR(1 g) = 0.301 mW/g

SAR(10 g) = 0.219 mW/g Power Drift = -0.403 dB

Maximum value of SAR (measured) = 0.321 mW/g

Date/Time: 2009-06-30 21:57:54

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS850 Frequency: 848.8 MHz; Duty Cycle: 1:4.2

Medium: Body 835; Medium Notes: Medium Temperature: 22.2 C

Medium parameters used: f = 849 MHz; $\sigma = 0.992$ mho/m; $\varepsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.79, 5.79, 5.79); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 5; Type: Twin Phantom; Serial: TP-1412
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - High - No Accessory - Flip closed - Back facing phantom/Area Scan (51x101x1): Measurement grid:

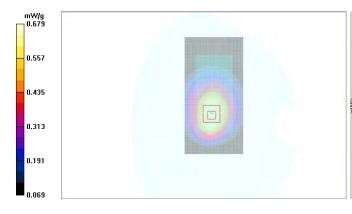
dx=15mm, dy=15mm

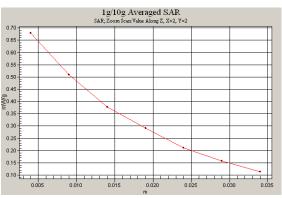
Maximum value of SAR (interpolated) = 0.660 mW/g

Body - High - No Accessory - Flip closed - Back facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 24.9 V/m


Peak SAR (extrapolated) = 0.857 W/kg


SAR(1 g) = 0.636 mW/g

SAR(10 g) = 0.450 mW/g

Power Drift = -0.216 dB

Maximum value of SAR (measured) = 0.679 mW/g

Date/Time: 2009-06-30 22:45:40

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: WCDMA850 Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: Body 835; Medium Notes: Medium Temperature: 22.2 C

Medium parameters used: f = 847 MHz; $\sigma = 0.989$ mho/m; $\varepsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(5.79, 5.79, 5.79); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 5; Type: Twin Phantom; Serial: TP-1412
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

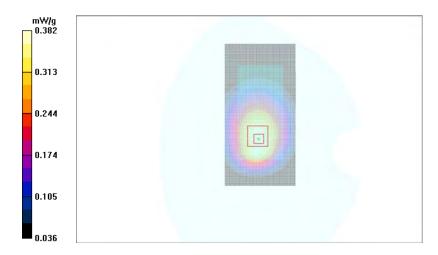
Body - High - No Accessory - Flip closed - Back facing phantom/Area Scan (51x101x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.382 mW/g

Body - High - No Accessory - Flip closed - Back facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 18.7 V/m

Peak SAR (extrapolated) = 0.478 W/kg SAR(1 g) = 0.358 mW/g

SAR(10 g) = 0.256 mW/g

Power Drift = 0.022 dB

Maximum value of SAR (measured) = 0.382 mW/g

Date/Time: 2009-07-02 21:49:01

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS1900 Frequency: 1909.8 MHz; Duty Cycle: 1:4.2

Medium: Body 1900; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used: f = 1910 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.55, 4.55, 4.55); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

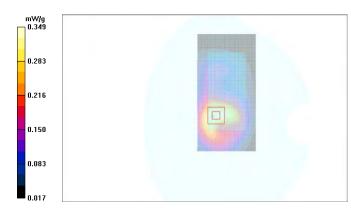
Body - High - No Accessory - Flip closed - Display facing phantom/Area Scan (51x101x1): Measurement grid: dx=15mm, dv=15mm

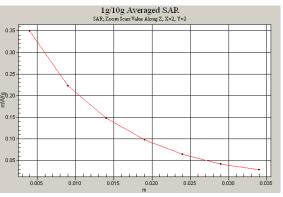
Maximum value of SAR (interpolated) = 0.374 mW/g

Body - High - No Accessory - Flip closed - Display facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 12.3 V/m Peak SAR (extrapolated) = 0.528 W/kg


SAR(1 g) = 0.325 mW/g


SAR(10 g) = 0.205 mW/g

Power Drift = 0.038 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.349 mW/g

Date/Time: 2009-07-02 22:09:04

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: 2-slot GPRS1900 Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium: Body 1900; Medium Notes: Medium Temperature: 22.3 C

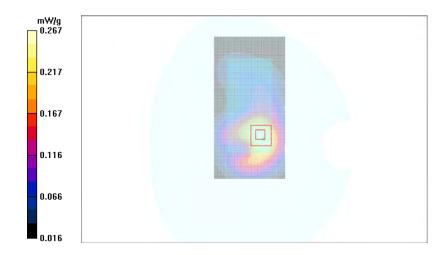
Medium parameters used: f = 1880 MHz; σ = 1.5 mho/m; ε_r = 52.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.55, 4.55, 4.55); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - Middle - No Accessory - Flip closed - Back facing phantom/Area Scan (51x101x1): Measurement grid: dx=15mm, dv=15mm


Maximum value of SAR (interpolated) = 0.272 mW/g

Body - Middle - No Accessory - Flip closed - Back facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 10.5 V/m Peak SAR (extrapolated) = 0.422 W/kg

SAR(1 g) = 0.252 mW/g SAR(10 g) = 0.156 mW/g Power Drift = 0.119 dB

Maximum value of SAR (measured) = 0.267 mW/g

Date/Time: 2009-07-02 22:52:51

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625347/5

Communication System: WCDMA1900 Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: Body 1900; Medium Notes: Medium Temperature: 22.3 C

Medium parameters used: f = 1908 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

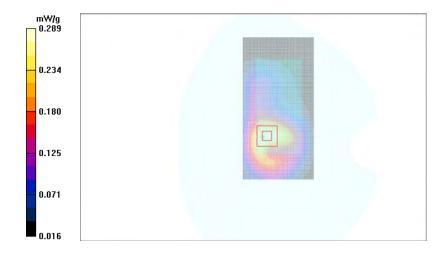
- Probe: ES3DV3 SN3116; Probe Notes:
- ConvF(4.55, 4.55, 4.55); Calibrated: 2009-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn501: Calibrated: 2009-03-12
- Phantom: SAM 3; Type: Twin Phantom; Serial: TP-1302
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body - High - No Accessory - Flip closed - Display facing phantom/Area Scan (51x101x1): Measurement grid: dx=15mm, dv=15mm

Maximum value of SAR (interpolated) = 0.290 mW/g

Body - High - No Accessory - Flip closed - Display facing phantom/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=7.5mm, dy=7.5mm, dz=5mm


Reference Value = 11.5 V/m Peak SAR (extrapolated) = 0.430 W/kg

SAR(1 g) = 0.269 mW/g

SAR(10 g) = 0.168 mW/g Power Drift = 0.036 dB

Warning: Maximum averaged SAR over 10 g is located on the boundary of the measurement cube. This cube might not incorporate the absolute averaged SAR. Please consider a refinement of the Area Scan measurement.

Maximum value of SAR (measured) = 0.289 mW/g

APPENDIX C: CONDUCTED AVERAGE POWER MEASUREMENTS FOR WCDMA AND HSUPA

Test Laboratory: TCC Nokia

Type: RM-389V; Serial: 004401/10/625305/3, HW: 3.6, SW: 300.01

C.1. WCDMA850 Test results

Average power

Ch/ f [MHz]	P [dBm]
4133 / 826.6	21.88
4175 / 835.0	21.84
4232 / 846.4	21.81

C.2. HSUPA850 Test results

Average power

	_	P [dBm]					
Ch / f [MHz]	Subtest mode					
		1	2	3	4	5	
4133 / 826.	6	18.88	17.68	19.64	18.64	18.88	
4175 / 835.	0	18.24	17.58	18.56	18.54	18.28	
4232 / 846.	4	18.70	17.40	19.43	18.44	18.68	

Note: In HSUPA operation, the output power is reduced relative to the tuning target power for WCDMA. This device runs two separate HSUPA power control routines: MPR and E-TFC MPR. In each Subtest mode, the routine with the higher power reduction dominates. In addition, to ensure linearity of the PA output, a further 1dB power reduction for all Subtest modes is implemented. As a result, the overall MPR for each of the Subtest modes is as follows:

Maximum Power Reduction (MPR)					
Subtest mode 1 Subtest mode 2 Subtest mode 3 Subtest mode 4 Subtest mode 5					
2.5dB 3.0dB 2.0dB 3.0dB 2.5dB					

C.3. WCDMA1900 Test results

Average power

Ch/ f [MHz]	P [dBm]
9263 / 1852.6	21.52
9400 / 1880.0	21.24
9537 / 1907.4	21.19

C.4. HSUPA1900 Test results

Average power

	P [dBm]						
Ch / f [MHz]	Subtest mode						
	1	2	3	4	5		
9263 / 1852.6	18.74	17.26	19.25	18.26	18.85		
9400 / 1880.0	18.39	16.97	17.97	18.06	18.28		
9537 / 1907.4	18.54	17.08	19.10	17.07	18.45		

Note: In HSUPA operation, the output power is reduced relative to the tuning target power for WCDMA. This device runs two separate HSUPA power control routines: MPR and E-TFC MPR. In each Subtest mode, the routine with the higher power reduction dominates. In addition, to ensure linearity of the PA output, a further 1dB power reduction for all Subtest modes is implemented. As a result, the overall MPR for each of the Subtest modes is as follows:

Maximum Power Reduction (MPR)					
Subtest mode 1 Subtest mode 2 Subtest mode 3 Subtest mode 4 Subtest mode 5					
2.5dB 3.0dB 2.0dB 3.0dB 2.5dB					

APPENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

See the following pages

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Issued: March 16, 2009

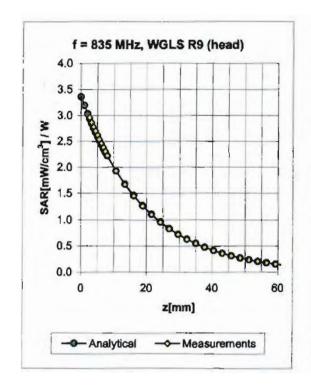
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Nokia Denmark A/S

Certificate No: ESS-3116 Mar09


Accreditation No.: SCS 108


BRATION CERTIFICATE ES3DV3 - SN:3116 Object QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes March 16, 2009 Calibration date: In Tolerance Condition of the calibrated item. This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# **Primary Standards** Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-08 (No. 217-00788) Apr-09 MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 Power sensor E4412A Арг-09 1-Apr-08 (No. 217-00788) Jul-09 Reference 3 dB Attenuator SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Apr-09 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Reference 30 dB Attenuator SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Jul-09 SN: 3013 Reference Probe ES3DV2 2-Jan-09 (No. ES3-3013_Jan09) Jan-10 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID# Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Name **Function** Calibrated by: Katja Pokovic **Technical Manager** Approved by: Fin Bomholt **R&D Director**

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

ES3DV3 SN:3116 March 16, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.80	1.11	5.90 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	$1.37 \pm 5\%$	0.47	1.50	5.06 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.43	1.58	4.88 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	$1.80 \pm 5\%$	0.48	1.56	4.43 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.63	1.29	5.79 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.59	1.29	4.78 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.83	1,11	4.55 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.99	0.91	4.04 ± 11.0% (k=2)

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

APPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

See the following pages

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multifateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Nokia Denmark A/S

Certificate No: D835V2-4d042 Sep08

CALIBRATION	CERTIFICATE
Object	D835V2 - SN: 4d042
Calibration procedure(s)	QA CAL-05.v7 Calibration procedure for dipole validation kits
Calibration date:	September 22, 2008
Condition of the calibrated item	In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	!D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (No. 217-00736)	Oct-08
Reference 20 dB Attenuator	SN: 5086 (20g)	01-Jul-08 (No. 217-00864)	Jul-09
Type-N mismatch combination	SN: 5047.2 / 06327	01-Jul-08 (No. 217-00867)	Jul-09
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	14-Mar-08 (No. DAE4-601_Mar08)	Mar-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Jeton Kestrati	Laboratory Technician	Je U
Approved by:	Katja Pokovic	Technical Manager	122-18

Issued: September 22, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

DASY5 Validation Report for Head TSL

Date/Time: 22.09.2008 10:40:16

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d042

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.901$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

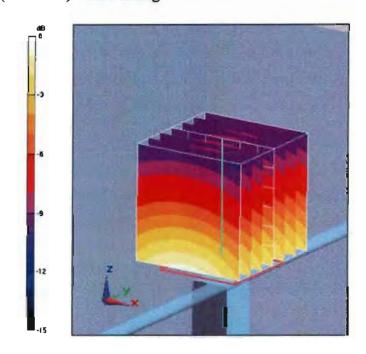
Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87


Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.9 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 3.48 W/kg

SAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.57 mW/g

Maximum value of SAR (measured) = 2.69 mW/g

0 dB = 2.69 mW/g

DASY5 Validation Report for Body TSL

Date/Time: 16.09.2008 10:46:36

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d042

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\epsilon_c = 53.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

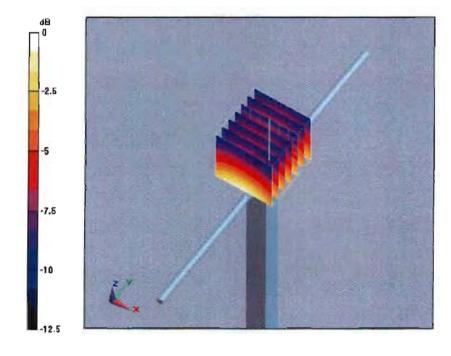
Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 14.03.2008

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87


Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 3.63 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 2.81 mW/g

 $0 dB \approx 2.81 \text{mW/g}$

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Nokia Denmark A/S

Certificate No: D1900V2-5d026_Mar08

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d026

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

March 18, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Reference 20 dB Attenuator	SN: 5086 (20g)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference 10 dB Attenuator	SN: 5047.2 (10r)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference Probe ES3DV2	SN: 3025	01-Mar-08 (SPEAG, No. ES3-3025_Mar08)	Mar-09
DAE4	SN 909	3-Sep-08 (SPEAG, No. DAE4-909_Sep07)	Sep-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-07)	In house check: Oct-08
RF generator R&S SMT-06	100005	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
	Name	Function	Signature
Calibrated by:	Marcel Fehr	Laboratory Technician	Mille
Approved by:	Katia Pokovic	Technical Manager	22 111

Issued: March 18, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d026 Mar08

DASY4 Validation Report for Head TSL

Date/Time: 18.03.2008 11:48:54

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

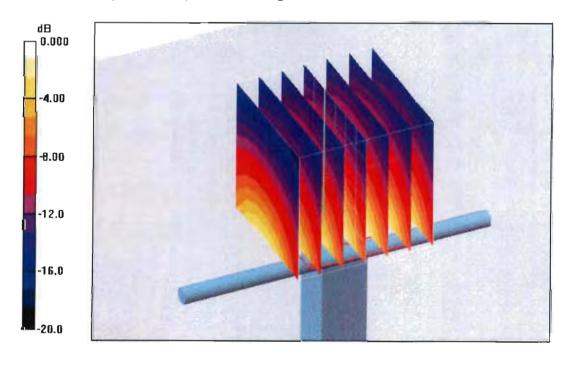
DASY4 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 01.03.2008

Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn909; Calibrated: 03.09.2007

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;


Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.7 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 19.3 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.27 mW/gMaximum value of SAR (measured) = 12.0 mW/g

0 dB = 12.0 mW/g

DASY4 Validation Report for Body TSL

Date/Time: 14.03.2008 12:53:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

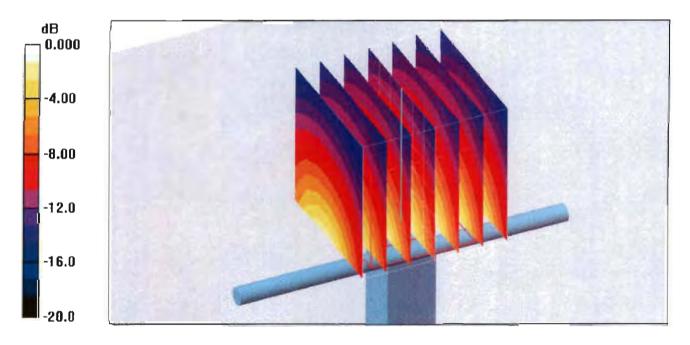
DASY4 Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 01.03.2008

• Sensor-Surface: 3.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn909; Calibrated: 03.09.2007

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; ;


Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.8 V/m; Power Drift = 0.050 dB

Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.5 mW/gMaximum value of SAR (measured) = 12.1 mW/g

0 dB = 12.1 mW/g