toll-free: (866)311-3268 http://www.flomlabs.com info@flomlabs.com

[N1]

Date: June 11, 2008

Applicant: Vertu

Beacon Hill Road

Church Crookham, Hampshire GU52 8DY UK

Attention of: Mark Pope, Certification and Compliance Manager

> +44 1252 611135; FAX: -611302 Mobile: +44 7774 8158594 mark.pope@vertu.com

Equipment: RM-266V FCC ID: P7QRM-266V

FCC Rules: 22. 24

Gentlemen:

Enclosed please find your copy of the Engineering Test Report for which you are subject to the restrictions as listed on the attached summary.

As you know, the FCC, after a TCB issues a Grant, still has 30 days to review a submission and request added information. It is your decision whether or not to market the equipment subject to a possible recall before the end of the 30 days.

If your equipment is still retained by us, it will be returned to you 30 days after approval is achieved. Our invoice for services has been directed to your Accounts Payable Department.

Should you need any clarification, just fax or phone. Thank you again for this order - it has been a pleasure to be of service.

Sincerely yours,

Hoosamuddin S. Bandukwala, Lab Director

enclosure(s) HSB/mdw

Memo

Date: June 11, 2008

Applicant: Vertu

Beacon Hill Road

Church Crookham, Hampshire GU52 8DY UK

Equipment: RM-266V **FCC ID:** P7QRM-266V

Please note that the enclosed Reports reflect the results of tests performed to the currently published Federal Communications Commissions Rules and Regulations.

Should the FCC's Examiners' interpretations request new and unpublished requirements, we will be pleased to provide them. We will invoice you accordingly, i.e. for the time spent on re-testing, providing the amended pages and/or Reports and for the time necessary to be spent on electronic filing. We will of course provide you with copies of any of the additions.

We regret any added expense to the Applicants, but of late the FCC continues to change their requirements without any prior written publication and/or notices.

As in the past, we will continue to provide all liaison with the FCC necessary for the successful conclusion of your project and the receipt of your Grant of Equipment Authorization.

Sincerely yours,

Hoosamuddin S. Bandukwala, Lab Director

Summary of Restrictions

- 1. All submissions to the FCC are subject to **their** Examiner's interpretation.
- 2. Please allow from 60 to 90 days before hearing from the FCC with regard to any submission.
- 3. The FCC can set aside any action; modify or set aside any action, within 30 days. (FCC Rule 1.108, 1.113).
- 4. Under Rule 2.803, if device is not type accepted/certificated then it must **not** be sold, leased, offered for sale, imported, shipped or distributed or advertised for sale.
- 5. FCC can revoke its certificates at any time if the equipment does not meet or **continue** to meet their Rules. (Rule Parts 2.927, 2.939).
- 6. FCC can request a sample at any time (2.936).

Sincerely yours,

Hoosamuddin S. Bandukwala, Lab Director

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Applicant:VertuEquipment:RM-266VFCC ID:P7QRM--266V

FCC Rules: 22,24

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

Hoosamuddin S. Bandukwala, Lab Director

Test Report

for

Model: RM-266V

to

Federal Communications Commission

Rule Part(s) 22, 24

Date of report: June 11, 2008

Date of revised report: September 4, 2008

On the Behalf of the

Applicant:

Vertu

At the Request of: Vertu

Beacon Hill Road

Church Crookham, Hampshire GU52 8DY UK

Attention of: Mark Pope, Certification and Compliance Manager

+44 1252 611135; FAX: -611302 Mobile: +44 7774 8158594 mark.pope@vertu.com

Sincerely yours,

Hoosamuddin S. Bandukwala, Lab Director

Revision History

Revision	Date	Revised By	Reason for revision
1.0	June 11, 2008	M. Wyman	Original Document
2.0	September, 4, 2008	M. Wyman	TCB changes

(FCC Certification (Transmitters) - Revised 9/28/98)

Applicant: Vertu

P7QRM-266V FCC ID:

By Applicant:

- 1. Letter of Authorization
- 2. Confidentiality Request: 0.457 And 0.459
- 3. Identification Drawings, 2.1033(c)(11)

Label

Location of Label Compliance Statement

Location of Compliance Statement

- 4. Photographs, 2.1033(c)(12)
- 5. Documentation: 2.1033(c)
 - User Manual (3)
 - Tune Up Info (9)
 - Schematic Diagram (10)
 - (10)Circuit Description

Block Diagram Parts List

Active Devices

6. MPE/SAR Report

By F.T.L.:

A. **Testimonial & Statement of Certification**

The Applicant has been cautioned as to the following:

15.21 Information to the User.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

15.27(a) Special Accessories.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.

Testimonial and Statement of Certification

This is to Certify:

- That the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. That the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Sincerely yours,

Hoosamuddin S. Bandukwala, Lab Director

Table of Contents

<u>Rule</u>	<u>Description</u>	<u>Page</u>
2.1033(c)(14)	Rule Summary	2
2.1033(0)(14)	•	_
	Standard Test Conditions and Engineering Practices	3
2.1033(c)	General Information Required	4
2.1053(a)	Field Strength of Spurious Radiation	6
	Test Equipment Utilized	23

Required information per ISO 17025-2005, paragraph 5.10.2:

a) Test Report

b) Laboratory: Flom Test Lab

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044-A) Chandler, AZ 85225

c) Report Number: d0860019

d) Client: Vertu

Beacon Hill Road

Church Crookham, Hampshire GU52 8DY UK

e) Identification: RM-266V

EUT Description: Phone is Quad Band GSM 850/900/1800/1900 - (GSM 850/1900 only apply

in USA)

Dual Band WCDMA 850/2100 (WCDMA 850 only applies in USA)

WiFi 2.4GHz BT 2.4GHz

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: June 11, 2008

EUT Received:

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Uncertainty: In accordance with FTL internal quality manual.

m) Supervised by:

Hoosamuddin S. Bandukwala, Lab Director

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written permission

from this laboratory.

Accessories used during testing:

Type	Quantity	Manufacturer	Model	Serial No.	FCC ID
Battery	1	Vertu	BL-5CV	N/S	N/ID
AC Charger	1	Vertu	AC-7UV	N/S	N/ID
DC Charger	1	Vertu	DC-7V	N/S	N/ID

Flom Test Labs 3356 North San Marcos Place, Suite 107 Chandler, Arizona 85225-7176 (866) 311-3268 phone, (480) 926-3598 fax

Sub-part 2.1033(c)(14):

Test and Measurement Data

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1055, 2.1057 and the following individual Parts:

		15 – Radio Frequency Devices (unlicensed)
		21 – Domestic Public Fixed Radio Services
		22 – Public Mobile Services
	Χ	22 Subpart H - Cellular Radiotelephone Service
		22.901(d) - Alternative technologies and auxiliary services
		23 – International Fixed Public Radiocommunication services
		24 – Personal Communications Services
_		74 Subpart H - Low Power Auxiliary Stations
		80 – Stations in the Maritime Services
_		80 Subpart E - General Technical Standards
_		
_		80 Subpart K - Private Coast Stations and Marine Utility Stations
_		80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats
_		80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes
_		80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats 80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes 80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act 80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S) 80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
_		80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S)
_		80 Subpart W - Global Maritime Distress and Safety System (GMDSS)
_		80 Subpart X - Voluntary Radio Installations
_		87 – Aviation Services
_		80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRBS) 80 Subpart W - Global Maritime Distress and Safety System (GMDSS) 80 Subpart X - Voluntary Radio Installations 87 – Aviation Services 90 – Private Land Mobile Radio Services 94 – Private Operational-Fixed Microwave Service 95 Subpart A - General Mobile Radio Service (GMRS)
_		94 – Private Operational-Fixed Microwave Service
_		95 Subpart A - General Mobile Radio Service (GMRS)
_		95 Subpart A - General Mobile Radio Service (GMRS) 95 Subpart C - Radio Control (R/C) Radio Service
_		95 Subpart D - Citizens Band (CB) Radio Service
_		95 Subpart E - Family Radio Service
_		95 Subpart F - Interactive Video and Data Service (IVDS)
_		97 - Amateur Radio Service
		101 - Fixed Microwaye Services

Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with TIA 603-C 2004, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of 10° to 40°C (50° to 104 °F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Measurement results, unless otherwise noted, are worst-case measurements.

A2LA

"A2LA has accredited Flom Test Labs, Inc. Chandler, AZ for technical competence in the field of Electrical testing. The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO 17025:2005 'General Requirements for the Competence of Testing and Calibration Laboratories' and any additional program requirements in the identified field of testing."

Please refer to www.a2la.org for current scope of accreditation.

Certificate number: 2152.01

ACCREDITED
CERT NO:2152-01

IC O.A.T.S. Number: 2044A-1

List of General Information Required for Certification

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and to Part 22, 24

<u>Sub-pa</u> (c)(1):	<u>rt 2.1033</u>					
Name and Address of Applicant:		Vertu Beacon Hill Road Church Crookham, Hampshire GU52 8DY UK				
Manufacturer:		Vertu Beacon Hill Road Church Crookham, Hampshire GU52 8DY UK				
(c)(2):	FCC ID:			P7QRM-266V	,	
	Model Number:			RM-266V		
(c)(3):	Instruction Manual(s):					
	Please s	ee attached exhibits				
(c)(4):	Type of Emission:			256K0GXW		
(c)(5):	Frequency Range, MHz:			824 – 848,		
(c)(6):	Power Rating, Watts: Switchable	Var	iable	Data Provide		nal report
	FCC Grant Note	:				
(c)(7):	Maximum Power Rating	, Watts:		2.0		
	DUT Results:			Passes	Х	Fails

Please see attached exhibits

(c)(9): Circuit Diagram/Circuit Description:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

Please see attached exhibits

(c)(10): Label Information:

Please see attached exhibits

(c)(11): Photographs:

Please see attached exhibits

(c)(12): **Digital Modulation Description**:

____ Attached Exhibits _x_ N/A

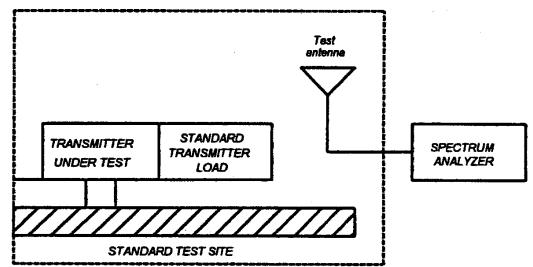
(c)(13): Test and Measurement Data:

Follows

Name of Test: Field Strength of Spurious Radiation

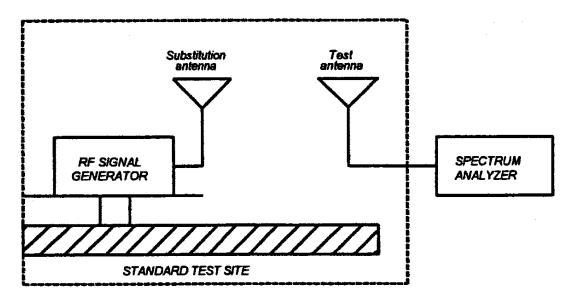
Specification: 2.1053(a)

Test Equipment Utilized: See Equipment List for Details Test Date: June 10, 11, 2008


Measurement Procedure

Definition:

Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.


Method of Measurement:

- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth ≥ 3 times Resolution Bandwidth, or 30 kHz (22.917)
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
- C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load that is placed on the turntable. The RF cable to this load should be of minimum length.

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.
- G) Reconnect the equipment as illustrated.

- H) Keep the spectrum analyzer adjusted as in step B).
- I) Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =

10log₁₀(TX power in watts/0.001) – the levels in step I)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 58.58dBm

Fundamental EIRP value = 36.10dbm

g0840007: 2008-Apr-08 Tue 08:01:00

STATE: 2:High Power GSM Ambient Temperature: 23 ℃ ± 3 ℃

Tuned Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
824.200000	1648.390000	17.3	29.9	-50.2	-86.3
824.200000	2472.590000	16.1	33.4	-47.9	-84.0
824.200000	3296.790000	11.0	35.8	-50.5	-86.6
824.200000	4120.990000	10.5	37.1	-49.8	-85.9
824.200000	4945.190000	10.9	39.1	-47.4	-83.5
824.200000	5769.390000	12.3	40.6	-44.5	-80.6
824.200000	6593.590000	16.6	41.9	-38.8	-74.9
824.200000	7417.790000	16.0	44.2	-37.2	-73.3

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 58.45dBm

Fundamental EIRP value = 35.10dbm

Measurement Results

g0860024: 2008-Jun-10 Tue 11:04:00

STATE: 2:High Power GSM Ambient Temperature: 23 ℃ ± 3 ℃

Tuned	Emission	Analyzer	Correction	Measured	Spurious
Frequency	Frequency	Level,	Factor, dB	Power	dBc
(MHz)	(MHz)	dBuV/m		dBm EIRP	
836.600000	1673.280000	24.1	30.0	-43.2	-78.3
836.600000	2509.880000	11.1	33.5	-52.8	-87.9
836.600000	3346.480000	9.7	35.9	-51.8	-86.9
836.600000	4183.080000	9.7	37.2	-50.5	-85.3
836.600000	5019.680000	11.8	39.3	-46.2	-81.3
836.600000	5856.280000	16.3	40.6	-40.5	-75.6
836.600000	6692.880000	17.8	42.4	-37.4	-72.5
836.600000	7529.480000	15.9	44.5	-37.0	-72.1
836.600000	8366.080000	16.3	45.7	-35.3	-70.4

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 58.34dBm

Fundamental EIRP value = 34.20dbm

Measurement Results

g0860025: 2008-Jun-10 Tue 11:11:00 STATE: 2:High Power GSM Ambient Temperature: 23 °C ± 3 °C

Tuned	Emission	Analyzer	Correction	Measured	Spurious
Frequency	Frequency	Level,	Factor, dB	Power	dBc
(MHz)	(MHz)	dBuV/m		dBm EIRP	
848.800000	1697.660000	21.8	30.2	-45.4	-79.6
848.800000	2546.460000	10.5	33.7	-53.2	-87.4
848.800000	3395.260000	10.5	36.0	-50.9	-85.1
848.800000	4244.060000	11.3	37.3	-48.8	-83.0
848.800000	5092.860000	12.7	39.5	-45.2	-79.4
848.800000	5941.660000	16.7	40.7	-40.0	-74.2
848.800000	6790.460000	16.5	42.4	-38.5	-72.7
848.800000	7639.260000	16.3	44.6	-36.5	-70.4
848.800000	8488.060000	14.9	45.9	-36.5	-70.4

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 43.15dBm

Fundamental EIRP value = 36.35

Measurement Results

g0860026: 2008-Jun-10 Tue 12:46:00 STATE: 2:High Power CDMA Ambient Temperature: 23 °C ± 3 °C

Tuned Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
826.400000	1650.900000	18.4	29.9	-49.1	-85.5
826.400000	3305.570000	11.2	35.9	-50.3	-71.0
826.400000	4131.970000	9.5	37.1	-50.7	-87.1
826.400000	4958.370000	10.5	39.2	-47.7	-84.1
826.400000	5784.770000	12.2	40.6	-44.6	-80.1
826.400000	6611.170000	16.3	42.0	-39.1	-75.5
826.400000	7437.570000	16.1	44.2	-37.1	-73.5
826.400000	8263.970000	16.7	45.6	-35.1	-71.5

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 58.59dBm

Fundamental EIRP value = 36.22

Measurement Results

g0860027: 2008-Jun-10 Tue 13:18:00 STATE: 2:High Power CDMA Ambient Temperature: 23 °C ± 3 °C

Tuned	Emission	Analyzer	Correction	Measured	Spurious
Frequency	Frequency	Level,	Factor, dB	Power	dBc
(MHz)	(MHz)	dBuV/m		dBm EIRP	
835.000000	1668.540000	16.8	30.0	-50.6	-86.0
835.000000	2504.980000	11.3	33.5	-52.6	-88.8
835.000000	3339.980000	10.3	35.9	-51.2	-87.4
835.000000	4174.980000	10.1	37.2	-50.1	-86.3
835.000000	5009.980000	10.8	39.3	-47.2	-83.4
835.000000	5844.980000	16.7	40.6	-40.1	-76.3
835.000000	6679.980000	18.5	42.1	-36.7	-72.9
835.000000	7514.980000	16.0	44.4	-36.9	-73.1
835.000000	8349.980000	17.8	45.7	-33.9	-70.1

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 58.57dBm

Fundamental EIRP value = 36.08

Measurement Results

g0860028: 2008-Jun-10 Tue 13:31:00

STATE: 2:High Power CDMA Ambient Temperature: 23 °C ± 3 °C

Tuned Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
846.600000	1691.480000	17.2	30.1	-50.0	-86.1
846.600000	2538.080000	10.6	33.6	-53.1	-89.1
846.600000	3386.400000	10.9	36.0	-50.5	-86.6
846.600000	4233.000000	10.1	37.2	-50.0	-86.1
846.600000	5079.600000	11.5	39.5	-46.4	-82.5
846.600000	5926.200000	17.8	40.7	-38.9	-75.0
846.600000	6772.800000	16.0	42.3	-39.1	-75.2
846.600000	7619.400000	15.9	44.6	-36.9	-73.0
846.600000	8466.000000	17.2	45.9	-34.3	-70.9

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 58.58dBm

Fundamental EIRP value = 36.10dbm

Measurement Results

g0860029: 2008-Jun-11 Wed 09:43:00 STATE: 2:High Power E-GPRS Ambient Temperature: 23 °C ± 3 °C

Tuned Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
824.200000	1648.395000	20.4	29.9	-47.1	-83.2
824.200000	824.200000 2472.895000		33.4	-47.8	-83.9
824.200000	3297.095000	5.9	35.8	-55.6	-91.7
824.200000	200000 4121.295000		37.1	-55.0	-91.1
824.200000	4945.495000	6.1	39.1	-52.2	-80.3
824.200000	5769.695000	4.6	40.6	-52.2	-80.3
824.200000	6593.600000	9.1	41.9	-46.3	-82.4
824.200000	7417.800000	8.7	44.2	-44.5	-80.6
824.200000	8242.000000	8.4	45.5	-43.4	-79.5

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 58.45dBm

Fundamental EIRP value = 35.15dbm

Measurement Results

g0860030: 2008-Jun-11 Wed 09:52:00 STATE: 2:High Power E-GPRS

STATE: 2:High Power E-GPRS Ambient Temperature: 23 °C ± 3 °C

Tuned	Emission	Analyzer	Correction	Measured	Spurious
Frequency	Frequency	Level,	Factor, dB	Power	dBc
(MHz)	(MHz)	dBuV/m		dBm EIRP	
836.600000	1673.280000	18.4	30.0	-48.9	-84.1
836.600000	36.600000 2509.880000		33.5	-57.4	-92.6
836.600000	3346.480000	5.2	35.9	-56.3	-91.5
836.600000	4183.080000	6.9	37.2	-53.3	-88.5
836.600000	5019.680000	5.7	39.3	-52.3	-87.5
836.600000	5856.280000	8.8	40.6	-48.0	-83.2
836.600000	6692.880000	9.9	42.2	-45.3	-80.5
836.600000	7529.480000	8.9	44.5	-44.0	-79.2
836.600000	8366.080000	8.3	45.7	-43.3	-78.4

Field Strength of Spurious Radiation

Measurement Results Part 22

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43 + 10log(P) = 58.34dBm

Fundamental EIRP value = 34.20dbm

Measurement Results

g0860031: 2008-Jun-11 Wed 10:03:00 STATE: 2:High Power E-GPRS

STATE: 2:High Power E-GPRS Ambient Temperature: 23 ℃ ± 3 ℃

Tuned Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
848.800000	1697.710000	43.7	30.2	-23.5	-57.7
848.800000	2546.510000	5.6	33.7	-58.1	-92.3
848.800000	848.800000 3395.310000		36.0	-55.3	-89.5
848.800000	348.800000 4244.110000		37.3	-54.4	-88.6
848.800000	5092.910000	6.4	39.5	-51.5	-85.7
848.800000	5941.710000	8.7	40.7	-48.0	-82.2
848.800000	8.800000 6790.510000		42.4	-46.6	-80.8
848.800000	7639.310000	9.4	44.6	-43.4	-77.6
848.800000	8488.110000	8.9	45.9	-42.5	-76.7

Field Strength of Spurious Radiation

Measurement Results Part 24

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43+10 log (P) =

Fundamental EIRP value = 44.80dbm

Measurement Results

g0860032: 2008-Jun-11 Wed 10:11:00 STATE: 2:High Power GSM Ambient Temperature: 23 °C ± 3 °C

Tuned Frequency (MHz)	Emission Frequency	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
1850.200000	, , ,		36.5	-35.7	-80.5
1850.200000			40.4	-50.6	-95.4
1850.200000			44.1	-43.9	-88.7
1850.200000			47.0	-42.6	-87.4
1850.200000			49.5	-39.7	-84.5
1850.200000			51.4	-33.1	-77.9
1850.200000	14801.725000	14.4	56.9	-26.1	-70.9
1850.200000	16651.925000	13.9	39.2	-44.3	-89.1

Field Strength of Spurious Radiation

Measurement Results Part 24

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43+10 log (P) = 59.56dBm

Fundamental EIRP value = 45.30dbm

Measurement Results

g0860033: 2008-Jun-11 Wed 10:21:00 STATE: 2:High Power GSM Ambient Temperature: 23 °C ± 3 °C

Tuned Frequency	Emission Frequency	Analyzer Level,	Correction Factor, dB	Measured Power	Spurious dBc
(MHz)	(MHz)	dBuV/m		dBm EIRP	
1880.000000	3760.000000	4.9	36.6	-55.9	-101.2
1880.000000	1880.000000 5640.000000		40.5	-51.4	-96.7
1880.000000	7520.000000	9.0	44.4	-43.9	-89.2
1880.000000	.000000 9400.000000		47.1	-42.2	-87.5
1880.000000	11280.000000	10.7	49.8	-36.9	-82.2
1880.000000	13160.000000	13.7	52.0	-31.6	-76.9
1880.000000	15040.000000	38.0	40.7	-38.7	-84.0
1880.000000	16920.000000	13.1	40.2	-44.1	-89.4

Field Strength of Spurious Radiation

Measurement Results Part 24

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43+10 log (P) =

Fundamental EIRP value = 45.20dbm

Measurement Results

g0860034: 2008-Jun-11 Wed 10:28:00 STATE: 2:High Power GSM Ambient Temperature: 23 °C ± 3 °C

Tuned	Emission	Analyzer	Correction	Measured	Spurious
Frequency	Frequency	Level,	Factor, dB	Power	dBc
(MHz)	(MHz)	dBuV/m		dBm EIRP	
1909.800000	3819.600000	5.0	36.7	-55.7	-100.9
1909.800000	800000 5729.400000		40.6	-50.2	-95.4
1909.800000	7639.200000	8.3	44.6	-44.5	-89.2
1909.800000	800000 9549.000000		47.3	-41.7	-86.9
1909.800000	11458.800000	10.6	50.1	-36.6	-81.8
1909.800000	13368.600000	15.2	52.7	-29.4	-74.6
1909.800000	15278.400000	12.9	39.4	-45.0	-90.2
1909.800000	17188.200000	13.9	41.4	-42.1	-87.3

Field Strength of Spurious Radiation

Measurement Results Part 24

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43+10 log (P) = 59.49dBm

Fundamental EIRP value = 44.60dbm

Measurement Results

g0860035: 2008-Jun-11 Wed 10:33:00 STATE: 2:High Power E-GPRS

STATE: 2:High Power E-GPRS Ambient Temperature: 23 ℃ ± 3 ℃

Tuned Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
1850.200000	50.200000 3700.400000		36.5	-54.9	-99.5
1850.200000	1850.200000 5550.600000		40.4	-50.9	-95.5
1850.200000	200000 7400.800000		44.1	-44.9	-89.5
1850.200000	1850.200000 9251.000000		47.0	-42.3	-86.9
1850.200000			49.5	-38.6	-83.2
1850.200000	12951.400000	12.9	51.4	-33.0	-77.6
1850.200000	14801.600000	12.8	56.9	-27.7	-72.3
1850.200000	16651.800000	14.5	39.2	-43.7	-88.3

Field Strength of Spurious Radiation

Measurement Results Part 24

Sample calculation

Spurious Power – Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43+10 log (P) = 59.55dBm

Fundamental EIRP value = 45.20dbm

Measurement Results

g0860036: 2008-Jun-11 Wed 10:40:00

STATE: 2:High Power E-GPRS Ambient Temperature: 23 ℃ ± 3 ℃

Tuned Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
1880.000000	3760.00000 3760.000000		36.6	-55.9	-101.1
1880.000000	1880.000000 5640.000000		40.5	-51.8	-97.0
1880.000000	380.000000 7520.000000		44.4	-44.6	-89.8
1880.000000	1880.000000 9400.060000		47.1	-40.5	-85.7
1880.000000			49.8	-38.6	-83.8
1880.000000			52.0	-32.1	-77.3
1880.000000	15040.060000	12.9	40.7	-43.8	-89.0
1880.000000	16920.060000	14.6	40.2	-42.6	-87.8

Field Strength of Spurious Radiation

Measurement Results Part 24

Sample calculation

Spurious Power - Radiated EIRP = Spurious dBc

Limit calculation

Plim = 43+10 log (P) = 59.55

Fundamental EIRP value = 45.25dbm

Measurement Results

g0860037: 2008-Jun-11 Wed 10:59:00

STATE: 2:High Power E-GPRS Ambient Temperature: 23 ℃ ± 3 ℃

Tuned Frequency (MHz)	Emission Frequency (MHz)	Analyzer Level, dBuV/m	Correction Factor, dB	Measured Power dBm EIRP	Spurious dBc
1909.800000	3819.600000	5.5	36.7	-55.2	-100.5
1909.800000	5729.400000	7.5	40.6	-49.3	-94.6
1909.800000	7639.200000	10.1	44.6	-42.7	-88.0
1909.800000	9549.000000	9.5	47.3	-40.6	-85.9
1909.800000	11458.800000	8.5	50.1	-38.7	-84.0
1909.800000	13368.600000	13.0	52.7	-31.6	-76.9
1909.800000	15278.400000	14.6	39.4	-43.3	-88.6
1909.800000	17188.200000	13.7	41.4	-42.3	-87.6

Performed by: Michael Wyman

Michael D Wywn

Test Equipment Utilized

Description	MFG	Model Number	FTL Asset Number	Last Cal Date	Cal Due Date
RF Pre-Amplifier	HP	8449	i00028	1/23/07	1/23/09
Spectrum Analyzer	HP	8563E	i00029	3/9/07	3/9/08
Spectrum Analyzer	HP	8566B	i00049	8/18/07	8/18/08
Bi Con Antenna	EMCO	3109B	i00088	10/15/07	10/15/09
Log Periodic Antenna	Aprel	2001	i00089	10/22/07	10/22/09
Monopole Antenna	Ailtech	DM-105A-T1,T2, T3	i00037, 39 i00042, 48	Verified	Verified
Horn Antenna	EMCO	3115	i00103	9/5/06	9/5/08
Horn Antenna	Aprel	3115	100091	NCR	NCR
Power Meter	HP	E4418B	i00228	9/6/07	9/6/08
Power sensor	HP	8481A	i00317	9/6/07	9/6/08
Spectrum Analyzer	HP	8566B	i00329	5/05/08	5/05/09
Voltmeter	Fluke	87III	i00319	11/05/07	11/05/08
Temperature Chamber	Tenney	Tenney Jr.	i00027	9/25/07	9/25/08
Audio Analyzer	HP	8903A	i00324	9/14/07	9/14/08
Modulation Analyzer	HP	8901A	i00321	9/17/07	9/17/08
Frequency Counter	HP	5334A	100019	11/20/07	11/29/08
Power Supply	HP	6286A	100005	NCR	NCR
Signal Generator	R&S	SMT-03	100266	NCR	NCR

In addition to the above listed equipment standard RF connectors and cables were utilized in the testing of the described equipment. Prior to testing these components were tested to verify proper operation.

END OF TEST REPORT