

Date of Report: September 29, 2004 Date of Submission: December 13, 2004

Federal Communications Commission

Via: Electronic Filing

Attention: Authorization & Evaluation Division

Applicant: Westel Wireless Systems Pty Ltd

Equipment: DRB-25 FCC ID: P6ZCI00066

FCC Rules: 2, 90, 95, Confidentiality

Gentlemen:

On behalf of the Applicant, enclosed please find Application Form 731, Engineering Test Report and all pertinent documentation, the whole for approval of the referenced equipment as shown.

Filing fees are attached.

We trust the same is in order. Should you need any further information, kindly contact the writer who is authorized to act as agent.

Sincerely yours,

David E. Lee, Lab Manager

enclosure(s) cc: Applicant DEL/ca



# **Transmitter Certification**

of

FCC ID: P6ZCI00066 Model: DRB-25

to

#### **Federal Communications Commission**

Rule Part(s) 2, 90, 95, Confidentiality

Date of report: September 29, 2004

On the Behalf of the Applicant:

Westel Wireless Systems Pty Ltd

At the Request of: P.O. WWS DMR PO 4026

Comserv, Inc.

895 N. White Station Road Memphis, TN 38122-3021 (901) 767-6800; FAX: -4555

Attention of: Ken Hunt, Director, Technical Services

(901) 681-1716 (direct); (901) 226-7211 (pager)

E-mail: kenhunt@comservinc.com

Supervised by: David E. Lee, Lab Manager



# **List of Exhibits**

(FCC Certification (Transmitters) - Revised 9/28/98)

Applicant: Westel Wireless Systems Pty Ltd

FCC ID: P6ZCI00066

## By Applicant:

- 1. Letter of Authorization
- 2. Confidentiality Request: 0.457 And 0.459
- 3. Part 90.203(e) & (g) Attestation
- 4. Identification Drawings, 2.1033(c)(11)

Label

Location of Label

Compliance Statement

Location of Compliance Statement

- 5. Photographs, 2.1033(c)(12)
- 6. Documentation: 2.1033(c)
  - (3) User Manual
  - (9) Tune Up Info
  - (10) Schematic Diagram
  - (10) Circuit Description

Block Diagram Parts List

i ai ta Liat

**Active Devices** 

7. MPE Report

#### By M.F.A. Inc.:

A. Testimonial & Statement of Certification



# The Applicant has been cautioned as to the following:

#### 15.21 **Information to the User**.

The users manual or instruction manual for an intentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

#### 15.27(a) **Special Accessories**.

Equipment marketed to a consumer must be capable of complying with the necessary regulations in the configuration in which the equipment is marketed. Where special accessories, such as shielded cables and/or special connectors are required to enable an unintentional or intentional radiator to comply with the emission limits in this part, the equipment must be marketed with, i.e. shipped and sold with, those special accessories. However, in lieu of shipping or packaging the special accessories with the unintentional or intentional radiator, the responsible party may employ other methods of ensuring that the special accessories are provided to the consumer, without additional charge.

Information detailing any alternative method used to supply the special accessories for a grant of equipment authorization or retained in the verification records, as appropriate. The party responsible for the equipment, as detailed in § 2.909 of this chapter, shall ensure that these special accessories are provided with the equipment. The instruction manual for such devices shall include appropriate instructions on the first page of text concerned with the installation of the device that these special accessories must be used with the device. It is the responsibility of the user to use the needed special accessories supplied with the equipment.



# **Table of Contents**

| Rule          | <u>Description</u>                                 | <u>Page</u> |
|---------------|----------------------------------------------------|-------------|
| 2.1033(c)(14) | Rule Summary                                       | 2           |
|               | Standard Test Conditions and Engineering Practices | 3           |
| 2.1033(c)     | General Information Required                       | 5           |
| 2.1046(a)     | Carrier Output Power (Conducted)                   | 8           |
| 2.1046(a)     | ERP Carrier Power (Radiated)                       | 10          |
| 2.1051        | Unwanted Emissions (Transmitter Conducted)         | 12          |
| 2.1053(a)     | Field Strength of Spurious Radiation               | 14          |
| 2.1049(c)(1)  | Emission Masks (Occupied Bandwidth)                | 18          |
| 90.214        | Transient Frequency Behavior                       | 29          |
| 2.1047(a)     | Audio Low Pass Filter (Voice Input)                | 35          |
| 2.1047(a)     | Audio Frequency Response                           | 37          |
| 2.1047(b)     | Modulation Limiting                                | 39          |
| 2.1055(a)(1)  | Frequency Stability (Temperature Variation)        | 42          |
| 2.1055(b)(1)  | Frequency Stability (Voltage Variation)            | 44          |
| 2.202(g)      | Necessary Bandwidth and Emission Bandwidth         | 46          |



Required information per ISO/IEC Guide 25-1990, paragraph 13.2:

a) Test Report

b) Laboratory: M. Flom Associates, Inc.

(FCC: 31040/SIT) 3356 N. San Marcos Place, Suite 107

(Canada: IC 2044) Chandler, AZ 85225

c) Report Number: d0490067

d) Client: Comserv, Inc.

895 N. White Station Road Memphis, TN 38122-3021 (901) 767-6800; FAX: -4555

e) Identification: DRB-25

FCC ID: P6ZCI00066

EUT Description: Base Station (100W VHF)

f) EUT Condition: Not required unless specified in individual tests.

g) Report Date: September 29, 2004

EUT Received: June 23, 2004

h, j, k): As indicated in individual tests.

i) Sampling method: No sampling procedure used.

I) Uncertainty: In accordance with MFA internal quality manual.

m) Supervised by:

David E. Lee, Lab Manager

n) Results: The results presented in this report relate only to the item tested.

o) Reproduction: This report must not be reproduced, except in full, without written

permission from this laboratory.



Sub-part

2.1033(c)(14):

# **Test and Measurement Data**

All tests and measurement data shown were performed in accordance with FCC Rules and Regulations, Volume II; Part 2, Sub-part J, Sections 2.947, 2.1033(c), 2.1041, 2.1046, 2.1047, 2.1079, 2.1051, 2.1053, 2.1057, and the following individual Parts:

|   |   | 21 - Domestic Public Fixed Radio Services                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _ |   | 22 - Public Mobile Services                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _ |   | 22 Subpart H - Cellular Radiotelephone Service                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _ |   | 22.901(d) - Alternative technologies and auxiliary services                                                                                                                                                                                                                                                                                                                                                                                                     |
| _ |   | 23 - International Fixed Public Radiocommunication services                                                                                                                                                                                                                                                                                                                                                                                                     |
| _ |   | 24 - Personal Communications Services                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _ |   | 74 Subpart H - Low Power Auxiliary Stations                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _ |   | 80 - Stations in the Maritime Services                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |   | 80 Subpart E - General Technical Standards                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |   | 80 Subpart F - Equipment Authorization for Compulsory Ships                                                                                                                                                                                                                                                                                                                                                                                                     |
| _ |   | 80 Subpart K - Private Coast Stations and Marine Utility Stations                                                                                                                                                                                                                                                                                                                                                                                               |
| _ |   | 80 Subpart S - Compulsory Radiotelephone Installations for Small Passenger Boats 80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes 80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act 80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S) 80 Subpart W - Global Maritime Distress and Safety System (GMDSS) 80 Subpart X - Voluntary Radio Installations 87 - Aviation Services |
|   |   | 80 Subpart T - Radiotelephone Installation Required for Vessels on the Great Lakes                                                                                                                                                                                                                                                                                                                                                                              |
|   |   | 80 Subpart U - Radiotelephone Installations Required by the Bridge-to-Bridge Act                                                                                                                                                                                                                                                                                                                                                                                |
| _ |   | 80 Subpart V - Emergency Position Indicating Radio Beacons (EPIRB'S)                                                                                                                                                                                                                                                                                                                                                                                            |
| _ |   | 80 Subpart W - Global Maritime Distress and Safety System (GMDSS)                                                                                                                                                                                                                                                                                                                                                                                               |
|   |   | 80 Subpart X - Voluntary Radio Installations                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |   | 87 - Aviation Services                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Χ | 90 - Private Land Mobile Radio Services                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |   | 94 - Private Operational-Fixed Microwave Service                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | Χ | 95 Subpart A - General Mobile Radio Service (GMRS)                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |   | 95 Subpart C - Radio Control (R/C) Radio Service                                                                                                                                                                                                                                                                                                                                                                                                                |
| _ |   | 95 Subpart D - Citizens Band (CB) Radio Service                                                                                                                                                                                                                                                                                                                                                                                                                 |
| _ |   | 95 Subpart E - Family Radio Service                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |   | 95 Subpart F - Interactive Video and Data Service (IVDS)                                                                                                                                                                                                                                                                                                                                                                                                        |
| _ |   | 97 - Amateur Radio Service                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |   | 101 - Fixed Microwave Services                                                                                                                                                                                                                                                                                                                                                                                                                                  |



# Standard Test Conditions and Engineering Practices

Except as noted herein, the following conditions and procedures were observed during the testing:

In accordance with ANSI C63.4-1992/2000 Draft, section 6.1.9, and unless otherwise indicated in the specific measurement results, the ambient temperature of the actual EUT was maintained within the range of  $10^{\circ}$  to  $40^{\circ}$ C ( $50^{\circ}$  to  $104^{\circ}$ F) unless the particular equipment requirements specify testing over a different temperature range. Also, unless otherwise indicated, the humidity levels were in the range of 10% to 90% relative humidity.

Prior to testing, the EUT was tuned up in accordance with the manufacturer's alignment procedures. All external gain controls were maintained at the position of maximum and/or optimum gain throughout the testing.

Measurement results, unless otherwise noted, are worst-case measurements.





# A2LA

"A2LA has accredited M. Flom Associates, Inc. Chandler, AZ for technical competence in the field of Electrical Testing. The accreditation covers the specific tests and types of tests listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 – 1999 'General Requirements for the Competence of Testing and Calibration Laboratories' and any additional program requirements in the identified field of testing."

Certificate Number: 2152-01



United States Department of Commerce Matienal Institute of Standards and Technology Gathersburg, Moryland 20895-

September 15, 1999

Mr. Mortou Fleer M. Piora Associates Inc. 3356 N. Sas Marcos Place, Suite 107 Chandler, AZ 83224

Dear Mr. Flow

I am pleased to inform you that your laborary has been validated by the Chiner Taipel Bureau of Standards, Metrology, and Suspectice (SSMI) under the Asia Facilie Bouscenic Cooperation Minist Recognition Arrangement (APDE MIA). Year laboratory in now formally designated to set us a Conformity Assessment Deby (CAB) under Appendix R, Pause I Procedures, of the APDE MRA between the American Institute in Taiwas (AIT) and the Toipial Economic and Collated Representative Office (TECRI) in the United States, equiving equipment subject to Electro-designatic Compatibility (EMC) requirements. The sames of all validated and opening the Submitteria will be period on the MIST websites of this Chine (Laborated) and the procedure of the Chine Chine (Laborated) and the procedure of the Chine (Laborated) and the procedure of the Chine (Laborated) and the procedure of the Chine (Laborated) and the Chine (Laborated) and the Chine (Laborated) and the MIST websites of the Chine (Laborated) and the Chine (Laborat

As of August 1, 1999, you may submit test data to BSMI to verify that the equipment to be impreced into Chinese Taipol solidizes the applicable BMC requirements. Your assigned BSMI assets is 632-498-638-838, you must use this number when sending test reports to BSMI. Your disligation will remain in force and gas your VIAAF and/or AZIA and/or BSMI accreditation remain radio on the CSF 13428.

Piesor sets that BSMI requires that the cetty making application for the approval of regulated equipment must make seth application in person at their Taipei office. BSMI state requires the question of the atthird stripmannian who are authorized to tage the test respect. Yet can used this information via for CT-Taipei CAS Response Manager at 101-971-5414. I am also exclusing a capy of the caves whose that, according to BSMI requirements, must intemprate over the property over the stripmannian continuous stripmannian.

NIST

If you have any questions, please contact Robert Gladbill at 301-975-4273 or Joe Dhillon at 301-975-5521. We appreciate your consistent in our international conformity assessment activities.

Sinceroly,

pele le Sollino Heliada L. Cellina, 76.D. Director, Office of Standards Services

Enclosure

# **NIST**

I am pleased to inform you that your laboratory has been validated by the Chinese Taipei Bureau of Standards, Metrology and Inspection (BSMI) under the Asia Pacific Economic Cooperation Mutual Recognition Agreement (APEC MRA). Your laboratory is now formally designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC MRA between the American Institute in Taiwan (AIT) and the Taipei Economic and Cultural Representative Office (TECRO) in the United States, covering equipment subject to Electro-Magnetic Compatibility (EMC) requirements. The names of all validated and nominated laboratories will be posted on the NIST website at http://ts.nist.gov/mra under the 'Asia' category."

BSMI Number: SL2-IN-E-041R



# **List of General Information Required for Certification**

In Accordance with FCC Rules and Regulations, Volume II, Part 2 and to

|         |                                 | 2, 90, 95, Confidentiality                                                                      |                                                                                                                    |
|---------|---------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|         | rt 2.1033                       |                                                                                                 |                                                                                                                    |
| (c)(1): | Name and Address of A           | oplicant:                                                                                       |                                                                                                                    |
|         |                                 | Westel Wireless Systems Pty Ltd<br>Level 13, 15 Blue Street<br>North Sydney, Australia NSW 2060 |                                                                                                                    |
|         | Manufacturer:                   |                                                                                                 |                                                                                                                    |
|         |                                 | Applicant                                                                                       |                                                                                                                    |
| (c)(2): | FCC ID:                         |                                                                                                 | P6ZCI00066                                                                                                         |
|         | Model Number:                   |                                                                                                 | DRB-25                                                                                                             |
| (c)(3): | Instruction Manual(s):          |                                                                                                 |                                                                                                                    |
|         | Please so                       | ee attached exhibits                                                                            |                                                                                                                    |
| (c)(4): | Type of Emission:               |                                                                                                 | 16K0F3E, 11K0F3E, 8K10F1E, 8K10F1D                                                                                 |
| (c)(5): | Frequency Range, MHz            |                                                                                                 | 136 to 174                                                                                                         |
| (c)(6): | Power Rating, Watts: Switchable | <u>x</u> Variable                                                                               | to 100 N/A                                                                                                         |
|         | FCC Grant Note:                 |                                                                                                 | BD - The output power is continuously variable from the value listed in this entry to 10%-15% of the value listed. |
| (c)(7): | Maximum Power Rating            | Watts:                                                                                          | 300                                                                                                                |
|         | DUT Results:                    |                                                                                                 | Passes x Fails                                                                                                     |



## Information for Push-To-Talk Devices

Type and number of antenna to be used for this device:

One, ½ Wave

Maximum antenna gain for antenna indicated above:

+3dBi

Can this device sustain continuous operation with respect to its hardware capabilities and allowable operating functions?

No

Other hardware or operating restrictions that could limit a person's RF Exposure: 50% Duty Cycle (see manual)

Source-based time-averaging (see 2.1093 of rules) applicable to reduce the average output power:

If device has headset and belt-clip accessories that would allow body-worn operations, what is the minimum separation distance between the antenna and the user's body in this operating configuration?

N/A

Can device access wire-line services to make phone calls, either directly or through an operator?

No

Can specific operating instructions be given to users to eliminate any potential RF Exposure concerns for both front-of-the-face and body-worn operating configurations?

N/A

Other applicable information the applicant may provide that can serve as effective means for ensuring RF Exposure compliance:

See Manual



## Subpart 2.1033 (continued)

(c)(8): Voltages & currents in all elements in final RF stage, including final transistor or solid-state device:

Collector Current, A = 24.0 Collector Voltage, Vdc = 12.0 Supply Voltage, Vdc = 13.8

(c)(9): Tune-Up Procedure:

Please see attached exhibits

(c)(10): Circuit Diagram/Circuit Description:

Including description of circuitry & devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation and limiting power.

Please see attached exhibits

(c)(11): Label Information:

Please see attached exhibits

(c)(12): **Photographs**:

Please see attached exhibits

(c)(13): Digital Modulation Description:

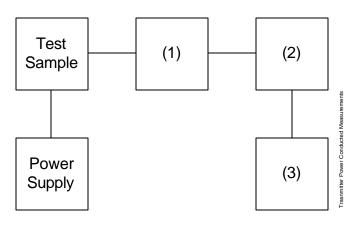
\_\_\_ Attached Exhibits \_x\_ N/A

(c)(14): Test and Measurement Data:

**Follows** 



Name of Test: Carrier Output Power (Conducted)


**Specification:** 47 CFR 2.1046(a)

**Guide**: ANSI/TIA/EIA-603-1992, Paragraph 2.2.1

## **Measurement Procedure**

- A) The EUT was connected to a resistive coaxial attenuator of normal load impedance, and the unmodulated output power was measured by means of an RF Power Meter.
- B) Measurement accuracy is  $\pm 3\%$ .

# Transmitter Test Set-Up: RF Power Output



|          | Asset                            | Description                                               | s/n                         | Cycle      | Last Cal |
|----------|----------------------------------|-----------------------------------------------------------|-----------------------------|------------|----------|
| (1)<br>X | <b>Coaxial</b> i00231/2 i00122/3 | Attenuator PASTERNACK PE7021-30 (30 dB) NARDA 766 (10 dB) | 231 or 232<br>7802 or 7802A | NCR<br>NCR |          |
| (2)<br>X | <b>Power !</b> i00020            | <b>Meters</b><br>HP 8901A Power Mode                      | 2105A01087                  | 12 mo.     | Apr-04   |
| (3)<br>X | Freque                           | ncy Counter<br>HP 8901A Frequency Mode                    | 2105A01087                  | 12 mo.     | Apr-04   |



Name of Test: Carrier Output Power (Conducted)

# **Measurement Results**

(Worst case)

Frequency of Carrier, MHz = 155.05, 140.05, 170.05 Ambient Temperature =  $23^{\circ}\text{C} \pm 3^{\circ}\text{C}$ 

Power Setting dBm RF Power, Watts

High 49.98 100

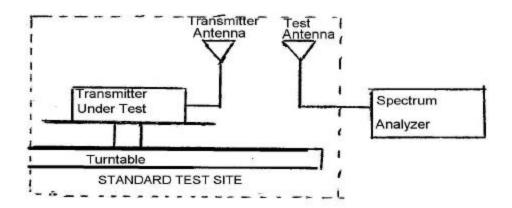
Performed by:

Samir Mahmoud



Name of Test: ERP Carrier Power (Radiated)

**Specification**: TIA/EIA 603A (Substitution Method)


#### **Measurement Procedure**

#### Definition

The average radiated power of a licensed device is the equivalent power required, when delivered to a half-wave dipole or horn antenna, to produce at a distant point the same average received power as produced by the licensed device.

#### Method of Measurement:

A) Connect the equipment as illustrated. Place the transmitter to be tested on the turntable in the standard test site.



- B) Raise and lower the test antenna from 1m to 6 m with the transmitter facing the antenna and record the highest received signal in dB as LVL.
- C) Repeat step B) for seven additional readings at 45° interval positions of the turntable.
- D) Replace the transmitter under test with a half-wave or horn vertically polarized antenna. The center of the antenna should be at the same location as the transmitter under test. Connect the antenna to a signal generator with a known output power and record the path loss in dB or LOSS.
- E) Calculate the average radiated output power from the readings in step C) and D) by the following:

average radiated power =  $10 \log_{10} \acute{O} 10(LVL - LOSS)/10 (dBm)$ 



| Name of Test:    | ERP Carrier Power (Radiated)  |  |
|------------------|-------------------------------|--|
| ivallie of 163t. | Liki Carrier rower (Kadiated) |  |

|     | Asset                  | Description               | s/n        | Cycle  | Last Cal |  |
|-----|------------------------|---------------------------|------------|--------|----------|--|
| Tra | nsducer                |                           |            |        |          |  |
|     | 88000i                 | EMCO 3109-B 25MHz-300MHz  | 2336       | 24 mo. | Sep-03   |  |
| Χ   | i00089                 | Aprel 2001 200MHz-1GHz    | 001500     | 24 mo. | Sep-03   |  |
| Χ   | i00103                 | EMCO 3115 1GHz-18GHz      | 9208-3925  | 24 mo. | Jan-04   |  |
| Am  | plifier                |                           |            |        |          |  |
| Χ   | i00028                 | HP 8449A                  | 2749A00121 | 12 mo. | May-04   |  |
| Spe | ctrum Anal             | yzer                      |            |        |          |  |
| Χ   | i00029                 | HP 8563E                  | 3213A00104 | 12 mo. | May-04   |  |
| Χ   | i00033                 | HP 85462A                 | 3625A00357 | 12 mo. | Sep-03   |  |
| Sub | Substitution Generator |                           |            |        |          |  |
| Χ   | i00067                 | HP 8920A Communication TS | 3345U01242 | 12 mo. | Oct-03   |  |
|     | i00207                 | HP 8753D Network Analyzer | 3410A08514 | 12 mo. | Jul-04   |  |

# **Measurement Results**

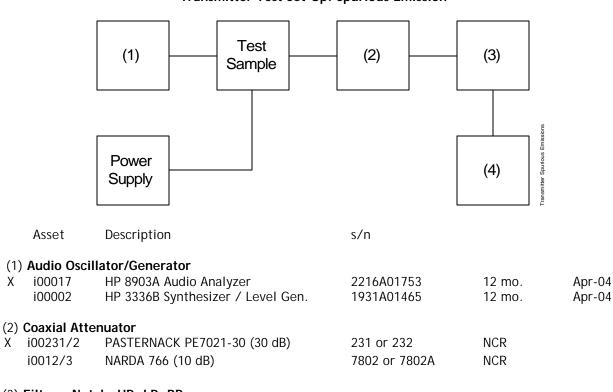
|      | 140.050000 MHz |               | 155.0 | 50000 MHz     | 170.050000 MHz |               |
|------|----------------|---------------|-------|---------------|----------------|---------------|
|      | LVL,           | Path Loss, db | LVL,  | Path Loss, db | LVL,           | Path Loss, db |
|      | dbm            |               | dbm   |               | dbm            |               |
| 0°   | 45.9           |               | 42.3  |               | 44.4           |               |
| 45°  | 46.6           |               | 45.4  |               | 45.3           |               |
| 90°  | 47.3           |               | 43.8  |               | 45.2           |               |
| 135° | 46.4           | 3.4           | 43.7  | 6.1           | 44.4           | 4.9           |
| 180° | 45.8           |               | 43.9  |               | 44.9           |               |
| 225° | 46.6           |               | 42.4  |               | 44.2           |               |
| 270° | 47.3           |               | 44.7  |               | 45.6           |               |
| 315° | 46.3           |               | 43.7  |               | 44.8           |               |

 Av. Radiated Power:
 49.93dbm
 49.84dbm
 49.75dbm

Performed by: Samir Mahmoud



Name of Test: Unwanted Emissions (Transmitter Conducted)


**Specification**: 47 CFR 2.1051

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.13

#### **Measurement Procedure**

- A) The emissions were measured for the worst case as follows:
  - 1). within a band of frequencies defined by the carrier frequency plus and minus one channel.
  - 2). from the lowest frequency generated in the EUT and to at least the 10th harmonic of the carrier frequency, or 40 GHz, whichever is lower.
- B) The magnitude of spurious emissions that are attenuated more than 20 dB below the permissible value need not be specified.

## Transmitter Test Set-Up: Spurious Emission



#### (3) Filters; Notch, HP, LP, BP

None required

## (4) Spectrum Analyzer

| Χ | i00048 | HP 8566B Spectrum Analyzer | 2511A01467 | 12 mo | Jul-04 |
|---|--------|----------------------------|------------|-------|--------|
|   | i00029 | HP 8563E Spectrum Analyzer | 3213A00104 | 12 mo | May-04 |



Name of Test: Unwanted Emissions (Transmitter Conducted)

## **Measurement Results**

(Worst Case)

Summary:

Frequency of carrier, MHz = 155.05, 140.05, 170.05

Spectrum Searched, GHz =  $0 \text{ to } 10 \text{ x } F_C$ Maximum Response, Hz = 2820

All Other Emissions = = 20 dB Below Limit

Limit(s), dBc

 $-(50+10 \times LOG P) = -70.0 (100 Watts)$ 

#### **Measurement Results**

g0470089: 2004-Jul-26 Mon 10:31:00

| State: High Power    |                         | Ambient Tempe | rature: 23°C ± 3 | 3°C        |
|----------------------|-------------------------|---------------|------------------|------------|
| Frequency Tuned, MHz | Frequency Emission, MHz | Level, dBm    | Level, dBc       | Margin, dB |
| 140.050000           | 280.100000              | -63.0         | -113.0           | -43.0      |
| 155.050000           | 310.100000              | -63.7         | -113.7           | -43.7      |
| 170.050000           | 340.100000              | -63.7         | -113.7           | -43.7      |
| 140.050000           | 420.150000              | -63.9         | -113.9           | -43.9      |
| 155.050000           | 465.150000              | -64.0         | -114.0           | -44.0      |
| 170.050000           | 510.150000              | -62.1         | -112.1           | -42.1      |
| 140.050000           | 560.200000              | -63.9         | -113.9           | -43.9      |
| 155.050000           | 620.200000              | -63.5         | -113.5           | -43.5      |
| 170.050000           | 680.200000              | -63.8         | -113.8           | -43.8      |
| 140.050000           | 700.250000              | -63.4         | -113.4           | -43.4      |
| 155.050000           | 775.250000              | -63.0         | -113.0           | -43.0      |
| 140.050000           | 840.300000              | -62.3         | -112.3           | -42.3      |
| 170.050000           | 850.250000              | -62.3         | -112.3           | -42.3      |
| 155.050000           | 930.300000              | -65.3         | -115.3           | -45.3      |
| 140.050000           | 980.350000              | -64.8         | -114.8           | -44.8      |
| 170.050000           | 1020.300000             | -64.0         | -114.0           | -44.0      |
| 155.050000           | 1085.350000             | -63.4         | -113.4           | -43.4      |
| 140.050000           | 1120.400000             | -63.9         | -113.9           | -43.9      |
| 170.050000           | 1190.350000             | -65.4         | -115.4           | -45.4      |
| 155.050000           | 1240.400000             | -64.3         | -114.3           | -44.3      |
| 140.050000           | 1260.450000             | -65.3         | -115.3           | -45.3      |
| 170.050000           | 1360.400000             | -65.0         | -115.0           | -45.0      |
| 155.050000           | 1395.450000             | -64.3         | -114.3           | -44.3      |
| 140.050000           | 1400.500000             | -65.5         | -115.5           | -45.5      |
| 170.050000           | 1530.450000             | -65.3         | -115.3           | -45.3      |
| 155.050000           | 1550.500000             | -65.3         | -115.3           | -45.3      |
| 170.050000           | 1700.500000             | -66.1         | -116.1           | -46.1      |

Da

Performed by: David E. Lee,

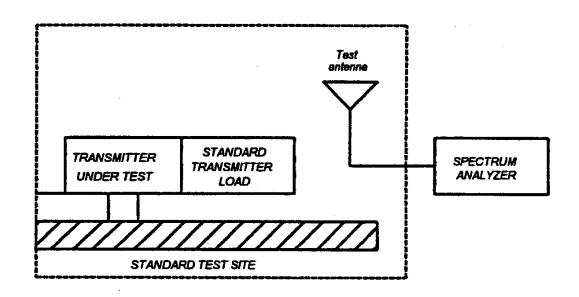
Compliance Test Manager



Name of Test: Field Strength of Spurious Radiation

**Specification**: 47 CFR 2.1053(a)

**Guide**: ANSI/TIA/EIA-603-1992/2001, Paragraph 1.2.12 and Table 16, 47 CFR 22.917

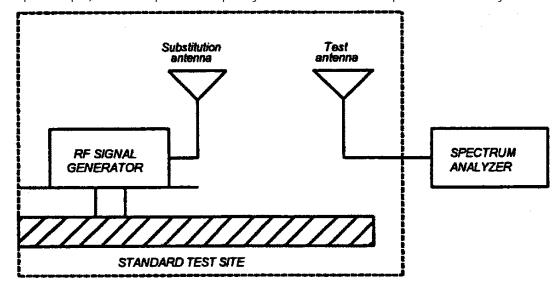

#### **Measurement Procedure**

#### Definition:

Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.

#### **Method of Measurement:**

- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
  - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
  - 2) Video Bandwidth = 3 times Resolution Bandwidth, or 30 kHz (22.917)
  - 3) Sweep Speed ≤2000 Hz/second
  - 4) Detector Mode = Mean or Average Power
  - C) Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load that is placed on the turntable. The RF cable to this load should be of minimum length.






## Name of Test:

## Field Strength of Spurious Radiation (Cont.)

- D) For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to  $\pm$  the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.



- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.



# Name of Test: Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
- M) The levels recorded in step L) are absolute levels of radiated spurious emissions in dBm. The radiated spurious emissions in dB can be calculated by the following:

Radiated spurious emissions dB =

#### 10log<sub>10</sub>(TX power in watts/0.001) - the levels in step I)

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

### **Test Equipment**

|      | Asset                                 | Description               | s/n              | Cycle        | Last Cal |  |  |  |
|------|---------------------------------------|---------------------------|------------------|--------------|----------|--|--|--|
| Trai | ransducer                             |                           |                  |              |          |  |  |  |
|      | i00088                                | EMCO 3109-B 25MHz-300MHz  | 2336             | 12 mo.       | Sep-03   |  |  |  |
| Χ    | i00089                                | Aprel 2001 200MHz-1GHz    | 001500           | 12 mo.       | Sep-03   |  |  |  |
| Χ    | i00103                                | EMCO 3115 1GHz-18GHz      | 9208-3925        | 12 mo.       | Jan-04   |  |  |  |
| Amp  | olifier                               |                           |                  |              |          |  |  |  |
| Χ    | i00028                                | HP 8449A                  | 2749A00121       | 12 mo.       | May-04   |  |  |  |
| Spe  | Spectrum Analyzer                     |                           |                  |              |          |  |  |  |
| Χ    | i00029                                | HP 8563E                  | 3213A00104       | 12 mo.       | May-04   |  |  |  |
| Χ    | i00033                                | HP 85462A                 | 3625A00357       | 12 mo.       | Aug-04   |  |  |  |
| Sub  | stitution Gei                         | nerator                   |                  |              |          |  |  |  |
| Χ    | i00067                                | HP 8920A Communication TS | 3345U01242       | 12 mo.       | Oct-03   |  |  |  |
|      | i00207                                | HP 8753D Network Analyzer | 3410A08514       | 12 mo.       | Jul-03   |  |  |  |
| Mic  | Microphone, Antenna Port, and Cabling |                           |                  |              |          |  |  |  |
|      | Micropho                              | •                         | Cable Length 1.0 | Meters       |          |  |  |  |
|      |                                       |                           | oad 50ohm        | Antenna Gain | N/A      |  |  |  |
|      | All Ports Te                          | erminated by Load Y       | Peripheral None  |              |          |  |  |  |



# Name of Test:

# Field Strength of Spurious Radiation

## **Measurement Results**

g0480124: 2004-Aug-23 Mon 11:21:00

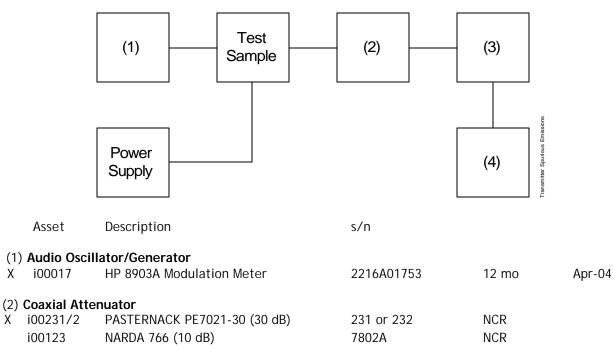
STATE: 2:High Power Ambient Temperature: 23°C ± 3°C

| Frequency Tuned, MHz | Frequency Emission, MHz | ERP, dBm | ERP, dBc |
|----------------------|-------------------------|----------|----------|
| 140.050000           | 280.100000              | -15.1    | -85.1    |
| 140.050000           | 420.150000              | -26.2    | -96.2    |
| 140.050000           | 560.199920              | -14.5    | -84.5    |
| 140.050000           | 840.295000              | -19.0    | -89.0    |
| 140.050000           | 980.345000              | -18.7    | -88.7    |
| 140.050000           | 1120.395000             | -19.3    | -89.3    |
| 140.050000           | 1260.445000             | -19.0    | -89.0    |
| 140.050000           | 1400.500000             | -17.9    | -87.9    |

Performed by:

Samir Mahmoud




**Specification**: 47 CFR 2.1049(c)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.11

#### **Measurement Procedure**

- A) The EUT and test equipment were set up as shown below
- B) For EUTs supporting audio modulation, the audio signal generator was adjusted to the frequency of maximum response and with output level set for ±2.5/±1.25 kHz deviation (or 50% modulation). With level constant, the signal level was increased 16 dB.
- C) For EUTs supporting digital modulation, the digital modulation mode was operated to its maximum extent.
- D) The Occupied Bandwidth was measured with the Spectrum Analyzer controls set as shown on the test results.

# Transmitter Test Set-Up: Occupied Bandwidth



2146A00159

2511A01467

3213A00104

**NCR** 

12 mo

12 mo

i00029

(4) **Spectrum Analyzer** X i00048 HP 856

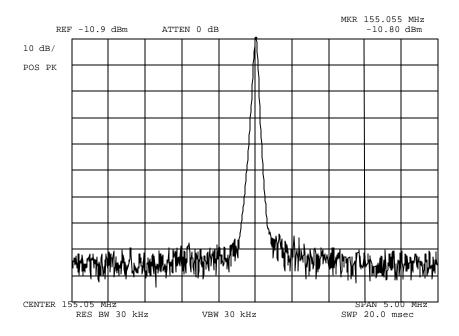
(3) Interface X i00021

HP 8954A Transceiver Interface

HP 8566B Spectrum Analyzer

HP 8563E Spectrum Analyzer

Jul-04


Aug-03



#### **Measurements Results**

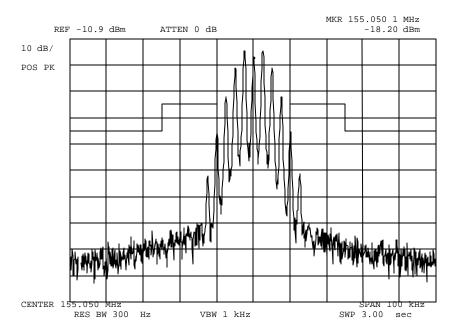
g0470089: 2004-Jul-26 Mon 10:02:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: HIGH Modulation: NONE

REFERENCE 155.05MHZ [60dB in-line attenuation]


Performed by:



#### **Measurements Results**

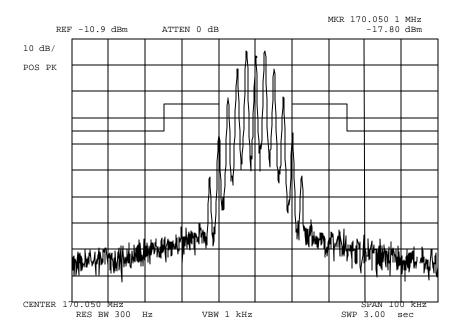
g0470091: 2004-Jul-26 Mon 10:10:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: Modulation:

HIGH WITH MASK B 25KHZ (16K0F3E)


Performed by:



#### **Measurements Results**

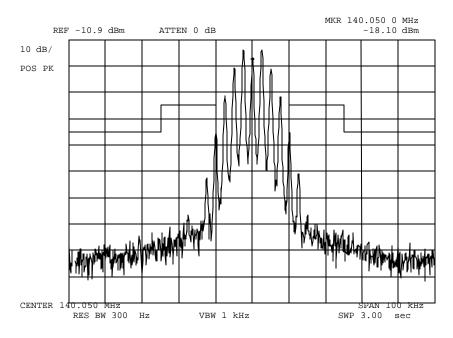
g0470094: 2004-Jul-26 Mon 10:19:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: Modulation:

HIGH WITH MASK B 25KHZ (16K0F3E)


Performed by:



#### **Measurements Results**

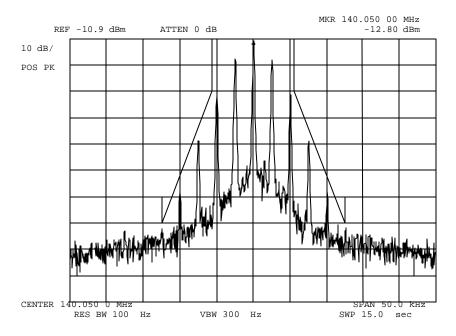
g0470095: 2004-Jul-26 Mon 10:25:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: Modulation:

HIGH WITH MASK B 25KHZ (16K0F3E)


Performed by:



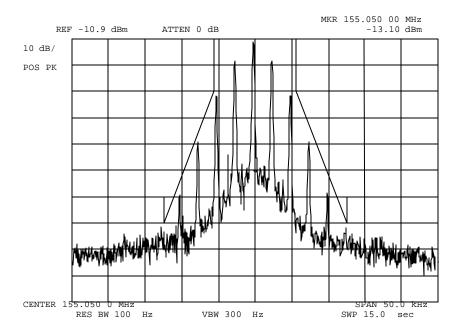
#### **Measurements Results**

g0470096: 2004-Jul-26 Mon 10:27:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: Modulation: HIGH WITH MASK D 12.5KHZ (11K0F3E)


Performed by:



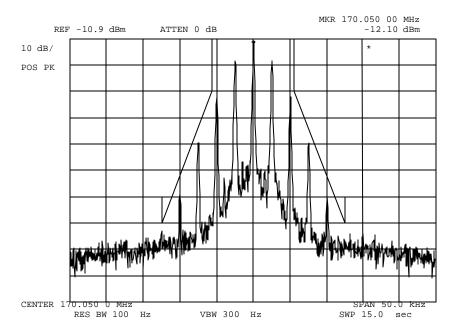
#### **Measurements Results**

g0470097: 2004-Jul-26 Mon 10:31:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: Modulation: HIGH WITH MASK D 12.5KHZ (11K0F3E)


Performed by:



#### **Measurements Results**

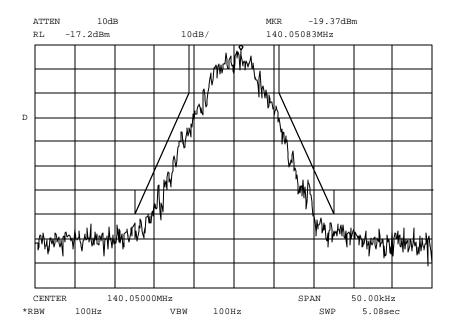
g0470098: 2003-Jun-27 Mon 10:32:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: Modulation:

HIGH WITH MASK D 12.5KHZ (11K0F3E)


Performed by:



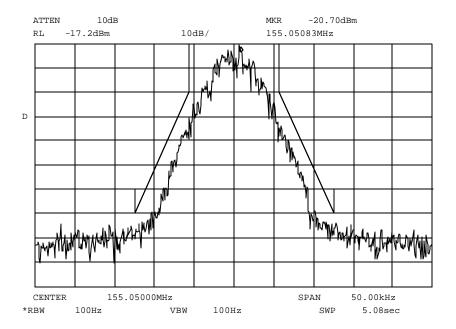
#### **Measurements Results**

g0490050: 2004-Sep-27 Mon 11:31:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: HIGH
Modulation: WITH MASK D
12.5KHZ (8K10F1E, 8K10F1D)


Performed by:



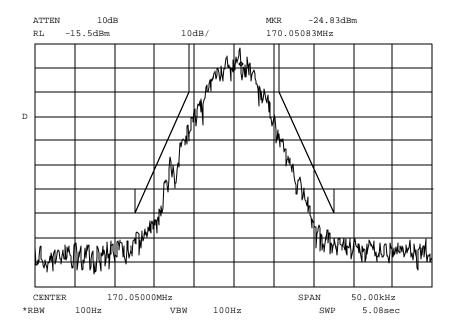
#### **Measurements Results**

g0490051: 2004-Sep-27 Mon 11:32:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: HIGH
Modulation: WITH MASK D
12.5KHZ (8K10F1E, 8K10F1D)


Performed by:



#### **Measurements Results**

g0490052: 2004-Sep-27 Mon 11:41:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Power: HIGH
Modulation: WITH MASK D
12.5KHZ (8K10F1E, 8K10G1D)

Performed by:

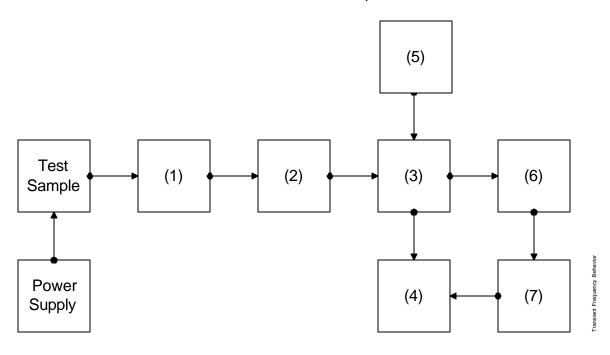


Name of Test: Transient Frequency Behavior

**Specification**: 47 CFR 90.214

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.19

#### **Measurement Procedure**


- A) The EUT was setup as shown on the attached page, following TIA/EIA-603 steps a, b, and c as a quide.
- B) The transmitter was turned on.
- C) Sufficient attenuation was provided so that the transmitter carrier level measured at the output of the combiner was 40 dB below the maximum input level of the test receiver. This level was recorded.
- D) The transmitter was turned off.
- E) An RF signal generator (1) modulated with a 1 kHz tone at either 25, 12.5, or 6.25 kHz deviation, and set to the same frequency as the assigned transmitter frequency, (2) was adjusted to a level -20 dB below the level recorded for step C) above, measured at the output of the combiner. This level was then fixed for the remainder of the test.
- F) The oscilloscope was setup using TIA/EIA-603 steps j and k as a guide, and to either 10 ms/div (UHF) or 5 ms/div (VHF).
- G) The 30 dB attenuator was removed, the transmitter was turned on, and the level of the carrier at the output of the combiner was recorded.
- H) The <u>carrier on-time</u> as referenced in TIA/EIA-603 steps m, n, and o was captured and plotted. The carrier off-time as referenced in TIA/EIA-603 steps p, q, r, and s was captured and plotted.



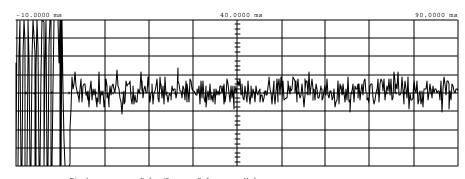
# Name of Test:

# Transient Frequency Behavior

# Transmitter Set-Up



| Asset                                                                                                                                                                                                                                   | Description                                       | s/n                         | Cycle      | Last Cal |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|------------|----------|--|
| (1) Attenuator (Removed after 1st step) X i00231/2 PASTERNACK PE7021-30 (30 dB) 231 or 232 NCR                                                                                                                                          |                                                   |                             |            |          |  |
| (2) Attenuator<br>X i00231/2<br>i00122/3                                                                                                                                                                                                | PASTERNACK PE7021-30 (30 dB)<br>NARDA 766 (10 dB) | 231 or 232<br>7802 or 7802A | NCR<br>NCR |          |  |
| (3) Combiner<br>X i00154                                                                                                                                                                                                                | 4 x 25 Ω Combiner                                 | 154                         | NCR        |          |  |
| (4) Crystal Decoder<br>X i00159 HP 8470B Crystal Detector 1822A10054 NCR                                                                                                                                                                |                                                   |                             |            |          |  |
| (5) <b>RF Signal Generator</b> X i00067 HP 8920A Communication TS 3345U01242 1                                                                                                                                                          |                                                   |                             |            | Oct-03   |  |
| (6) <b>Modulation</b> <i>X</i> i00020                                                                                                                                                                                                   | Analyzer<br>HP 8901A Modulation Meter             | 2105A01087                  | 12 mo      | Apr-04   |  |
| (7) Oscilloscope<br>X i00030 HP 54502A Digital Oscilloscope 2927A00209 12 mo Jun-04                                                                                                                                                     |                                                   |                             |            |          |  |
| M. Flom Associates, Inc.         3356 North San Marcos Place, Suite 107       Page 30 of 40         Chandler, Arizona 85225-7176       FCC ID: P6ZC100060         (480) 926-3100 phone, (480) 926-3598 fax       MFA p0470015, d0490060 |                                                   |                             |            |          |  |




Name of Test: Transient Frequency Behavior

## **Measurement Results**

g0470112: 2004-Jul-27 Tue 11:39:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



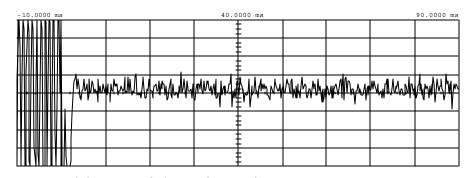
Trigger mode : Edge On Negative Edge Of Chan2 Trigger Level Chan2 = -350.000 mV (noise reject ON) Holdoff = 40 Events

Power: HIGH

Modulation: Ref Gen=12.5 kHz Deviation

Description: CARRIER ON TIME

Performed by:




Name of Test: Transient Frequency Behavior

## **Measurement Results**

g0470113: 2004-Jul-27 Tue 11:41:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



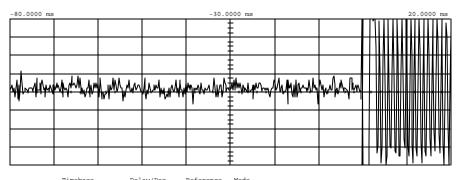
Trigger mode : Edge On Negative Edge Of Chan2 Trigger Level Chan2 = -400.000 mV (noise reject ON) Holdoff = 40 Events

Power: HIGH

Modulation: Ref Gen=25 kHz Deviation

Description: CARRIER ON TIME

Performed by:




Name of Test: Transient Frequency Behavior

## **Measurement Results**

g0470114: 2004-Jul-27 Tue 11:50:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C

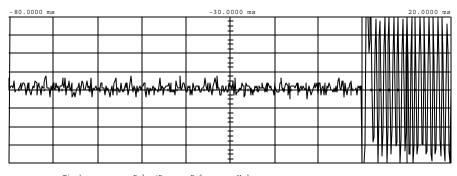


Trigger mode : Edge
On Positive Edge Of Chan2
Trigger Level
Chan2 = -175.000 mV (noise reject ON)
Holdoff = 40.000 ns

Power: HIGH

Modulation: Ref Gen=25 kHz Deviation
Description: CARRIER OFF TIME

Performed by:




Name of Test: Transient Frequency Behavior

## **Measurement Results**

g0470115: 2004-Jul-27 Tue 11:50:00

State: 2:High Power Ambient Temperature: 23°C ± 3°C



Trigger mode : Edge On Positive Edge Of Chan2 Trigger Level Chan2 = -175.000 mV (noise reject ON) Holdoff = 40.000 ns

Power: HIGH

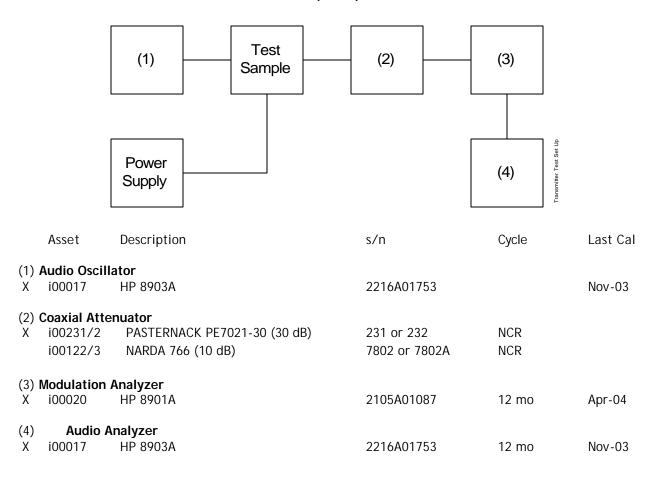
Modulation: Ref Gen=12.5 kHz Deviation

Description: CARRIER OFF TIME

Performed by:



Name of Test: Audio Low Pass Filter (Voice Input)


**Specification**: 47 CFR 2.1047(a)

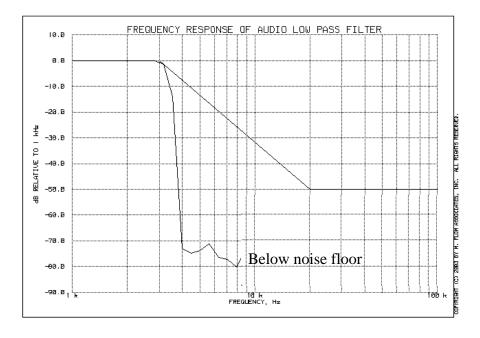
Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.15

#### **Measurement Procedure**

- A) The EUT and test equipment were set up such that the audio input was connected at the input to the modulation limiter, and the modulated stage.
- B) The audio output was connected at the output to the modulated stage.

## Transmitter Test Set-Up: Response of Low Pass Filter






Name of Test: Audio Low Pass Filter (Voice Input)

## **Measurement Results**

g0470064: 2004-Jul-26 Mon 13:45:00

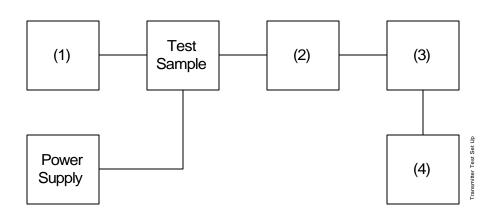
State: 0:General Ambient Temperature: 23°C ± 3°C



Performed by:



Name of Test: Audio Frequency Response


**Specification**: 47 CFR 2.1047(a)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.6

#### **Measurement Procedure**

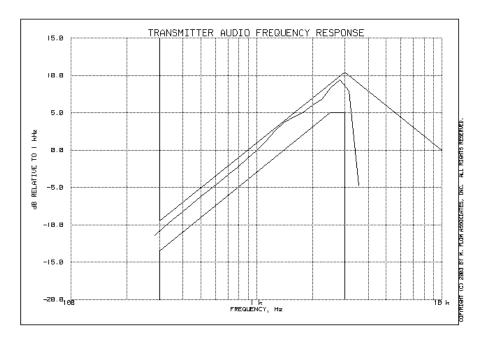
- A) The EUT and test equipment were set up as shown below.
- B) The audio signal generator was connected to the audio input circuit/microphone of the EUT.
- C) The audio signal input was adjusted to obtain 20% modulation at 1 kHz, and this point was taken as the 0 dB reference level.
- D) With input levels held constant and below limiting at all frequencies, the audio signal generator was varied from 100 Hz to 50 kHz.
- E) The response in dB relative to 1 kHz was measured, using the HP 8901A Modulation Meter.

## **Transmitter Test Set-Up: Audio Frequency Response**



|     | Asset              | Description                  | s/n           | Cycle | Last Cal |  |  |
|-----|--------------------|------------------------------|---------------|-------|----------|--|--|
| (1) | Audio Oscill       | lator                        |               |       |          |  |  |
| Χ   | i00017             | HP 8903A                     | 2216A01753    |       | Nov-03   |  |  |
| (2) | Coaxial Atte       | enuator                      |               |       |          |  |  |
| X   | i00231/2           | PASTERNACK PE7021-30 (30 dB) | 231 or 232    | NCR   |          |  |  |
|     | i00122/3           | NARDA 766 (10 dB)            | 7802 or 7802A | NCR   |          |  |  |
| (3) | Modulation         | Analyzer                     |               |       |          |  |  |
| Χ   | i00020             | HP 8901A                     | 2105A01087    | 12 mo | Apr-04   |  |  |
| (4) | (4) Audio Analyzer |                              |               |       |          |  |  |
| Χ   | i00017             | HP 8903A                     | 2216A01753    | 12 mo | Nov-03   |  |  |




Name of Test:

Audio Frequency Response

## **Measurement Results**

g0470063: 2004-Jul-26 Mon 13:40:00

State: 0:General Ambient Temperature: 23°C ± 3°C



Frequency of Maximum Audio Response, Hz = 2820

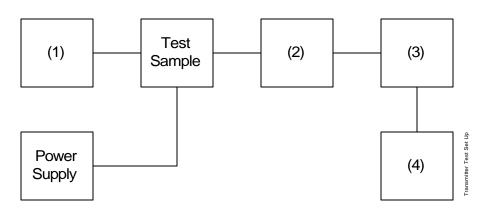
Additional points:

| Frequency, Hz | Level, dB |
|---------------|-----------|
| 300           | -10.83    |
| 20000         | -21.92    |
| 30000         | -21.77    |
| 50000         | -20.98    |

Performed by:



Name of Test: Modulation Limiting


**Specification**: 47 CFR 2.1047(b)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.3

#### **Measurement Procedure**

- A) The signal generator was connected to the input of the EUT as shown below.
- B) The modulation response was measured for each of three frequencies (one of which was the frequency of maximum response), and the input voltage was varied and was observed on an HP 8901A Modulation Analyzer.
- C) The input level was varied from 30% modulation ( $\pm 1.5$  kHz deviation) to at least 20 dB higher than the saturation point.
- D) Measurements were performed for both negative and positive modulation and the respective results were recorded.

## **Transmitter Test Set-Up: Modulation Limiting**



| Asset | Description | c/n  |
|-------|-------------|------|
| HSSEL | Describtion | 3/11 |

| (1) | ) Aud | in ( | )scil | lator |
|-----|-------|------|-------|-------|
| י)  | , Auu | 10   | 73611 | iatoi |

| Χ | i00017 | HP 8903A | 2216A01753 | Nov-03 |
|---|--------|----------|------------|--------|
|   |        |          |            |        |

#### (2) Coaxial Attenuator

| Χ | i00231/2 | PASTERNACK PE7021-30 (30 dB) | 231 or 232    | NCR |
|---|----------|------------------------------|---------------|-----|
|   | i00122/3 | NARDA 766 (10 dB)            | 7802 or 7802A | NCR |

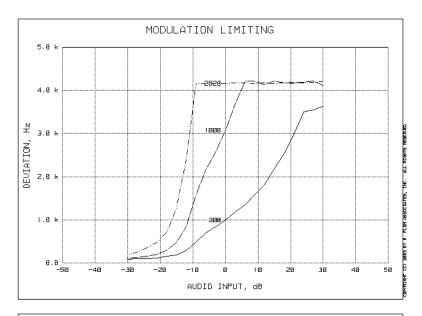
#### (3) Modulation Analyzer

| X | i00020 | HP 8901A | 2105A01087 | 12 mo | Apr-04 |
|---|--------|----------|------------|-------|--------|
|   |        |          |            |       |        |

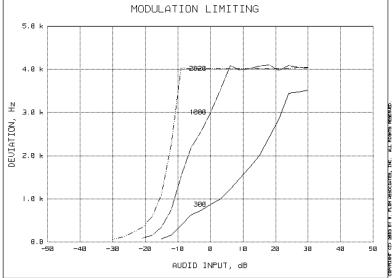
## (4) Audio Analyzer

X i00017 HP 8903A 2216A01753 12 mo Nov-03




Name of Test: Modulation Limiting

## **Measurement Results**


g0470065: 2004-Jul-26 Mon 13:51:00

State: 0:General 25 kHz Ambient Temperature: 23°C ± 3°C

Positive Peaks:



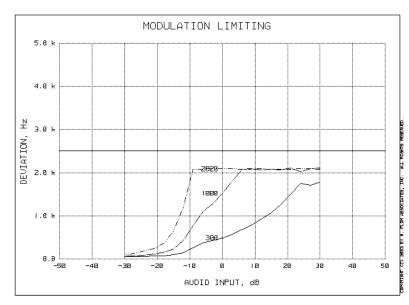
Negative Peaks:



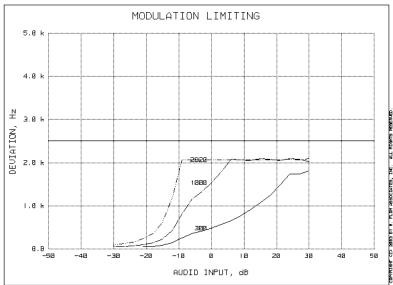
Performed by:



Name of Test:


Modulation Limiting

## **Measurement Results**


g0470067: 2004-Jul-26 Mon 14:00:00

State: 0:General 12.5 kHz Ambient Temperature: 22°C ± 3°C

Positive Peaks:



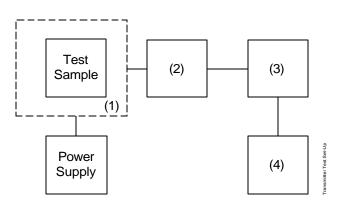
Negative Peaks:



Performed by:



Name of Test: Frequency Stability (Temperature Variation)


**Specification**: 47 CFR 2.1055(a)(1)

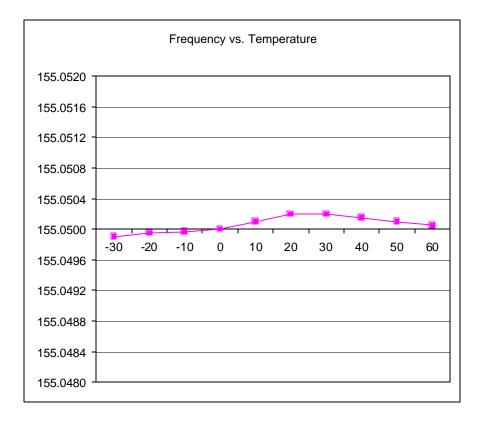
Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

#### **Measurement Procedure**

- A) The EUT and test equipment were set up as shown on the following page.
- B) With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- C) With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- D) The temperature tests were performed for the worst case.

## **Transmitter Test Set-Up: Temperature Variation**




| Asset                  | Description                                       | s/n                         | Cycle      | Last Cal |  |  |  |
|------------------------|---------------------------------------------------|-----------------------------|------------|----------|--|--|--|
| (1) Temperatur         | (1) Temperature, Humidity, Vibration              |                             |            |          |  |  |  |
| X i00027               | Tenney Temp. Chamber                              | 9083-765-234                | NCR        |          |  |  |  |
| (2) Coaxial Atte       | enuator                                           |                             |            |          |  |  |  |
| X i00231/2<br>i00122/3 | PASTERNACK PE7021-30 (30 dB)<br>NARDA 766 (10 dB) | 231 or 232<br>7802 or 7802A | NCR<br>NCR |          |  |  |  |
| 10012273               | NAKDA 700 (10 db)                                 | 7002 01 7002A               | NCK        |          |  |  |  |
| (3) <b>RF Power</b>    | LID 0000A Communications TC                       | 22451101242                 | 10 0       | Oat 02   |  |  |  |
| X i00067               | HP 8920A Communications TS                        | 3345U01242                  | 12 mo      | Oct-03   |  |  |  |
| (4) Frequency          |                                                   |                             |            |          |  |  |  |
| X i00067               | HP 8920A Communications TS                        | 3345U01242                  | 12 mo      | Oct-03   |  |  |  |



Name of Test: Frequency Stability (Temperature Variation)

## **Measurement Results**

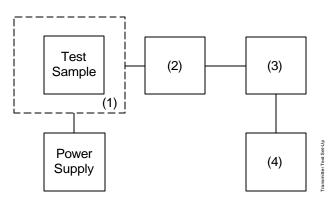
State: High Power Ambient Temperature: 23°C ± 3°C



Performed by:



Name of Test: Frequency Stability (Voltage Variation)


**Specification**: 47 CFR 2.1055(d)(1)

Guide: ANSI/TIA/EIA-603-1992, Paragraph 2.2.2

#### **Measurement Procedure**

- A) The EUT was placed in a temperature chamber (if required) at 25±5°C and connected as shown below.
- B) The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- C) The variation in frequency was measured for the worst case.

# **Transmitter Test Set-Up: Voltage Variation**



|          | Asset                                | Description                                                 | s/n                         | Cycle      | Last Cal |
|----------|--------------------------------------|-------------------------------------------------------------|-----------------------------|------------|----------|
| (1)      | Temperatur<br>i00027                 | e, Humidity, Vibration<br>Tenney Temp. Chamber              | 9083-765-234                | NCR        |          |
| (2)<br>X | Coaxial Atte<br>i00231/2<br>i00122/3 | nuator<br>PASTERNACK PE7021-30 (30 dB)<br>NARDA 766 (10 dB) | 231 or 232<br>7802 or 7802A | NCR<br>NCR |          |
| (3)<br>X | RF Power<br>i00020                   | HP 8901A Power Mode                                         | 2105A01087                  | 12 mo.     | Apr-04   |
| (4)<br>X | Frequency (i00020                    | Counter<br>HP 8901A Frequency Mode                          | 2105A01087                  | 12 mo.     | Apr-04   |



**Results**: Frequency Stability (Voltage Variation)

Ambient Temperature: 23°C ± 3°C

Limit, ppm =  $\pm 5.0$ ppm Limit, Hz = 775Battery End Point (Voltage) = 12.00

| % of STV | Voltage | Frequency, MHz | Change, Hz | Change, ppm |
|----------|---------|----------------|------------|-------------|
| 85       | 12.75   | 155.049990     | -10        | -0.013      |
| 100      | 15.00   | 155.050000     | 0          | 0.000       |
| 115      | 17.25   | 155.050010     | 10         | 0.013       |
| 80       | 12.00   | 155.049980     | -20        | -0.026      |

Performed by:



Name of Test: Necessary Bandwidth and Emission Bandwidth

**Specification**: 47 CFR 2.202(g)

Modulation = 16K0F3E

Necessary Bandwidth Calculation:

Maximum Modulation (M), kHz = 3 Maximum Deviation (D), kHz = 5 Constant Factor (K) = 1

Necessary Bandwidth  $(B_N)$ , kHz = (2xM)+(2xDxK)

= 16.0

Modulation = 11K0F3E

**Necessary Bandwidth Calculation:** 

Maximum Modulation (M), kHz = 3 Maximum Deviation (D), kHz = 2.5 Constant Factor (K) = 1

Necessary Bandwidth  $(B_N)$ , kHz = (2xM)+(2xDxK)

= 11.0

Modulation = 8K10F1E

**Necessary** Bandwidth Calculation:

Maximum Modulation (M), kHz = 1.5 Maximum Deviation (D), kHz = 2.5 Constant Factor (K) = 1

Necessary Bandwidth  $(B_N)$ , kHz = (2xM)+(2xDxK)

= 8.0

Modulation = 8K10F1D

**Necessary Bandwidth Calculation:** 

Maximum Modulation (M), kHz = 3Maximum Deviation (D), kHz = 1.25Constant Factor (K) = 1

Necessary Bandwidth  $(B_N)$ , kHz = (2xM)+(2xDxK)

= 8.0

Performed by: David E. Lee,

Compliance Test Manager

**END OF TEST REPORT** 



# Testimonial and Statement of Certification

## This is to Certify:

- 1. **That** the application was prepared either by, or under the direct supervision of, the undersigned.
- 2. **That** the technical data supplied with the application was taken under my direction and supervision.
- 3. **That** the data was obtained on representative units, randomly selected.
- 4. **That**, to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct.

Certifying Engineer:

David E. Lee, Lab Manager