

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com Report No.: 1403RSU02801 Report Version: V02 Issue Date: 03-29-2014

MEASUREMENT REPORT FCC PART 15.247 Bluetooth V 4.0

FCC ID:	P6S-RX405
IC:	10191A-RX405
APPLICANT:	REFLEX WIRLESS INC.

Application Type:	Certification
Product:	NutriCrystal Wireless Smart Food Scale
Model No.:	RX405
Brand Name:	REFLEX
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15.247
IC Specification(s):	RSS-210 Issue 8
Test Procedure(s):	ANSI C63.10-2009, KDB 558074 D01v03r01
Test Date:	March 24 ~ 27, 2014

Reviewed By : Surry Sur (Sunny Sun) Approved By : Robin Wu (Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 558074 D01v03r01. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

CONTENTS

Des	cription	n Page
Rev	ision H	listory4
§2.1	033 Ge	eneral Information
1.	INTRO	DDUCTION
	1.1.	Scope
	1.2.	MRT Test Location
2.	PROD	UCT INFORMATION7
	2.1.	Equipment Description7
	2.2.	Device Capabilities
	2.3.	Test Configuration
	2.4.	Description of Support Units
	2.5.	Test Software
	2.6.	EMI Suppression Device(s)/Modifications
	2.7.	Labeling Requirements
3.	DESC	RIPTION OF TEST
	3.1.	Evaluation Procedure
	3.2.	AC Line Conducted Emissions9
	3.3.	Radiated Emissions
4.	ANTE	NNA REQUIREMENTS11
5.	TEST	EQUIPMENT CALIBRATION DATA 12
6.	MEAS	UREMENT UNCERTAINTY 13
7.	TEST	RESULT 14
	7.1.	Summary
	7.2.	6dB Bandwidth Measurement 15
	7.2.1.	Test Limit
	7.2.2.	Test Procedure used
	7.2.3.	Test Setting15
	7.2.4.	Test Setup15
	7.2.5.	Test Result
	7.3.	Output Power Measurement 17
	7.3.1.	Test Limit
	7.3.2.	Test Procedure Used 17
	7.3.3.	Test Setting 17

7.3.4.	Test Setup17
7.3.5.	Test Result of Output Power 18
7.4.	Power Spectral Density Measurement 19
7.4.1.	Test Limit 19
7.4.2.	Test Procedure Used 19
7.4.3.	Test Setting 19
7.4.4.	Test Setup19
7.4.5.	Test Result
7.5.	Conducted Band Edge and Out-of-Band Emissions
7.5.1.	Test Limit
7.5.2.	Test Procedure Used
7.5.3.	Test Settitng
7.5.4.	Test Setup21
7.5.5.	Test Result
7.6.	Radiated Spurious Emission Measurement
7.6.1.	Test Limit
7.6.2.	Test Procedure Used
7.6.3.	Test Setting
7.6.4.	Test Setup
7.6.5.	Test Result
7.7.	Radiated Restricted Band Edge Measurement 35
7.7.1.	Test Result
7.8.	AC Conducted Emissions Measurement
7.8.1.	Test Limit
7.8.2.	Test Procedure
7.8.3.	Test Setup
7.8.4.	Test Result
CONC	CLUSION

8.

Revision History

Report No.	Version	Description	Issue Date
1403RSU02801	Rev. 01	Initial report	03-27-2014
1403RSU02801	Rev. 02	Correct the reference standard	03-29-2014

§2.1033 General Information

Applicant:	REFLEX WIRLESS INC.			
Applicant Address:	1400-1055 West Hastings Street, Vancouver, V6E 2E9, Canada			
Manufacturer:	REFLEX WIRLESS INC.			
Manufacturer Address:	1400-1055 West Hastings Street, Vancouver, V6E 2E9, Canada			
Test Site:	MRT Technology (Suzhou) Co., Ltd			
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong			
	Economic Development Zone, Suzhou, China			
MRT FCC Registration No.:	809388			
MRT IC Registration No.:	11384A			
FCC Rule Part(s):	Part 15.247			
IC SPECIFICATION(S):	RSS-210 Issue 8			
Model No.:	RX405			
FCC ID:	P6S-RX405			
IC:	10191A-RX405			
Test Device Serial No.:	N/A Droduction Pre-Production Dengineering			
FCC Classification:	Digital Transmission System (DTS)			
Date(s) of Test:	March 24 ~ 27, 2014			
Test Report S/N:	1403RSU02801			

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	NutriCrystal Wireless Smart Food Scale
Model No.	RX405
Brand Name	REFLEX
Frequency Range	2402~2480MHz
Maximum Output Power	-2.33dBm
Data Rate	1Mbps(GFSK)
Antenna Type	Internal
Antenna Gain	2.0dBi

Channel List for BLE

Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2404 MHz	02	2406 MHz
03	2408 MHz	04	2410 MHz	05	2412 MHz
06	2414 MHz	07	2416 MHz	08	2418 MHz
09	2420 MHz	10	2422 MHz	11	2424 MHz
12	2426 MHz	13	2428 MHz	14	2430 MHz
15	2432 MHz	16	2434 MHz	17	2436 MHz
18	2438 MHz	19	2440 MHz	20	2442 MHz
21	2444 MHz	22	2446 MHz	23	2448 MHz
24	2450 MHz	25	2452 MHz	26	2454 MHz
27	2456 MHz	28	2458 MHz	29	2460 MHz
30	2462 MHz	31	2464 MHz	32	2466 MHz
33	2468 MHz	34	2470 MHz	35	2472 MHz
36	2474 MHz	37	2476 MHz	38	2478 MHz
39	2480 MHz	N/A	N/A	N/A	N/A

2.2. Device Capabilities

This device contains the following capabilities: Bluetooth V 4.0 (DTS)

2.3. Test Configuration

The **NutriCrystal Wireless Smart Food Scale FCC ID: P6S-RX405** was tested per the guidance of KDB 558074 D01v03r01. ANSI C63.10-2009 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.4. Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
Adapter	Supply by MRT	HSU50600F

2.5. Test Software

The RF test software was provided by applicant.

2.6. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.7. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or resolution, clock or data exchange speed, scrolling H pattern to the EUT and/or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements. Line conducted emissions test results are shown in Section 7.8.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GH absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beamwidth of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the NutriCrystal Wireless Smart Food Scale is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The **NutriCrystal Wireless Smart Food Scale FCC ID: P6S-RX405** unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATA

AC Conducted Emissions

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	101209	1 year	2014/11/08
Two-Line V-Network	R&S	ENV216	101683	1 year	2014/11/08
Two-Line V-Network	R&S	ENV216	101684	1 year	2014/11/08
Temperature/ Meter Humidity	Anymetre	TH101B	SR2-01	1 year	2014/11/15

Radiated Emission

Instrument	Manufacturer	Туре No.	Serial No.	Cali. Interval	Cal. Date
Spectrum Analyzer	Agilent	N9010A	MY5144016A	1 year	2014/12/14
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
Preamplifier	MRT	AP18G40	1310003	1 year	2014/10/07
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	1 year	2014/11/24
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2014/11/24
Broadband Horn Antenna	Schwarzbeck	BBHA9170	9170-549	1 year	2014/12/11
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

Conducted Test Equipment

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	N9010A	MY5144016A	1 year	2014/12/14
Power Sensor	Agilent	U2021XA	MY52450003	1 year	2014/12/14
Temperature/Humidity Meter	Anymetre	TH101B	TR3-01	1 year	2014/11/15

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

7. TEST RESULT

7.1. Summary

Company Name:	REFLEX WIRLESS INC.
FCC ID:	<u>P6S-RX405</u>
IC:	<u>10191A-RX405</u>
FCC Classification:	Digital Transmission System (DTS)
Data Rate(s) Tested:	<u>1Mbps (GFSK);</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-210 [A8.2]	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b)(3)	RSS-210 [A8.4]	Output Power	≤ 1Watt		Pass	Section 7.3
15.247(e)	RSS-210 [A8.2]	Power Spectral Density	≤ 8dBm / 3kHz Band	Conducted	Pass	Section 7.4
15.247(d)	RSS-210 [A8.5]	Band Edge / Out-of-Band Emissions	≥ 20dBc(Peak)		Pass	Section 7.5
15.205 15.209	RSS-210 [A8.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	RSS-Gen [7.2.2]	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

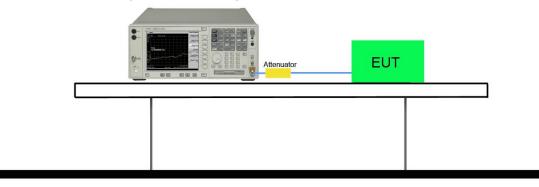
- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

7.2. 6dB Bandwidth Measurement §15.247(a)(2); RSS-210 [A8.2]

7.2.1. Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

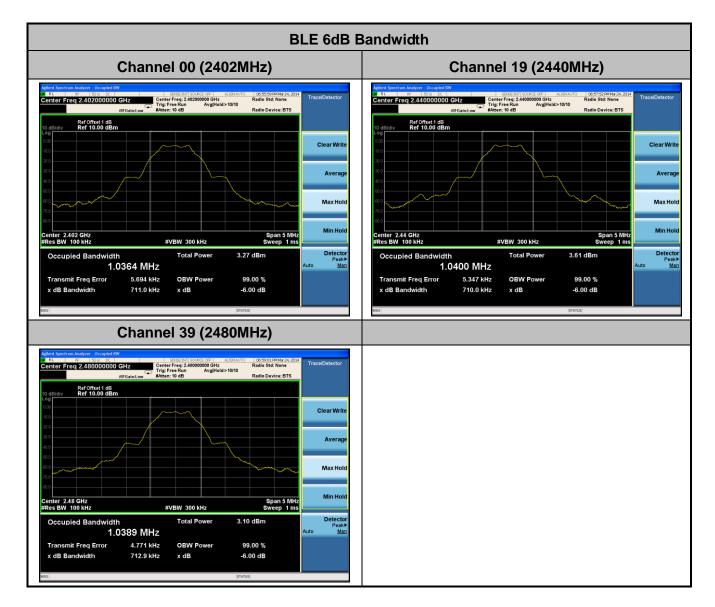
7.2.2. Test Procedure used


KDB 558074 D01v03r01 – Section 8.2 Option 2

7.2.3. Test Setting

- The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. Set RBW = 100 kHz
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

7.2.4. Test Setup


Spectrum Analyzer

7.2.5. Test Result

Test Mode	Data Rate	Channel No.	Frequency	6dB Bandwidth	Limit	99% Bandwidth	Result
	(Mbps)		(MHz)	(MHz)	(MHz)	(MHz)	
BLE	1	01	2402	0.71	≥0.5	1.04	Pass
BLE	1	19	2440	0.71	≥0.5	1.04	Pass
BLE	1	39	2480	0.71	≥0.5	1.04	Pass

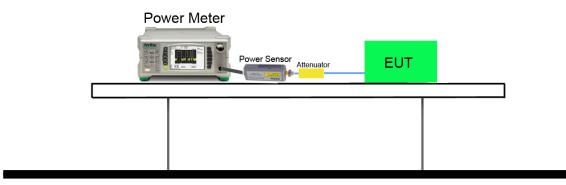
7.3. Output Power Measurement §15.247(c)(1); RSS-210 [A8.4]

7.3.1. Test Limit

The maximum out power shall be less 1 Watt (30dBm).

7.3.2. Test Procedure Used

KDB 558074 D01v03r01 - Section 9.1.3 PKPM1 Peak Power Method (for signals with BW ≤


50MHz)

7.3.3. Test Setting

<u>Method PKPM1 (Peak Power Measurement of Signals with DTS BW ≤ 50MHz)</u>

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

7.3.4. Test Setup

7.3.5. Test Result of Output Power

Test Result of Peak Output Power

Test Mode	Data Rate	Channel No.	Frequency	Peak Power	Limit	Result
	(Mbps)		(MHz)	(dBm)	(dBm)	
BLE	1	00	2402	-2.51	≤30	Pass
BLE	1	19	2440	-2.33	≤30	Pass
BLE	1	39	2480	-2.88	≤30	Pass

Test Result of Average Output Power (Reporting Only)

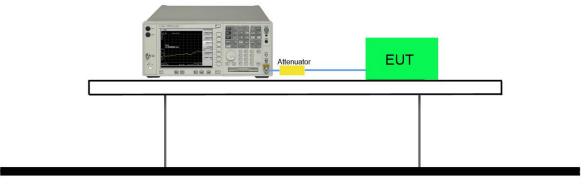
Test Mode	Data Rate	Channel No.	Frequency	Average	Limit	Result
	(Mbps)		(MHz)	Power (dBm)	(dBm)	
BLE	1	00	2402	-4.93	≤30	Pass
BLE	1	19	2440	-4.73	≤30	Pass
BLE	1	39	2480	-5.29	≤30	Pass

7.4. Power Spectral Density Measurement §15.247(e); RSS-210 [A8.2]

7.4.1. Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

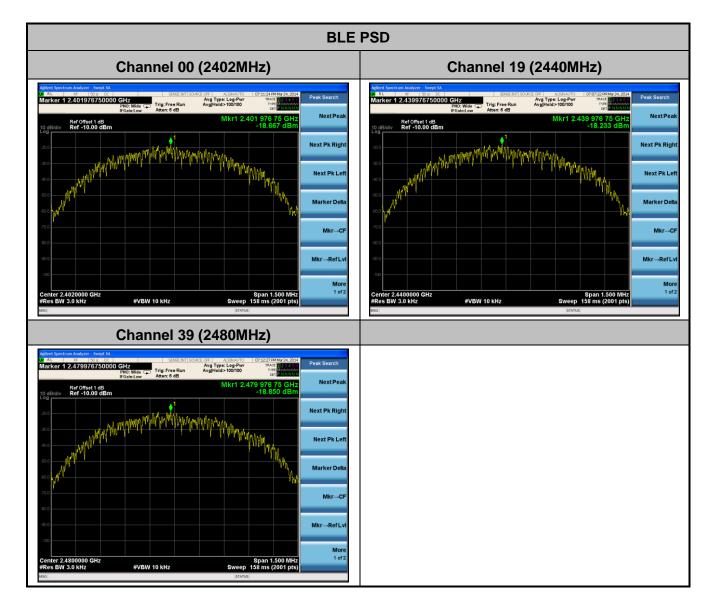
7.4.2. Test Procedure Used


KDB 558074 D01v03r01 - Section 10.2 Method PKPSD

7.4.3. Test Setting

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 10kHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

7.4.4. Test Setup


Spectrum Analyzer

7.4.5. Test Result

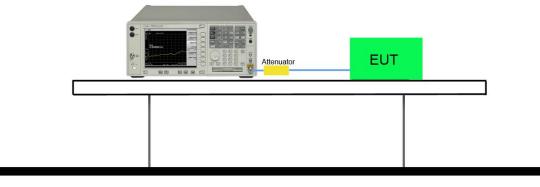
Test Mode	Data Rate	Channel No.	Frequency	PSD Result	Limit	Result
	(Mbps)		(MHz)	(dBm)	(dBm / 3kHz)	
BLE	1	00	2402	-18.67	≤8	Pass
BLE	1	19	2440	-18.23	≤8	Pass
BLE	1	39	2480	-18.85	≤8	Pass

7.5. Conducted Band Edge and Out-of-Band Emissions §15.247(d); RSS-210 [A8.5]

7.5.1. Test Limit

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 9.1).

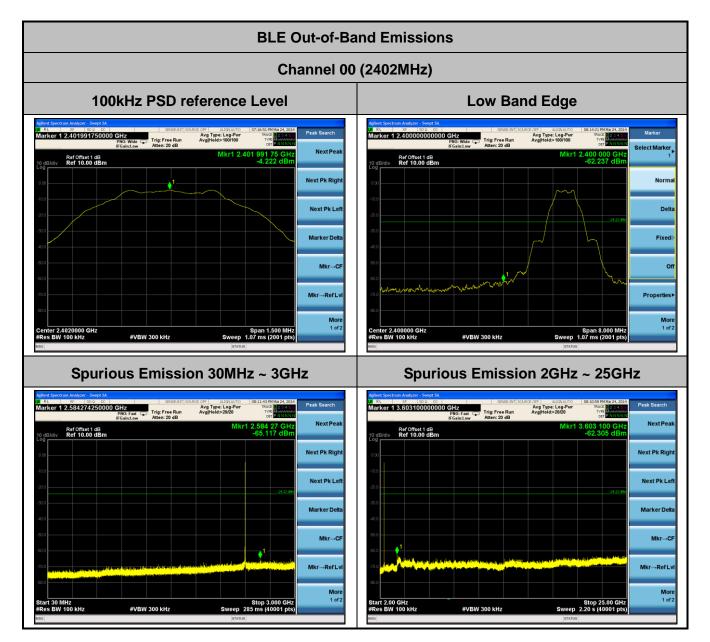
7.5.2. Test Procedure Used

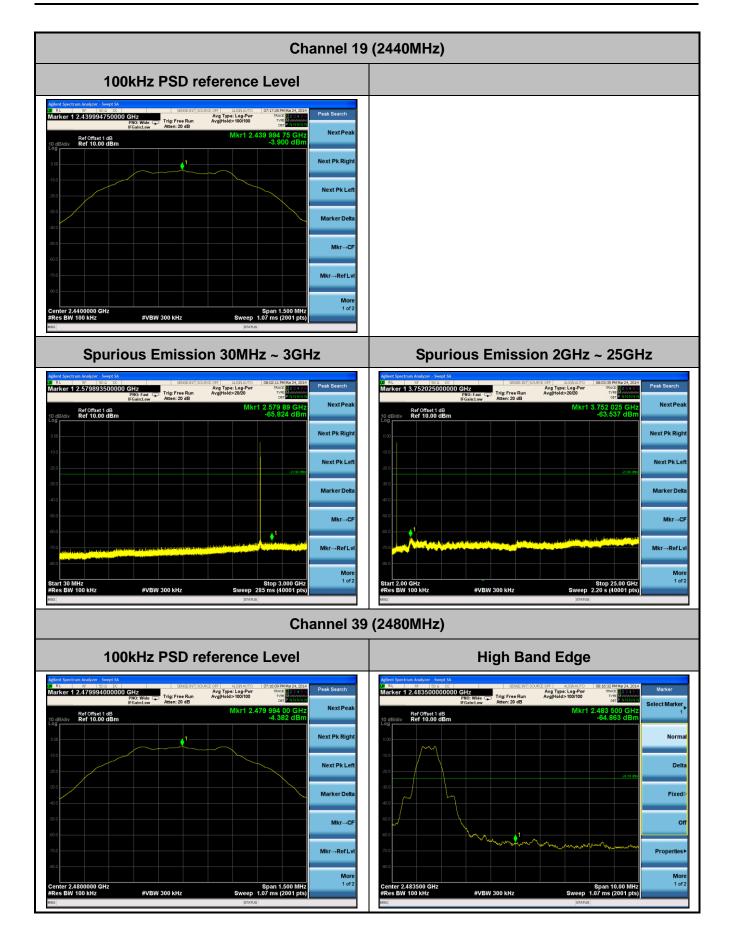

KDB 558074 D01v03r01 - Section 11.3

7.5.3. Test Settitng

- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Number of sweep points \geq 2 x Span/RBW
- 6. Trace mode = max hold
- 7. Sweep time = auto couple
- 8. The trace was allowed to stabilize

7.5.4. Test Setup


Spectrum Analyzer



7.5.5. Test Result

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Limit	Result
BLE	1	00	2402	20dBc	Pass
BLE	1	19	2440	20dBc	Pass
BLE	1	39	2480	20dBc	Pass

Spurious Emission 30MHz ~ 3GHz				Spurious Emission 2GHz ~ 25GHz
Agilent Spectrum Analyzer - Swept SA 1. Rt	SPISE:9/1 SOURCE OFF Avg T PNO: Fast Gain:Lew Atten: 20 dB	ALCOLAUTO 00:07:35 MM 24, 2014 ype: Log-Pwr TRACt 0 20 4, 2014 type: Log-Pwr Trye Martin 24, 2014 type: Log-Pwr Trye Martin 2014 type: Log-Pwr Trye Martin 2014 type: Log-Pwr Trye Martin 2014 Mkr1 2,262 99 GHz -66,520 dBm	Peak Search Next Peak	Addref Spectrum Analyzer - Swept Ma Spectrum Analyzer - Swept Ma Spectrum Analyzer - Swept Ma Provide Mathematical Spectrum Analyzer - Swept Mathematical Spectrum Analyzer - Swep
			Next Pk Right	00 Next Pk Right
-10.0		.24.33 404	Next Pk Left	-100 -200
-30.0			Marker Delta	300 Marker Dett
50.0 			Mkr→CF	400 Mkr-Ct
-70.0			Mkr→RefLvl	-700 and Alakies a second water and a second second and a second s
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 3.000 GHz Sweep 285 ms (40001 pts)	More 1 of 2	Start 2.00 GHz Stop 25.00 GHz Mor #Res BW 100 KHz \$Stop 25.00 GHz 1 of
MSG	#40W 300 KH2	status		

7.6. Radiated Spurious Emission Measurement §15.247(d) / §15.205 & §15.209; RSS-210 [A8.5]

7.6.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209							
Frequency [MHz]	Field Strength [V/m]	Measured Distance [Meters]					
0.009 – 0.490	2400/F (kHz)	300					
0.490 – 1.705	24000/F (kHz)	30					
1.705 - 30	30	30					
30 - 88	100	3					
88 - 216	150	3					
216 - 960	200	3					
Above 960	500	3					

7.6.2. Test Procedure Used

KDB 558074 D01v03r01 – Section 12.2.3 (quasi-peak measurements)

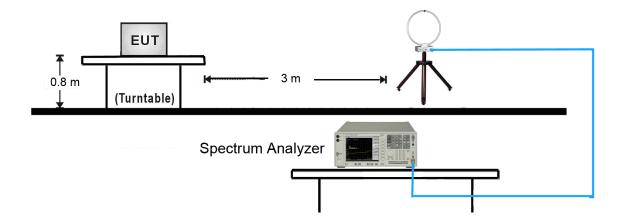
KDB 558074 D01v03r01 - Section 12.2.4 (peak power measurements)

KDB 558074 D01v03r01 – Section 12.2.5 (average power measurements)

7.6.3. Test Setting

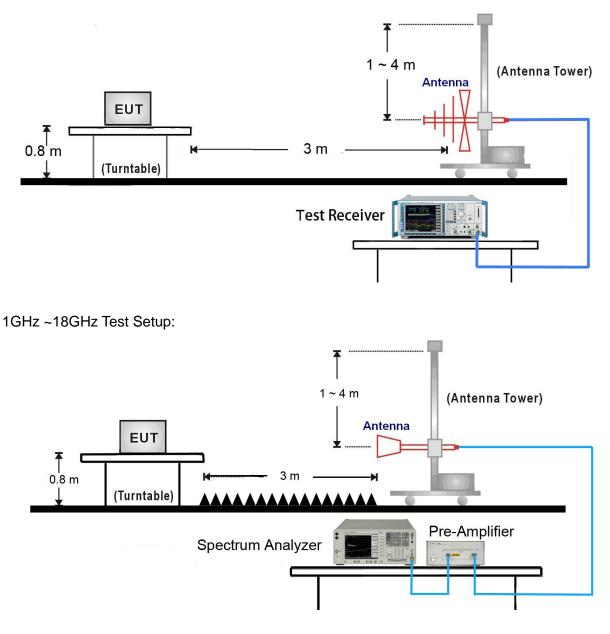
Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 D01v03r01

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple


- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

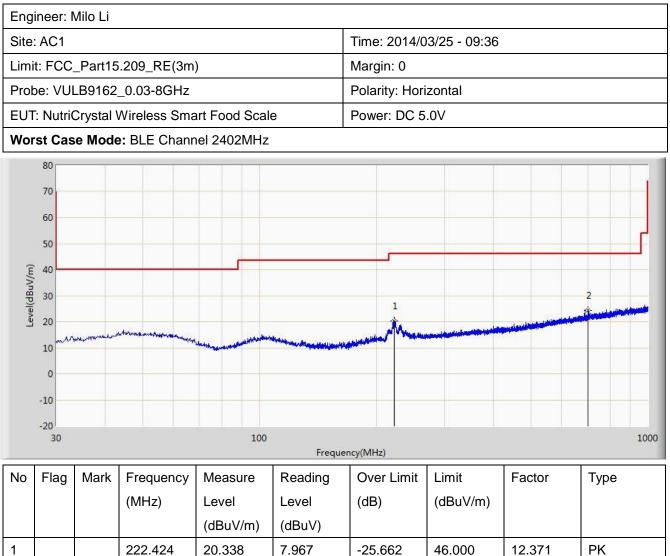
Average Field Strength Measurements per Section 12.2.5.1 of KDB 558074 D01v03r01

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $> 2 \times \text{span/RBW}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces


7.6.4. Test Setup

9kHz ~ 30MHz Test Setup:

30MHz ~ 1GHz Test Setup:


7.6.5. Test Result

Test Mode:	BLE	Test Site:	AC1			
Test Channel:	00	Test Engineer:	Roy Cheng			
Remark:	1. Average measurement was not performed if peak level lower than average					
	limit.					
	2. The worst case of Radiated Spurious Emission.					
	3. Other frequency was 20dB below limit line within 1-18GHz, there is not show in					
	the report.					

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV/m)		(dBµV/m)				
	3847.5	37.44	4.29	41.73	74.00	-32.27	Peak	Horizontal
	4804.0	36.44	6.36	42.80	74.00	-31.20	Peak	Horizontal
*	6491.0	36.72	10.79	47.51	68.71	-21.20	Peak	Horizontal
*	7206.0	36.10	13.64	49.74	68.71	-18.97	Peak	Horizontal
	3873.0	37.11	4.29	41.40	74.00	-32.60	Peak	Vertical
	4804.0	36.08	6.36	42.44	74.00	-31.56	Peak	Vertical
*	6253.0	37.97	9.48	47.45	68.71	-21.26	Peak	Vertical
*	7206.0	36.70	13.64	50.34	68.71	-18.37	Peak	Vertical
Note: "	*" is not in res	stricted band,	its limit is	20dBc of the	fundamental e	mission le	evel (88.7	1dBµV/m).

The worst case of Radiated Emission below 1GHz:

1

2

*

700.391

24.485

3.592

-21.515

46.000

20.892

ΡK

Engi	ineer:	Milo Li									
Site	AC1					Time: 2014/03/25 - 09:44					
Limi	t: FCC	_Part15	5.209_RE(3m)		Margin: 0					
Prob	e: VU	LB9162	_0.03-8GHz			Polarity: Vert	ical				
EUT	: Nutri	Crystal	Wireless Sma	art Food Scale	е	Power: DC 5	.0V				
Wor	st Cas	se Mode	e: BLE Chanr	nel 2402MHz	I.						
	80										
	70										
	60										
n)	50								ť		
	40										
Level(dBuV/m)	30										
evel(d	20					1	2		and the standard of the standa		
	10 -~~	unproving the setting the	home we have a set of the set of	Non and a marger band a binne	Librard and a literation	marker Marian	and the first of the second	and the state of t			
	0										
	-10										
	-20 30			100	Frequer	ncy(MHz)			1000		
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
	5		(MHz)	Level	Level	(dB)	(dBuV/m)				
				(dBuV/m)	(dBuV)						

1

223.515

300.024

*

20.558

22.346

8.146

8.221

-25.442

-23.654

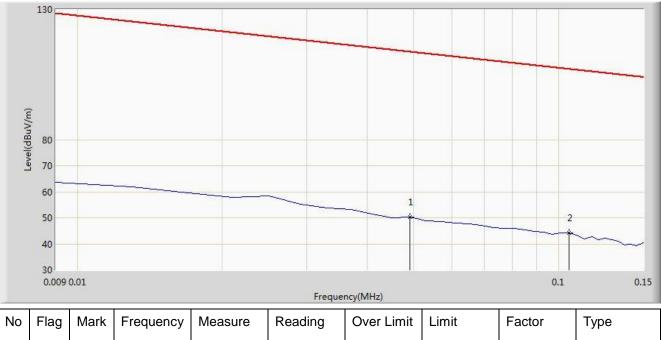
46.000

46.000

12.412

14.126

ΡK


ΡK

Engineer: Milo Li	
Site: AC1	Time: 2014/03/25 - 16:39
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: FMZB1519_0.009-30MHz	Polarity: Face On
EUT: NutriCrystal Wireless Smart Food Scale	Power: DC 5.0V

Note: There is the ambient noise within frequency range 9kHz~30MHz.

		(MHz)	Level	Level	(dB)	(dBuV/m)		
			(dBuV/m)	(dBuV)				
1		0.049	50.367	29.861	-63.422	113.789	20.505	PK
2	*	0.105	44.143	23.996	-63.029	107.173	20.147	PK

Eng	ineer: I	Milo Li									
Site	AC1					Time: 2014/03/25 - 16:41					
Limi	t: FCC	_Part15	5.209_RE(3m)		Margin: 0					
Prob	be: FM	ZB1519	_0.009-30MH	Ηz		Polarity: Face	e On				
EUT	: Nutri	Crystal	Wireless Sma	art Food Scale	е	Power: DC 5	.0V				
Note	e: The	re is the	e ambient no	oise within fr	equency ran	ge 9kHz~30l	MHz.				
Level(rdRuV/m)	40 ~~ 30 20 10 0.15			1	Freque	1 International advanced ncy(MHz)		10			
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV/m)				
				(dBuV/m)	(dBuV)						

1

2.513

7.041

*

30.495

30.974

10.336

10.579

-39.005

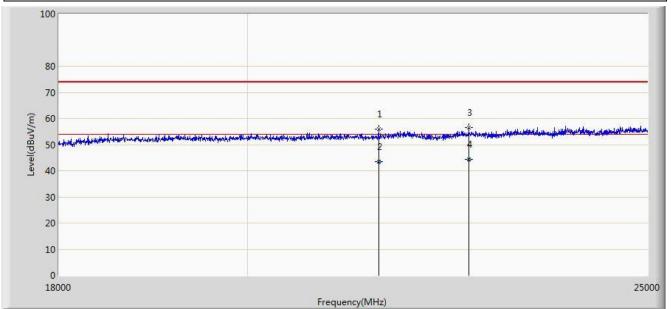
-38.526

69.500

69.500

20.159

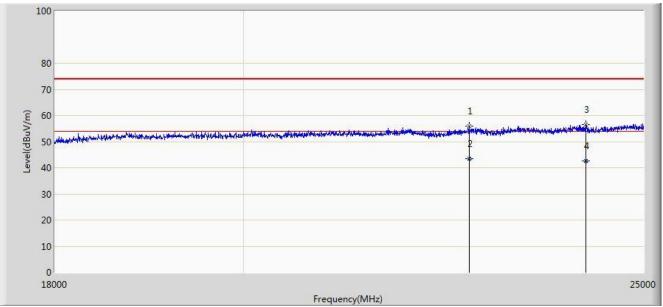
20.395


ΡK

ΡK

Engineer: Milo Li						
Site: AC1	Time: 2014/03/25 - 17:39					
Limit: FCC_Part15.209_RE(3m)	Margin: 0					
Probe: BBHA9170_18-40GHz	Polarity: Horizontal					
EUT: NutriCrystal Wireless Smart Food Scale	Power: DC 5.0V					
Note: The sector the sector is the sector sector in the foregoing	10 05011					

Note: There is the ambient noise within frequency range 18 \sim 25GHz.

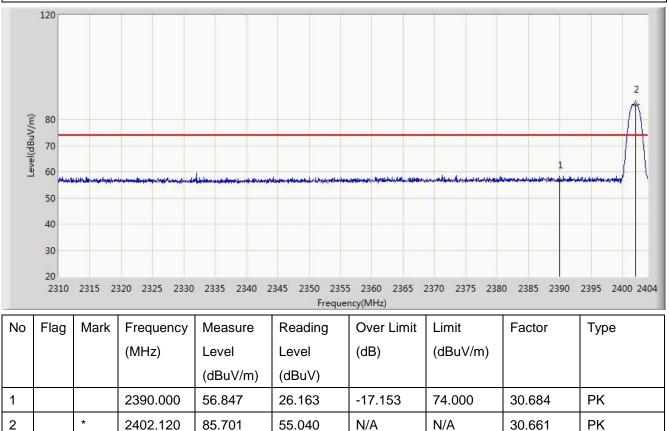


No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1			21517.500	55.869	17.883	-18.131	74.000	37.986	PK
2			21517.650	43.351	5.365	-10.649	54.000	37.986	AV
3			22630.500	56.509	18.223	-17.491	74.000	38.286	PK
4		*	22630.540	44.310	6.024	-9.690	54.000	38.286	AV

Engineer: Milo Li	
Site: AC1	Time: 2014/03/25 - 17:43
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9170_18-40GHz	Polarity: Vertical
EUT: NutriCrystal Wireless Smart Food Scale	Power: DC 5.0V

Note: There is the ambient noise within frequency range 18 \sim 25GHz.

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1			22686.500	55.811	17.457	-18.189	74.000	38.354	PK
2		*	22686.540	43.598	5.244	-10.402	54.000	38.354	AV
3			24205.500	56.430	17.607	-17.570	74.000	38.823	PK
4			24205.658	42.518	3.695	-11.482	54.000	38.823	AV



7.7. Radiated Restricted Band Edge Measurement

7.7.1. Test Result

Engineer: Milo Li					
Site: AC1	Time: 2014/03/25 - 11:47				
Limit: FCC_Part15.209_RE(3m)	Margin: 0				
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal				
EUT: NutriCrystal Wireless Smart Food Scale	Power: DC 5.0V				

Note: BLE Channel 2402MHz

Engi	ineer: N	Milo Li									
Site:	AC1					Time: 2014/03/25 - 11:52					
Limi	t: FCC	_Part15	.209_RE(3m))		Margin: 0					
Prob	e: BBł	HA9120	D_1-18GHz			Polarity: Hori	izontal				
EUT	: Nutri	Crystal \	Nireless Sma	art Food Scale	e	Power: DC 5	.0V				
Note	: BLE	Channe	el 2402MHz								
	120										
Level(dBuV/m)	80								2 术		
Leve	60										
	50							1			
	40				<u>6</u>						
	30										
3	20 2310	2315 2	320 2325 2330	2335 2340 2	345 2350 235 Freque	5 2360 2365 ncy(MHz)	2370 2375 238	30 2385 2390	2395 2400 2404		
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV/m)				
				(dBuV/m)	(dBuV)						
1			2390.000	43.757	13.073	-10.243	54.000	30.684	AV		
2		*	2402.073	68.940	38.279	N/A	N/A	30.661	AV		

Eng	ineer: N	Milo Li								
Site	: AC1					Time: 2014/03/25 - 11:53				
Limi	t: FCC	_Part15	.209_RE(3m)		Margin: 0				
Prot	be: BBH	HA9120	D_1-18GHz			Polarity: Vert	ical			
EUT	: Nutri	Crystal V	Nireless Sma	art Food Scale	e	Power: DC 5	.0V			
Note	e: BLE	Channe	el 2402MHz		I					
Level(dBuV/m)	120 80 70 60 50 40 30 20 2310	2315 2	320 2325 2330	With the set of the se	2345 2350 235 Freque		2370 2375 238	1	2	
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)			
				(dBuV/m)	(dBuV)					
1			2390.000	56.910	26.226	-17.090	74.000	30.684	PK	
2		*	2402.214	88.710	58.049	N/A	N/A	30.661	PK	

Eng	ineer: I	Milo Li								
Site	: AC1					Time: 2014/03/25 - 11:57				
Limi	t: FCC	_Part15	.209_RE(3m))		Margin: 0				
Prob	be: BBI	HA9120	D_1-18GHz			Polarity: Vert	ical			
EUT	: Nutri	Crystal V	Wireless Sma	art Food Scale	Э	Power: DC 5	.0V			
Note	e: BLE	Channe	el 2402MHz							
Leviel(AB,IVV/m)	120 80 70 60 50 40 30 20 2310	2315 2	320 2325 2330	2335 2340 2	2345 2350 235	5 2360 2365	2370 2375 238	1	2	
						ncy(MHz)	Γ			
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре	
			(MHz)	Level	Level	(dB)	(dBuV/m)			
				(dBuV/m)	(dBuV)					
1			2390.000	43.717	13.033	-10.283	54.000	30.684	AV	
2		*	2402.073	70.781	40.120	N/A	N/A	30.661	AV	

Eng	ineer: I	Milo Li							
Site	: AC1					Time: 2014/0)3/25 - 11:59		
Limi	it: FCC	_Part15	5.209_RE(3m)	Margin: 0				
Prob	be: BBI	HA9120	D_1-18GHz		Polarity: Hor	izontal			
EUT	: Nutri	Crystal	Wireless Sma	art Food Scal	е	Power: DC 5	5.0V		
Note	e: BLE	Channe	el 2480MHz						
I aval(rdB, M/m)	50 40 30 20 2478		30 2481 2482 24		Frequ	ency(MHz)			7 2498 2499 2500
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1		*	2479.936	83.897	53.235	N/A	N/A	30.662	PK

2

2483.500

56.044

25.371

74.000

-17.956

30.673

ΡK

Engin	eer: N	Milo Li							
Site: A	AC1				Time: 2014/03/25 - 13:06				
Limit:	FCC	_Part15	.209_RE(3m)	Margin: 0				
Probe	e: BBH	HA9120	D_1-18GHz		Polarity: Hor	izontal			
EUT:	Nutri	Crystal	Wireless Sma	rt Food Scale	Э	Power: DC 5	5.0V		
Note:	BLE	Channe	el 2480MHz						
Level(dBuV/m)	80 70 60 50 40 30 20 2478	2479 248	0 2481 2482 244	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2489 2490 2491 ency(MHz)	2492 2493 2494	2495 2496 2497	2498 2499 2500
No I	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level (dBuV/m)	Level (dBuV)	(dB)	(dBuV/m)		, , , , , , , , , , , , , , , , , , ,
1		*	2479.969	67.721	37.059	N/A	N/A	30.662	AV

2

2483.500

43.401

12.728

-10.599

54.000

30.673

AV

Eng	ineer: I	Milo Li							
Site	: AC1					Time: 2014/0)3/25 - 13:07		
Limit: FCC_Part15.209_RE(3m)						Margin: 0			
Prob	be: BBI	HA9120	D_1-18GHz		Polarity: Ver	tical			
EUT	: Nutri	Crystal	Wireless Sma	art Food Scal	e	Power: DC 5	5.0V		
Note	e: BLE	Channe	el 2480MHz			L			
Lavial(ARuV/m)	50 40 30 20 2478		30 2481 2482 24		Frequ	2489 2490 2491 ency(MHz)			
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1		*	2479.958	87.572	56.910	N/A	N/A	30.662	PK
	1	1	1		1				

74.000

30.673

ΡK

-17.601

2

2483.500

56.399

25.726

Engi	ineer: I	Milo Li							
Site:	AC1				Time: 2014/03/25 - 13:11				
Limi	t: FCC	_Part15	5.209_RE(3m)	Margin: 0				
Prob	e: BBI	HA9120	D_1-18GHz		Polarity: Vert	lical			
EUT	: Nutri	Crystal	Wireless Sma	art Food Scale	Power: DC 5	5.0V			
Note	: BLE	Channe	el 2480MHz						
l evel(dBuV/m)	50 40 30 20	2479 248	30 2481 2482 24	2		2489 2490 2491 ency(MHz)	2492 2493 2494	2495 2496 2497	2498 2499 2500
No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)		
				(dBuV/m)	(dBuV)				
1		*	2480.046	70.032	39.369	N/A	N/A	30.662	AV

2

2483.500

43.462

12.789

-10.538

54.000

30.673

AV

7.8. AC Conducted Emissions Measurement §15.207; RSS-Gen [7.2.2]

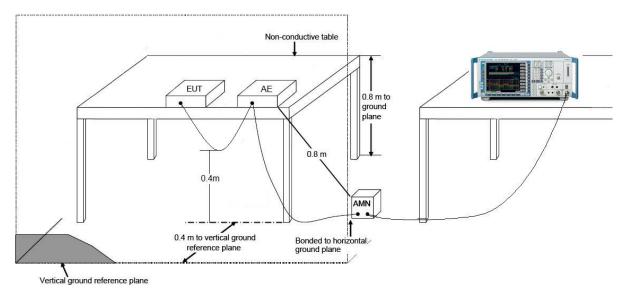
7.8.1. Test Limit

FCC Part 15 Subpart C Paragraph 15.207 Limits									
Frequency (MHz)	QP (dBuV)	AV (dBuV)							
0.15 - 0.50	66 - 56	56 – 46							
0.50 - 5.0	56	46							
5.0 - 30	60	50							

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

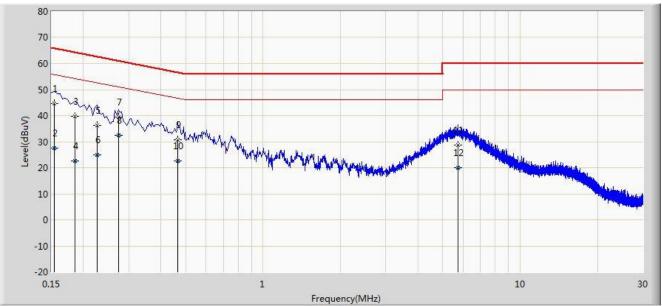
7.8.2. Test Procedure


The EUT was setup according to ANSI C63.4, 2009 and tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7.8.3. Test Setup


7.8.4. Test Result

Limit: FCC_Part15.207_CE_AC Power	Time: 2014/03/25 - 14:44 Margin: 0 Polarity: Line Power: AC 120V/60Hz
Probe: ENV216_101683_Filter On EUT: NutriCrystal Wireless Smart Food Scale Note: Normal Operation	Polarity: Line
EUT: NutriCrystal Wireless Smart Food Scale Note: Normal Operation	
Note: Normal Operation	Power: AC 120V/60Hz
80	
60 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 40 40 40 40 40 40 40 40 4	10 30

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV)		
				(dBuV)	(dBuV)				
1		*	0.162	43.404	33.307	-21.957	65.361	10.097	QP
2			0.162	25.623	15.526	-29.738	55.361	10.097	AV
3			0.174	41.243	31.175	-23.524	64.767	10.068	QP
4			0.174	23.729	13.662	-31.038	54.767	10.068	AV
5			0.278	36.736	26.750	-24.139	60.875	9.986	QP
6			0.278	24.593	14.606	-26.283	50.875	9.986	AV
7			0.314	31.870	21.854	-27.994	59.864	10.015	QP
8			0.314	17.428	7.413	-32.436	49.864	10.015	AV
9			4.914	21.906	11.882	-34.094	56.000	10.024	QP
10			4.914	15.345	5.321	-30.655	46.000	10.024	AV
11			6.142	22.762	12.648	-37.238	60.000	10.114	QP
12			6.142	15.408	5.294	-34.592	50.000	10.114	AV

Engineer: Milo Li						
Site: SR2	Time: 2014/03/25 - 14:49					
Limit: FCC_Part15.207_CE_AC Power	Margin: 0					
Probe: ENV216_101683_Filter On	Polarity: Neutral					
EUT: NutriCrystal Wireless Smart Food Scale	Power: AC 120V/60Hz					
Note: Normal Operation						

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
-	- 5		(MHz)	Level	Level	(dB)	(dBuV)		J T -
			((dBuV)	(dBuV)	()	(
1			0.154	44.609	33.893	-21.173	65.781	10.716	QP
2			0.154	27.541	16.826	-28.240	55.781	10.716	AV
3			0.186	39.829	29.794	-24.384	64.213	10.035	QP
4			0.186	22.601	12.566	-31.613	54.213	10.035	AV
5			0.226	36.363	26.380	-26.233	62.595	9.982	QP
6			0.226	24.933	14.951	-27.662	52.595	9.982	AV
7			0.274	39.564	29.545	-21.432	60.996	10.019	QP
8		*	0.274	32.372	22.354	-18.624	50.996	10.019	AV
9			0.466	30.818	20.657	-25.767	56.585	10.162	QP
10			0.466	22.704	12.542	-23.881	46.585	10.162	AV
11			5.746	28.755	18.643	-31.245	60.000	10.112	QP
12			5.746	19.924	9.812	-30.076	50.000	10.112	AV

8. CONCLUSION

The data collected relate only the item(s) tested and show that the NutriCrystal Wireless Smart

Food Scale FCC ID: P6S-RX405 is in compliance with Part 15C of the FCC Rules.