

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....: TRE15090106 R/C....: 90939

FCC ID.....: P6NDH-9100

Applicant's name.....: Shenzhen HQT Science&Technology Co., Ltd.

Nanshan District, Shenzhen, China

Manufacturer...... Shenzhen HQT Science&Technology Co., Ltd.

Nanshan District, Shenzhen, China

Test item description: Digital portable Radio

Trade Mark HQT

Model/Type reference...... DH-9100

Listed Model(s) -

Standard: FCC Part 90/FCC Part 2/ FCC Part 15B

Date of testing...... Oct 27, 2015- Nov 10, 2015

Date of issue...... Nov 10, 2015

Result...... PASS

Compiled by

(position+printed name+signature)..: File administrators Shayne Zhu

Supervised by

(position+printed name+signature)..: Project Engineer Cary Luo

Approved by

(position+printed name+signature)..: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No : TRE15090106 Page 2 of 68 Issued: 2015-11-10

Contents

<u>1.</u>	TEST STANDARDS AND TEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Test Description	3
	·	
2.	SUMMARY	4
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	Test frequency list	5
2.4.	EUT operation mode	5
2.5.	EUT configuration	5
2	TEST ENVIRONMENT	6
<u>3.</u>	TEST ENVIRONMENT	0
3.1.	Address of the test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	7
3.4.	Statement of the measurement uncertainty	7
3.5.	Equipments Used during the Test	8
<u>4.</u>	TEST CONDITIONS AND RESULTS	10
4.1.	Maximum Transmitter Power	10
4.2.	Occupied Bandwidth	16
4.3.	Emission Mask	22
4.4. 4.5.	Modulation Charcateristics	28 32
4.5. 4.6.	Frequency Stability Test Transmitter Frequency Behavior	32 36
4.0. 4.7.	Spurious Emission on Antenna Port	39
4.7. 4.8.	Transmitter Radiated Spurious Emission	49
4.0. 4.9.	Conducted Emissions Test	54
4.10.	Radiated Spurious Emission	57
7.10.	Nadiated Opulious Ellission	31
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	61
<u>6.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	63
<u>~ .</u>	EXTERNAL AND INTERNAL FINOTOG OF THE EUT	03

Report No : TRE15090106 Page 3 of 68 Issued: 2015-11-10

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 90: 2014 Private land mobile radio services.

TIA/EIA 603 D: June 2010 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

FCC Part 15 Subpart B: 2014 Unintentional Radiators

FCC Part 2: 2014 Frequency allocations and radio treaty matters, general rules and regulations.

KDB579009 D01 v03r01: Questions and Answers on Re-farming Part 90 frequencies

KDB 579009 D02 v01r02: Transition Summary Table

1.2. Test Description

Transmitter Requirement					
Test item	Standarda requirement	Re	sult		
rest item	Standards requirement	Pass	N/A		
Maximum Transmitter Power	FCC Part 90.205	\boxtimes			
Modulation Characteristic	FCC Part 90.207	\boxtimes			
Occupied Bandwidth	FCC Part 90.209	\boxtimes			
Emission Mask	FCC Part 90.210	\boxtimes			
Frequency Stability	FCC Part 90.213	\boxtimes			
Transmitter Frequency Behavior	FCC Part 90.214	\boxtimes			
Transmitter Radiated Spurious Emission	FCC Part 90.210	\boxtimes			
Spurious Emission On Antenna Port	FCC Part 90.210	\boxtimes			
Receive	er Requirement				
Test item	Standards requirement	Re	sult		
i est itelli	Standards requirement	Pass	N/A		
Conducted Emission	FCC Part 15.207				
Radiated Spurious Emission	FCC Part 15.109				

Report No : TRE15090106 Page 4 of 68 Issued: 2015-11-10

2. **SUMMARY**

2.1. Client Information

Applicant:	Shenzhen HQT Science&Technology Co., Ltd.		
Address:	5/F, East of Building M-8, Central Zone, Hi-tech Industrial Park, Nanshan District, Shenzhen, China		
Manufacturer:	Shenzhen HQT Science&Technology Co., Ltd.		
Address:	5/F, East of Building M-8, Central Zone, Hi-tech Industrial Park, Nanshan District, Shenzhen, China		

2.2. Product Description

Name of EUT:	Digital portable Radio			
Trade mark:	HQT			
Model/Type reference:	DH-9100			
Listed Model(s):	-			
Power supply:	DC 7.40V			
Battery information:	Model:BL2002 7.4Vd.c., 2000mAh/14.8W	√h		
Charger information:	Model:CL1000 Input:12Vd.c.,1000mA Output:1000mA			
Adapter information:	Model: NLB100120W1A Input: 100-240Va.c., 50/60Hz, 0.4A Max Output:12.0Vd.c., 1A			
Operation Frequency Range:	From 400MHz to 470 MHz	Z		
Rated Output Power:	High Power:4 Watts(36.02	2dBm)/Low Power:1 Watts(30dBm)		
Modulation Type:	Analog Voice:	FM		
	Digital Voice /Digital Data:	4FSK		
Digital Type:	DMR			
Channel Separation:	Analog Voice:			
	Digital Voice /Digital Data:			
Emission Designator:	Analog Voice:			
	Digital Voice& Data:			
	Digital Data:	gital Data: \[\textstyle 12.5kHz Channel Separation: 8K04FXD \\ \Boxed 6.25kHz Channel Separation:		
Support data rate:	9.6kbps			
Antenna Type:	External			
Maximum Transmitter	Analog	3.78W for 12.5kHz Channel Separation		
Power:	Digital	3.83W for 12.5kHz Channel Separation		

Note:

¹⁾The product has the same digital working characters when operating in both two digitized voice/data mode. So only one set of test results for digital modulation modes are provided in this test report.

Report No : TRE15090106 Page 5 of 68 Issued: 2015-11-10

2)This equipment is capable of supporting a minimum data rate of 4800 bits per second per 6.25 kHz of channel bandwidth. DMR interphone's bandwidth is 12.5 kHz, and it has a double time slot, one is the speech time slot, one is the data time slot, just language sequence is satisfied with 4800 bps/6.25 kHz BW.

2.3. Test frequency list

Mode	Modulation	Operation Frequency Range	Test Frequency (MHz)
			CH _L 406.1125
		406.1MHz~420MHz	CH _M 413.0500
Digital	4FSK		CH _H 419.9875
Digital	4F5K		CH _L 421.0125
		421MHz~470MHz	CH _M 455.0000
			CH _H 469.9875
	alog FM	406.1MHz~420MHz	CH _L 406.1125
			CH _M 413.0500
Analog			CH _H 419.9875
Analog			CH _L 421.0125
		421MHz~470MHz	CH _M 455.0000
			CH _H 469.9875

Note.

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above listed frequency for testing.

2.4. EUT operation mode

Test mode	Transmitting -	Power level		Digital	Analog	AC
rest mode		High	Low	12.5kHz	12.5kHz	AC Adapter
TX1	~	√		√		
TX2	√		√	√		
TX3	√	√			√	
TX4	√		√		√	
Charging						√

 $[\]sqrt{\cdot}$ is operation mode.

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	1
		Shield:	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer:	1
		Model No.:	1

Report No: TRE15090106 Page 6 of 68 Issued: 2015-11-10

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for tec hnical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FC C is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Aust ralian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-

anechoic chamber (12.2m×7.95m×6.7m) of Shenzhen Huatongwei International Inspection Co., Ltd.

has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2484. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 29, 2015.

Radiated disturbance above 1GHz measurement of Shenzhen Huatongwei International Inspection Co., Ltd. h as been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2013. Valid time is until Dec. 23, 2016.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the D NV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

3.3. Environmental conditions

Normal Conditon				
Relative humidity:	20 % to 75 %.			
Air Pressure:	950~1050mba			
Voltage:	DC 7.4V			

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.65 dB	(1)
Radiated Emission 1~18GHz	5.16 dB	(1)
Radiated Emission 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.5. Equipments Used during the Test

Conducted Emission					
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.	
Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2015/11/2	
EMI Test Receiver	Rohde&Schwarz	ESCS 30	100038	2015/11/2	
Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2015/11/2	
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A	
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2015/11/2	
Artificial Mains	Rohde&Schwarz	ESH3-Z6	100210	2015/11/2	
Artificial Mains	Rohde&Schwarz	ESH3-Z6	100211	2015/11/2	

Modulation Characteristic					
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.	
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2015/11/2	

Frequency Stability					
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.	
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2015/11/2	
Signal Generator	Rohde&Schwarz	SMT03	100059	2015/11/2	
Climate Chamber	ESPEC	EL-10KA	05107008	2015/11/2	

Transmitter Radiated Spuri	ous Emission			
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.
Ultra-Broadband Antenna	Rohde&Schwarz	HL562	100015	2015/11/2
EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	2015/11/2
RF Test Panel	Rohde&Schwarz	TS / RSP	335015/ 0017	N/A
HORN ANTENNA	Rohde&Schwarz	HF906	100039	2015/12/2
Turntable	ETS	2088	2149	N/A
Antenna Mast	ETS	2075	2346	N/A
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2015/11/2
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2015/11/2
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2015/11/2
HORN ANTENNA	ShwarzBeck	9120D	1012	2015/11/2
HORN ANTENNA	ShwarzBeck	9120D	1011	2015/11/2
TURNTABLE	MATURO	TT2.0		N/A
ANTENNA MAST	MATURO	TAM-4.0-P		N/A

Maximum Transmitter P	ower & Spurious Em	ission On Anteni Mask	na Port & Occupied	Bandwidth & Emission
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.
Receiver	Rohde&Schwarz	ESI 26	100009	2015/11/2
Attenuator	R&S	ESH3-22	100449	2015/11/2
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2015/11/2
High-Pass Filter	Anritsu	MP526B	6220875256	2015/11/2
High-Pass Filter	Anritsu	MP526D	6220878392	2015/11/2
Spectrum Analzyer	Aglient	E4407B	MY44210775	2015/11/2
Spectrum Analzyer	Rohde&Schwarz	FSP40	1164.4391.40	2015/11/2
SPECTRUM ANALYZER	Agilent	E4407B	MY44210775	2015/11/2

Transient Frequency Behavior				
Name of Equipment	Manufacturer	Model	Serial Number	Last Cal.
Signal Generator	Rohde&Schwarz	SMT03	100059	2015/11/2
Storage Oscilloscope	Tektronix	TDS3054B	B033027	2015/11/2
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	2015/11/2

The calibration interval was one year.

Report No: TRE15090106 Page 10 of 68 Issued: 2015-11-10

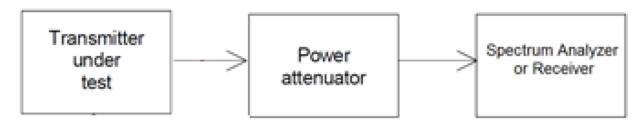
4. TEST CONDITIONS AND RESULTS

4.1. Maximum Transmitter Power

Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation.

LIMIT

FCC Part 2.1046 and Part 90.205


Maximum ERP is dependent upon the station's antenna HAAT and required service area. The output power shall be within ±1 dB of the manufacturer's rated power listed in the equipment specifications.

TEST PROCEDURE

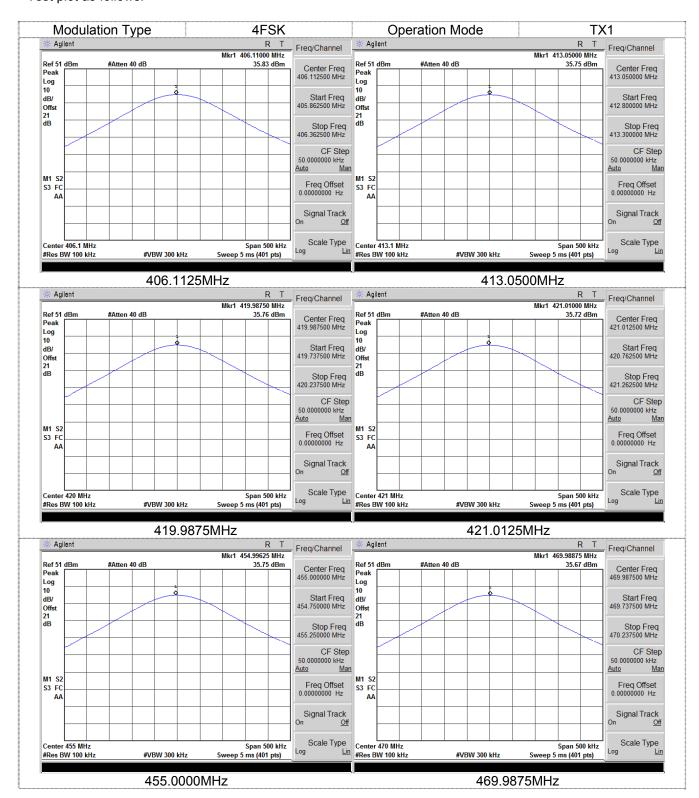
Measurements shall be made to establish the radio frequency power delivered by the transmitter the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted bellow:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels. Connect the equipment as illustrated.

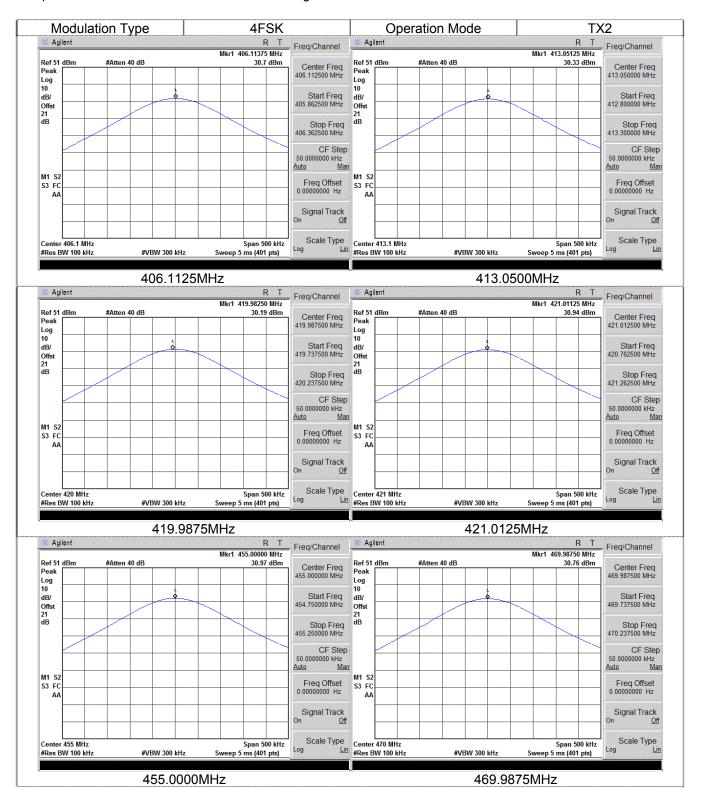
TEST CONFIGURATION

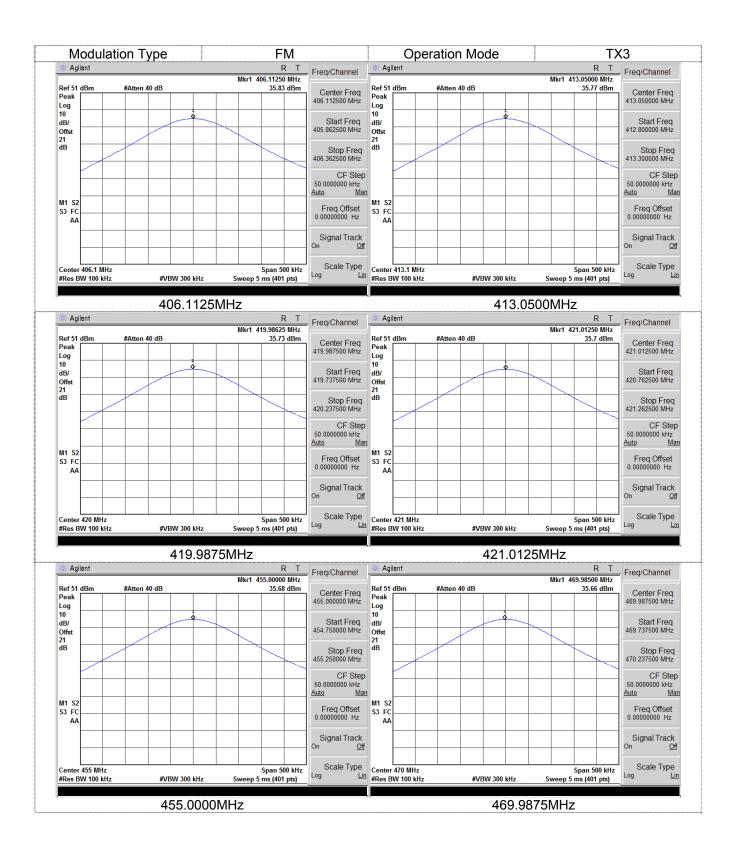
TEST MODE:

Please reference to the section 2.4

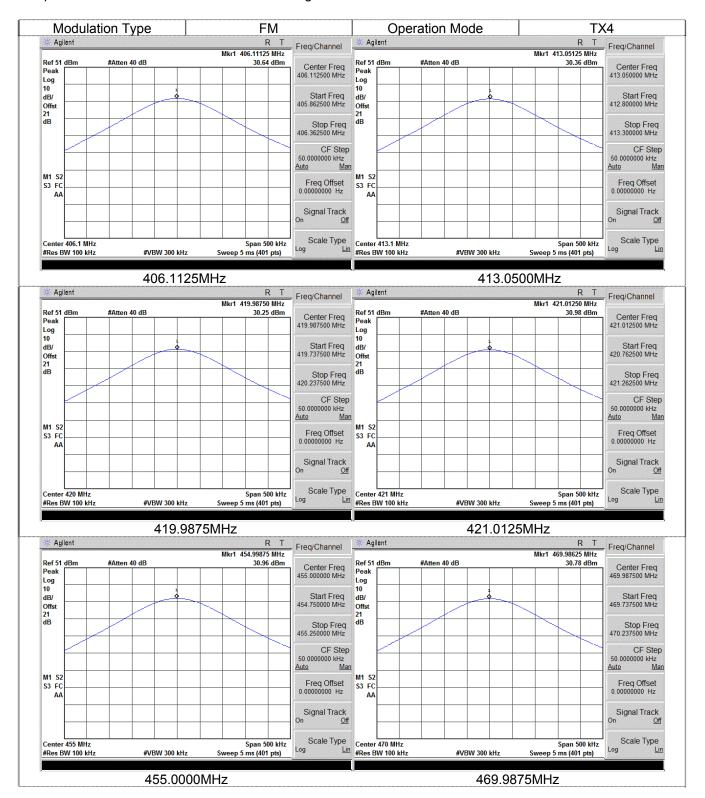

TEST RESULTS

Please refer to the below test data:


Operation Mode	Test Frequency (MHz)	Measured power (dBm)	Rated Output Power (dBm)	Difference (dB)	Limit (dB)	Result
	406.1125	35.83	36.02	-0.19		
	413.0500	35.75	36.02	-0.27		
TX1	419.9875	35.76	36.02	-0.26	-1 ~ +1	Pass
171	421.0125	35.72	36.02	-0.30	-1~+1	F 455
	455.0000	35.75	36.02	-0.27		
	469.9875	35.67	36.02	-0.35		
	406.1125	30.70	30.00	0.70		
	413.0500	30.33	30.00	0.33		
TX2	419.9875	30.19	30.00	0.19	-1 ~ +1	Pass
172	421.0125	30.94	30.00	0.94	-1~+1	Fa55
	455.0000	30.97	30.00	0.97		
	469.9875	30.76	30.00	0.76		
	406.1125	35.83	36.02	-0.19		
	413.0500	35.77	36.02	-0.25		
TX3	419.9875	35.73	36.02	-0.29	-1 ~ +1	Pass
173	421.0125	35.70	36.02	-0.32	-1~+1	Fa55
	455.0000	35.68	36.02	-0.34		
	469.9875	35.66	36.02	-0.36		
	406.1125	30.64	30.00	0.64		
	413.0500	30.36	30.00	0.36		
TX4	419.9875	30.25	30.00	0.25	-1 ~ +1	Pass
1.74	421.0125	30.98	30.00	0.98	-1~+1	Fa88
	455.0000	30.96	30.00	0.96		
	469.9875	30.78	30.00	0.78		


Report No: TRE15090106 Page 12 of 68 Issued: 2015-11-10

Test plot as follows:

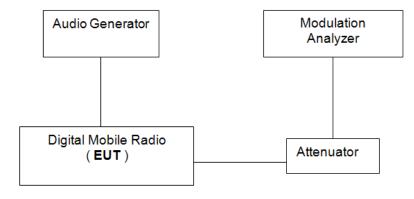


Issued: 2015-11-10

Issued: 2015-11-10

4.2. Occupied Bandwidth

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits.


LIMIT

FCC part 90.209

Bandwidth limitations:

Frequency band (MHz)	Channel spacing (kHz)	Authorized bandwidth (kHz)
Below 252		
25-50	20	20
72-76	20	20
150-174	17.5	1 320/11.25/6
216-2205	6.25	20/11.25/6
220-222		5 4
406-5122	16.25	1 320/11.25/6
806-809/851-854	12.5	5 20
809-824/854-869	25	20
896-901/935-940	12.5	13.6
902-9284		
929-930	25	5 20
1427-14325	12.5	12.5
32450-2483.52		
Above 25002		

TEST CONFIGURATION

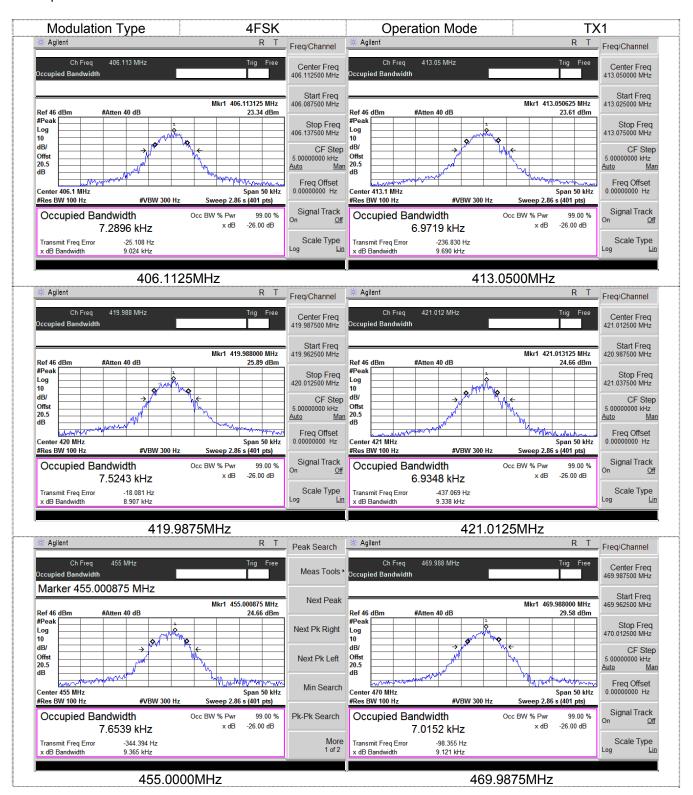
TEST PROCEDURE

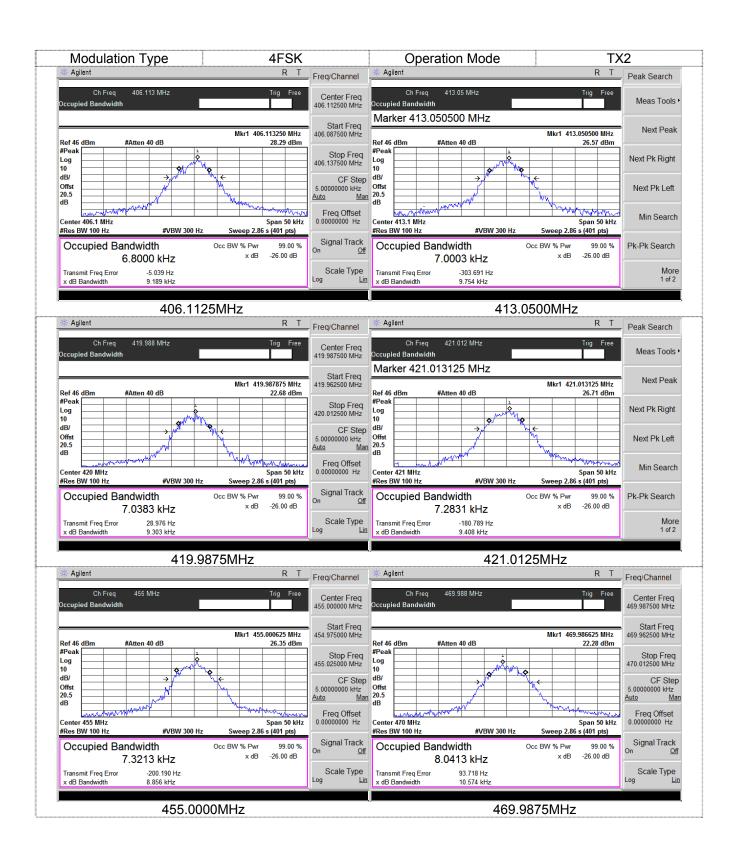
- The EUT was modulated by 2.5kHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5kHz channel spacing).
- 2 Set EUT as normal operation. Set SPA Center Frequency = fundamental frequency, RBW=100Hz, VBW=300Hz, span=50kHz for 12.5kHz channel spacing.
- 3 Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.
- 4 Set SPA Center Frequency=fundamental frequency, set =100Hz, VBW=300Hz, span=50kHz for 12.5kHz channel spacing.

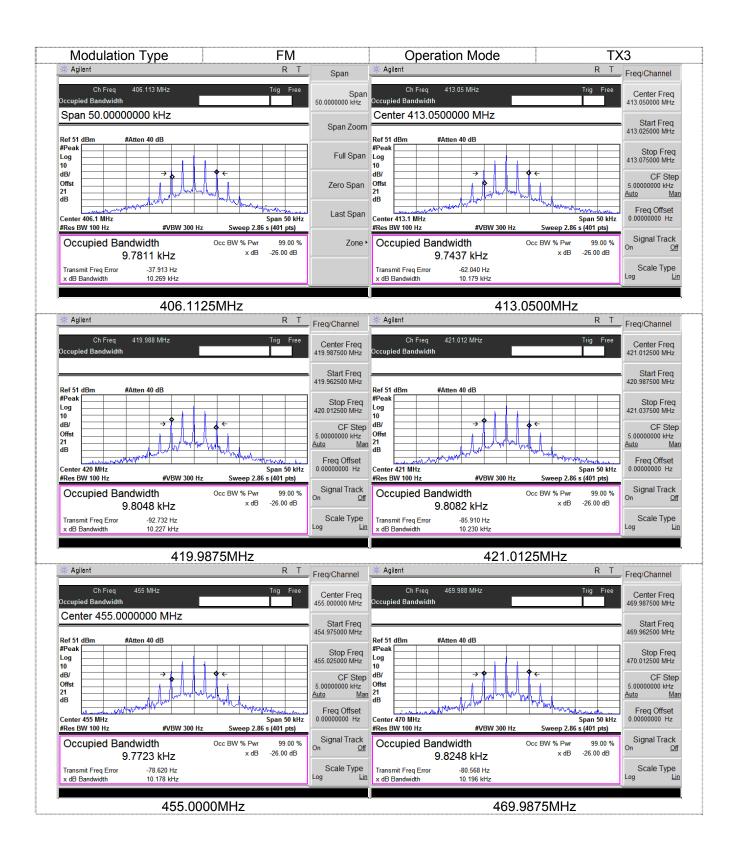
TEST MODE:

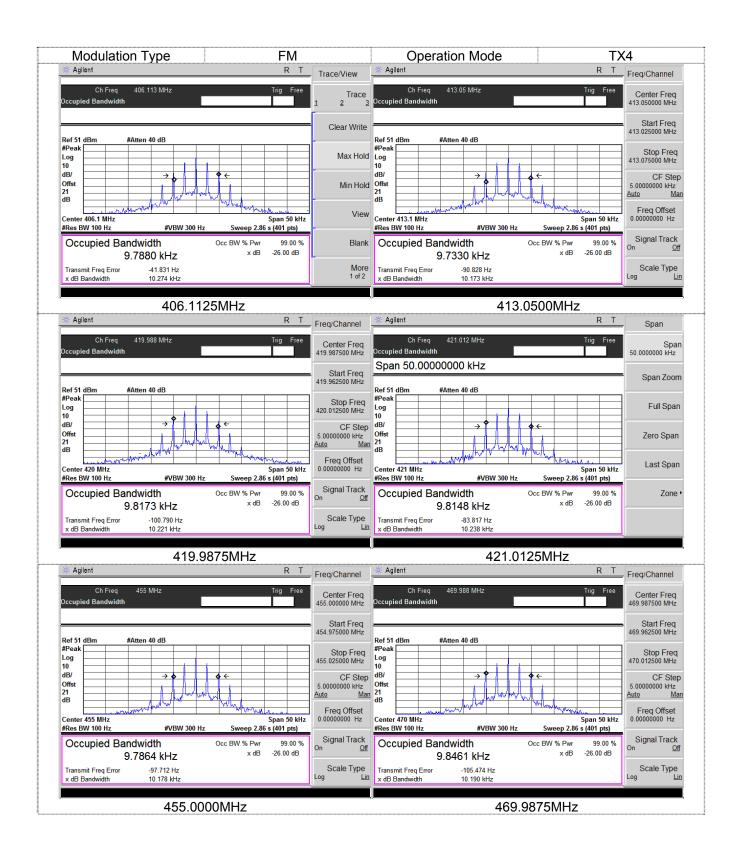
Please reference to the section 2.4

TEST RESULTS


Please refer to the below test data:


Operation	Test Frequency	Occupied Ban	dwidth (kHz)	Limit	Decult
Mode	(MHz)	99%	26dB	(kHz)	Result
	406.1125	7.29	9.02		
	413.05	6.97	9.69	≤11.25	D
TX1	419.9875	7.52	8.91		
171	421.0125	6.93	9.34		Pass
	455	7.65	9.37		
	469.9875	7.02	9.12		
	406.1125	6.80	9.19		
	413.05	7.00	9.75		
TX2	419.9875	7.04	9.30	≤11.25	Pass
172	421.0125	7.28	9.41		
	455	7.32	8.86		
	469.9875	8.04	10.57		
	406.1125	9.78	10.27		
	413.05	9.74	10.18		
TX3	419.9875	9.80	10.23	≤11.25	
173	421.0125	9.81	10.23	≪11.25	Pass
	455	9.77	10.18		
	469.9875	9.82	10.20		
	406.1125	9.79	10.27		
	413.05	9.73	10.17		
TV4	419.9875	9.82	10.22	≤11.25	Door
TX4	421.0125	9.82	10.24		Pass
	455	9.78	10.18		
	469.9875	9.85	10.19		


The equipment applicable to 12.5kHz Channel Bandwidth.

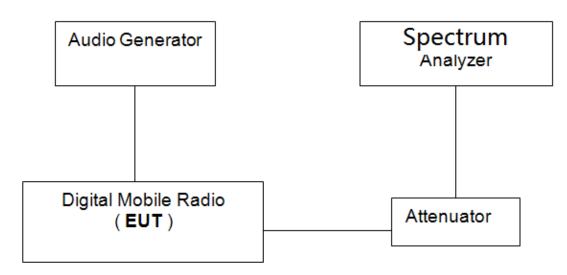

Report No: TRE15090106 Page 18 of 68 Issued: 2015-11-10

Test plot as follows:

Report No: TRE15090106 Page 22 of 68 Issued: 2015-11-10

4.3. Emission Mask

Transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section.


LIMIT

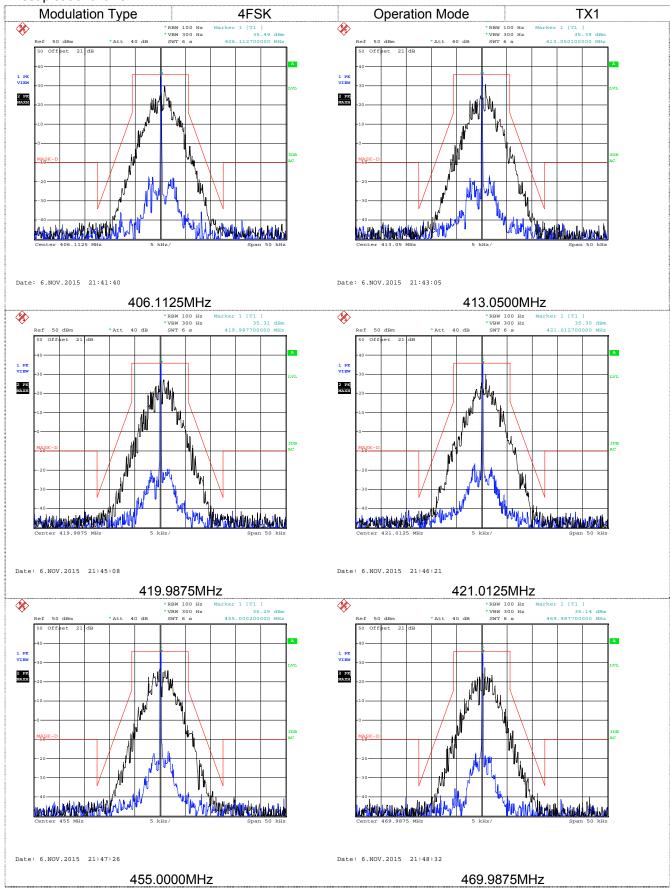
FCC part 90.210

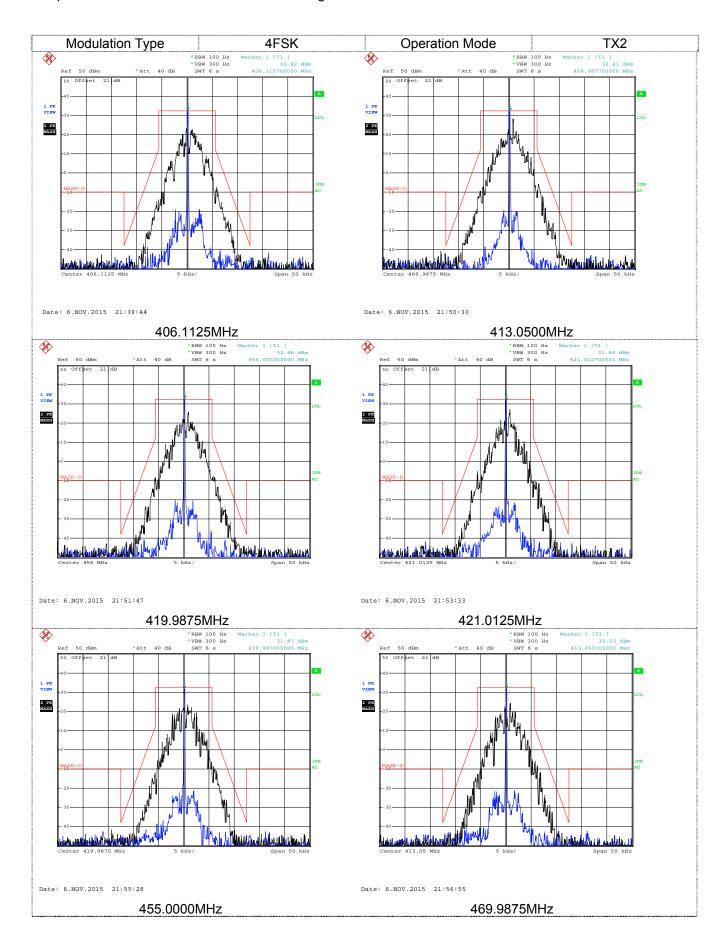
	Mask for equipment with audio low	Mask for equipment without audio low
Frequency band (MHz)	pass filter	pass filter
Below 251	A or B	A or C
25-50	В	С
72-76	В	С
150-1742	B, D, or E	C, D or E
150 paging only	В	С
220-222	F	F
421-5122 5	B, D, or E	C, D, or E
450 paging only	В	G
806-809/851-854	В	Н
809-824/854-8693 5	В	G
896-901/935-940	I	J
902-928	K	K
929-930	В	G
4940-4990 MHz	L or M	L or M
5850-59254		
All other bands	В	С

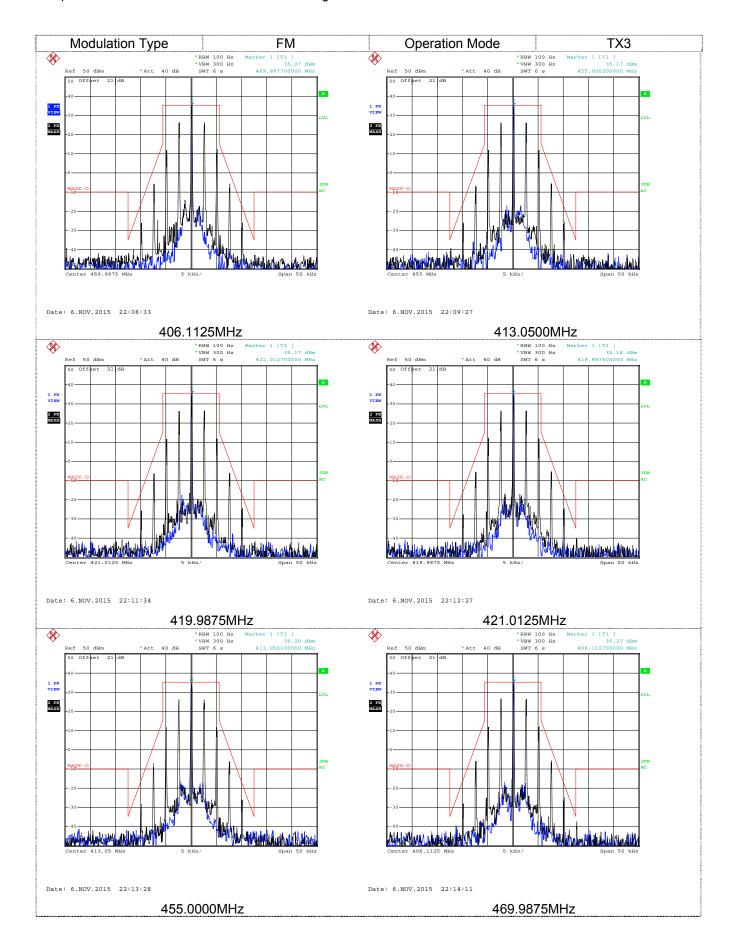
- (d) Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
- (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f₀: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d -2.88 kHz) dB.
- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

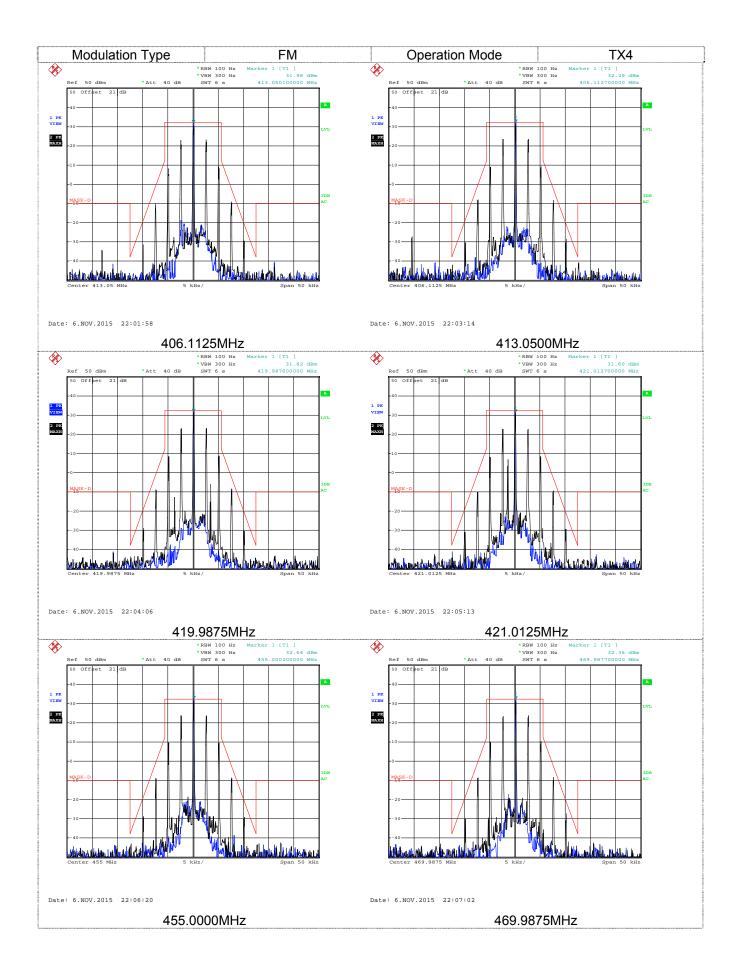
TEST CONFIGURATION

Report No : TRE15090106 Page 23 of 68 Issued: 2015-11-10


TEST PROCEDURE


1. The EUT was modulated by 2.5kHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5kHz channel spacing).


 Set EUT as normal operation.
 Set SPA Center Frequency = fundamental frequency, RBW=100Hz, VBW=300Hz,span=50kHz for 12.5KHz channel spacing.


12.51th 12 sharmer opaoing.
TEST MODE:
Please reference to the section 2.4
TEST RESULTS
Please refer to the below test data:
Note: The equipment applicable to Emission Mask D.

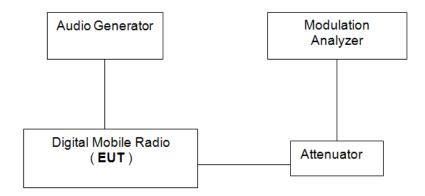
Test plot as follows:

Report No: TRE15090106 Page 28 of 68 Issued: 2015-11-10

4.4. Modulation Charcateristics

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted.

LIMIT


FCC part 2.1047(a)

- 1. Modulation Limit:
- 1) Configure the EUT as shown in figure, adjust the audio input for 60% of rated system deviation at 1kHz using this level as a reference (0dB) and vary the input level from –20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- 2) Repeat step 1 with input frequency changing to 300, 1004, 1500 and 2500Hz in sequence.

2. Audio Frequency Response:

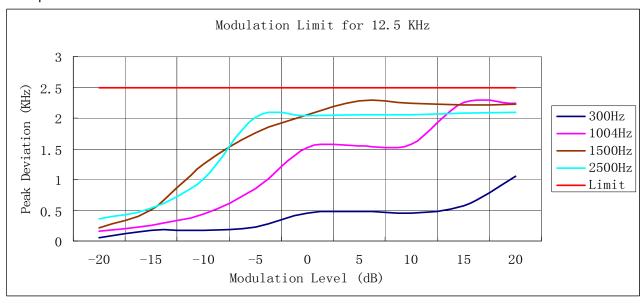
- 1) Configure the EUT as shown in figure .
- 2) Adjust the audio input for 20% of rated system deviation at 1kHz using this level as a reference (0dB).
- 3) Vary the Audio frequency from 100 Hz to 3 kHz and record the frequency deviation.
- 4) Audio Frequency Response =20log10 (Deviation of test frequency/Deviation of 1kHz reference).

TEST CONFIGURATION

TEST MODE:

Please reference to the section 2.4

TEST RESULTS


Remark: We tested TX3 to TX4.recorded worst case at TX3 for 455MHz.

Please refer to the below test data:

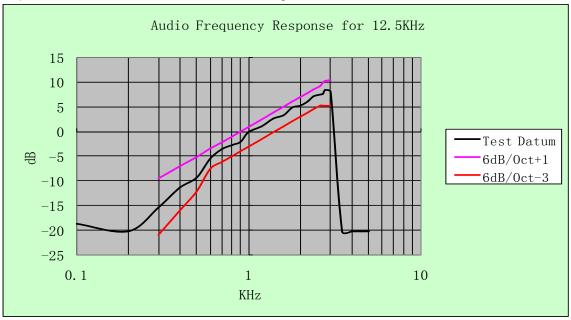
a).Modulation Limit:

		TX3	3: 455MHz			
Modulation Level (dB)	Peak Freq. Deviation At 300Hz (kHz)	Peak Freq. Deviation At 1004Hz (kHz)	Peak Freq. Deviation At 1500Hz (kHz)	Peak Freq. Deviation At 2500 Hz (kHz)	Limit (kHz)	Result
-20	0.12	0.13	0.28	0.36		
-15	0.14	0.15	0.47	0.52		
-10	0.13	0.48	1.34	1.06		
-5	0.21	0.91	1.64	2.04		
0	0.42	1.62	2.11	2.07	2.5	Pass
5	0.48	1.53	2.32	2.06		
10	0.45	1.55	2.27	2.11		
15	0.57	2.23	2.12	2.15		
20	1.04	2.23	2.24	2.19		

Test plot as follows:

b). Audio Frequency Response:

Method of Measurement:


The audio frequency response was measured in accordance with TIA/EIA Specification 603 with no exception. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 300-3000Hz shall be submitted and Audio Post Limiter Low Pass Filter Response from 3.0kHz to 50kHz.However, the audio frequency response should test from 100Hz to 5.0 kHz according to FCC Part 2.1047(a).

Report No : TRE15090106 Page 30 of 68 Issued: 2015-11-10

Note: The Audio Frequency Response is identical for 12.5 kHz channel separation

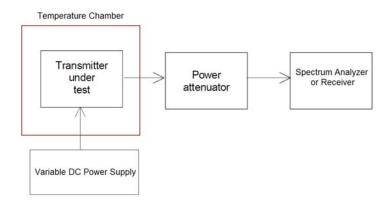
		TX3:455MHz	
Frequency (kHz)	Frequency Deviation (kHz)	1KHz Refenerce Deviation (kHz)	Audio Frequency Response (dB)
0.1	0.07	0.63	-19.08
0.2	0.06	0.63	-20.42
0.3	0.1	0.63	-15.99
0.4	0.18	0.63	-10.88
0.5	0.25	0.63	-8.03
0.6	0.35	0.63	-5.11
0.7	0.46	0.63	-2.73
0.8	0.48	0.63	-2.36
0.9	0.51	0.63	-1.84
1	0.63	0.63	0.00
1.2	0.74	0.63	1.40
1.4	0.85	0.63	2.60
1.6	0.94	0.63	3.48
1.8	1.11	0.63	4.92
2	1.13	0.63	5.07
2.2	1.19	0.63	5.52
2.4	1.28	0.63	6.16
2.6	1.37	0.63	6.75
2.7	1.39	0.63	6.87
2.8	1.47	0.63	7.36
3	1.61	0.63	8.15
3.5	0.05	0.63	-22.01
4	0.06	0.63	-20.42
4.5	0.06	0.63	-20.42
5	0.06	0.63	-20.42

Test plot as follows:

Report No: TRE15090106 Page 32 of 68 Issued: 2015-11-10

4.5. Frequency Stability Test

LIMIT


FCC part 90.213

		Mobile stations	
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power
Below 25	1 2 3 1 0 0	100	200
25-50	20	20	50
72-76	5		50
150-174	5 115	65	4 650
216-220	1.0		1.0
220-22212	0.1	1.5	1.5
421-512	7 11 142.5	85	85
806-809	141.0	1.5	1.5
809-824	141.5	2.5	2.5
851-854	1.0	1.5	1.5
854-869	1.5	2.5	2.5
896-901	140.1	1.5	1.5
902-928	2.5	2.5	2.5
902-92813	2.5	2.5	2.5
929-930	1.5		
935-940	0.1	1.5	1.5
1427-1435	9300	300	300
Above 245010			

TEST PROCEDURE

- 1. According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade.
- 2. According to FCC Part 2 Section 2.1055 (d) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3. Vary primary supply voltage from 85 to 115 percent of the nominal value.
- 4. The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.

TEST CONFIGURATION

Report No : TRE15090106 Page 33 of 68 Issued: 2015-11-10

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

X Passed Not Applicable	⊠ Passed	■ Not Applicable
------------------------------	----------	------------------

Please refer to the below test data:

TX1									
Test cond	litions	Frequency error (ppm)							
Voltage (V)	Temp (°C)	406.1125 MHz	413.05 MHz	419.9875 MHz	421.0125 MHz	455 MHz	469.9875 MHz	Limit (ppm)	Result
	-30	0.32	-0.65	0.56	-0.57	0.32	0.59		Pass
	-20	0.69	0.48	0.43	0.74	0.73	-0.65		
	-10	0.52	0.56	0.55	0.35	0.29	0.73		
	0	-0.36	0.48	0.68	-0.62	0.57	0.46	±2.5	
7.4	10	0.74	-0.38	0.72	-0.42	- 0.69	0.39		
	20	0.58	0.45	0.69	0.69	0.48	0.26		
	30	0.44	0.43	0.75	0.68	- 0.46	0.32		
	40	0.82	0.35	0.82	0.59	0.33	0.41		
	50	0.66	0.74	0.48	0.81	- 0.48	0.64		
6.29 (85% Rated)	20	-0.42	0.38	-0.54	0.88	0.67	0.58		
8.51 (115% Rated)	20	0.72	0.81	0.39	-0.62	0.57	-0.48		

TX2									
Test conditions			Limit						
Voltage(V)	Temp (°C)	406.1125 MHz	413.05 MHz	419.9875 MHz	421.0125 MHz	455 MHz	469.9875 MHz	(ppm)	Result
	-30	0.68	0.68	0.44	0.57	0.63	0.89		Pass
	-20	0.54	0.78	-0.56	0.53	0.57	0.67		
	-10	0.52	0.56	0.54	0.39	0.42	0.38		
	0	0.74	0.47	-0.81	-0.54	0.38	0.44	±2.5	
7.4	10	-0.52	0.41	0.47	0.64	0.44	-0.57		
	20	0.29	-0.55	0.63	0.61	0.38	0.37		
	30	0.82	0.63	0.57	0.48	0.71	0.59		
	40	0.46	0.59	0.36	0.42	0.52	0.67		
	50	-0.57	0.64	0.55	0.69	0.39	0.39		
6.29 (85% Rated)	20	0.78	0.76	0.57	-0.52	0.66	-0.58		
8.51 (115% Rated)	20	-0.69	0.66	0.62	0.75	0.55	0.62		

TX3									
Test condi	tions		l	Frequency error (ppm)					
Voltage(V)	Temp (°C)	406.1125 MHz	413.05 MHz	419.9875 MHz	421.0125 MHz	455 MHz	469.9875 MHz	Limit (ppm)	Result
	-30	-0.63	0.45	-0.53	0.88	0.45	0.42		
	-20	0.42	0.36	-0.46	0.72	0.42	-0.68		
	-10	0.57	0.42	0.56	0.64	0.49	0.48		
	0	0.27	0.53	0.55	0.54	0.65	0.55		
7.4	10	0.73	0.47	0.68	0.56	0.59	0.69		
	20	0.52	0.55	0.74	-0.53	- 0.47	0.42		
	30	0.49	-0.68	0.36	0.62	0.85	-0.61	±2.5	Pass
	40	0.78	0.57	0.46	0.54	- 0.66	0.54		
	50	-0.52	0.47	0.52	0.72	0.51	-0.58		
6.29 (85% Rated)	20	0.46	-0.56	0.62	0.56	0.47	0.71		
8.51 (115% Rated)	20	0.73	-0.72	0.73	-0.66	0.57	0.39		

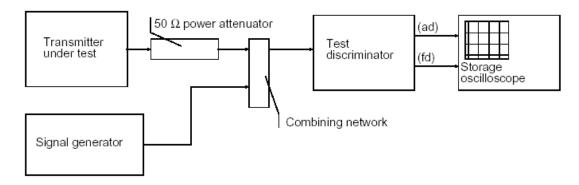
TX4									
Test conditions			Limit						
Voltage(V)	Temp (°C)	406.1125 MHz	413.05 MHz	419.9875 MHz	421.0125 MHz	455 MHz	469.9875 MHz	(ppm)	Result
	-30	0.45	0.39	0.66	-0.53	0.74	0.93		
	-20	0.26	0.42	-0.59	0.55	0.63	-0.58		
	-10	-0.47	0.68	-0.74	0.54	- 0.48	0.54		
	0	0.69	0.55	0.47	0.63	0.56	0.52		
7.4	10	0.52	-0.45	0.67	0.59	0.59	0.36		
	20	0.57	0.52	0.59	0.55	0.74	0.22		
	30	0.85	0.39	0.51	0.64	0.83	0.81	±2.5	Pass
	40	0.69	-0.47	0.55	0.51	0.85	0.46		
	50	-0.63	0.49	0.57	-0.67	- 0.55	-0.27		
6.29 (85% Rated)	20	0.92	0.68	0.83	0.64	0.65	0.84		
8.51 (115% Rated)	20	-0.45	-0.58	-0.57	0.72	- 0.57	0.63		

Report No: TRE15090106 Page 36 of 68 Issued: 2015-11-10

4.6. Transmitter Frequency Behavior

LIMIT

FCC part 90.214


Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

	Maximum	All equipment							
	frequency								
Time intervals ^{1 2}	difference ³	150 to 174 MHz	421 to 512 MHz						
Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels									
t ₁ ⁴	±25.0 kHz	5.0 ms	10.0 ms						
t ₂	±12.5 kHz	20.0 ms	25.0 ms						
t ₃ 4	±25.0 kHz	5.0 ms	10.0 ms						
Transient Frequen	cy Behavior for Equipme	nt Designed to Operate on 12.5	kHz Channels						
t ₁ ⁴	±12.5 kHz	5.0 ms	10.0 ms						
t ₂	±6.25 kHz	20.0 ms	25.0 ms						
t ₃ 4	±12.5 kHz	5.0 ms	10.0 ms						
Transient Frequen	Transient Frequency Behavior for Equipment Designed to Operate on 6.25 kHz Channels								
t ₁ 4	±6.25 kHz	5.0 ms	10.0 ms						
t ₂	±3.125 kHz	20.0 ms	25.0 ms						
t ₃ 4	±6.25 kHz	5.0 ms	10.0 ms						

Note:

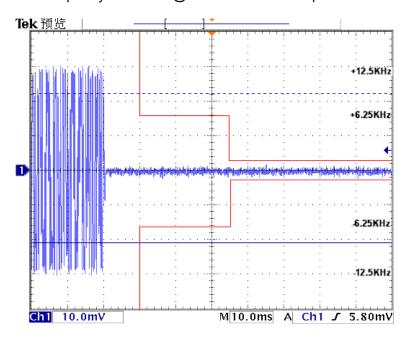
- 1. On is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.
- 1) t_1 is the time period immediately following ton.
- 2) t₂ is the time period immediately following t₁.
- 3) t₃ is the time period from the instant when the transmitter is turned off until toff.
- 4) t_{off} is the instant when the 1 kHz test signal starts to rise.
- 2. During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.
- 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

TEST CONFIGURATION

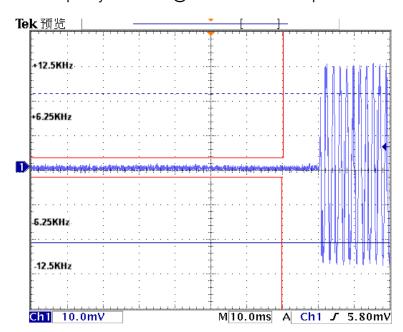
Report No: TRE15090106 Page 37 of 68 Issued: 2015-11-10

TEST PROCEDURE

According to TIA/EIA-603 2.2.19 requirement. As for the product different from PTT, we use test steps as follows:


- 1. Connect DUT into Test discriminator and Storage Oscilloscope and keep DUT stats ON;
- 2. Input 1kHz signal into DUT;
- 3. Set the modulation domain analyzer to trigger on the rising edge of the waveform in order to capture a single-shot turn-on of the transmitter signals;
- 4. Keep DUT in OFF state and Key the PTT;
- 5. Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the periods t₁ and t₂, and shall also remain within limits following t₂;
- 6. Adjust the modulation domain anzlyzer to trigger on the falling edge of the transmitter waveform in order to capture a single-shot turn-off transmitter of the transmitter signal.
- 7. Keep the digital portable radio in ON state and Unkey the PTT;
- 8. Observe the stored oscilloscope of modulation domain analyzer. The signal trace shall be maintained within the allowable limits during the period t_3 .

TEST MODE:


Please reference to the section 2.4

TEST RESULTS				
⊠ Passed	☐ Not Applicable			
Remark:We tested TX3 to TX4,recorded worst case at TX3 for 455MHz.				
Please refer to the following plots:				

Modulation Type: FM(TX3)
Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----Off – On

Transmitter Frequency Behaviour @ 12.5kHz Channel Separation-----On – Off

Report No: TRE15090106 Page 39 of 68 Issued: 2015-11-10

4.7. Spurious Emission on Antenna Port

LIMIT

Modulation Type: 4FSK

FCC Part 22.359, 74.462, 80.211 and 90.210 (12.5 kHz Bandwidth only):

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in

kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (3.83) = 55.83 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (1.25) = 50.97 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 36.63 dBm.

Limit (dBm) = $36.63-50-10\log_{10}(3.83) = -20 \text{ dBm}$

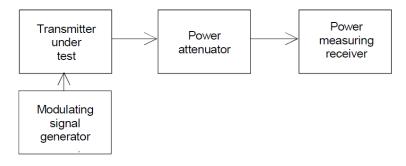
Modulation Type: FM

FCC Part 22.359, 74.462, 80.211 and 90.210 (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (3.83) = 55.83 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (1.25) = 50.97 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)


Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 36.63 dBm. Limit (dBm) = $36.63-50-10\log_{10}(3.83) = -20$ dBm

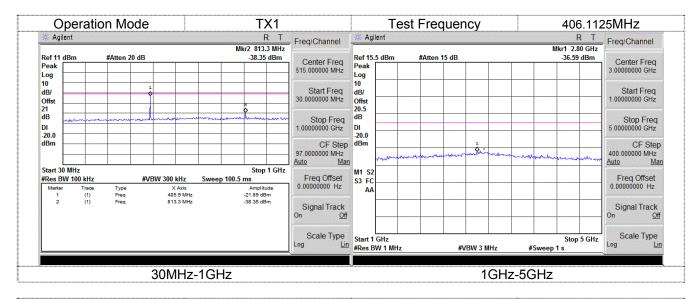
TEST PROCEDURE

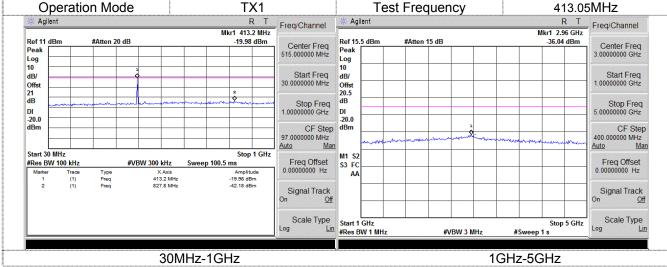
- The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set to 100 kHz. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range. Set RBW 100 kHz, VBW 300 kHz in the frequency band 30MHz to 1GHz, while set RBW=1MHz.VBW=3MHz from the 1GHz to 10th Harmonic.
- 3. The audio input was set to 0 to get the unmodulated carrier, the resulting picture is print out for each channel separation.

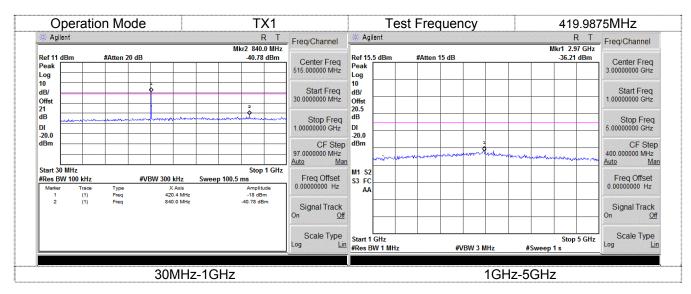
TEST CONFIGURATION

TEST MODE:

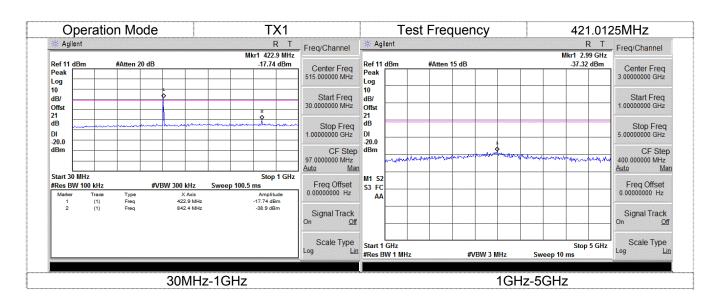
Please reference to the section 2.4

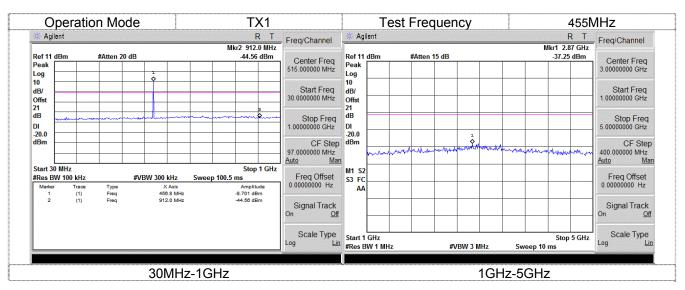

TEST RESULTS

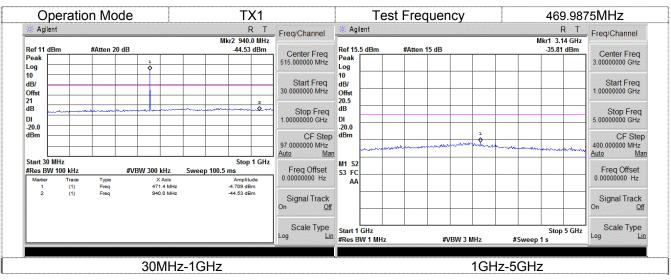

 Report No: TRE15090106 Page 40 of 68 Issued: 2015-11-10

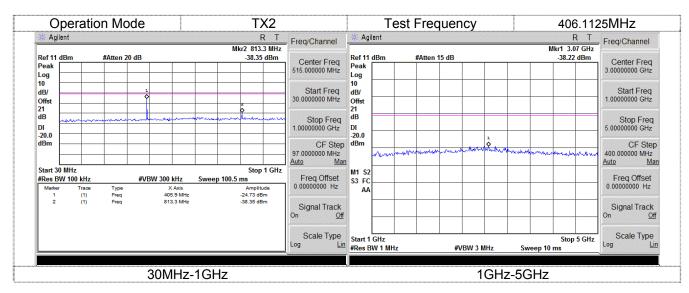

Note:

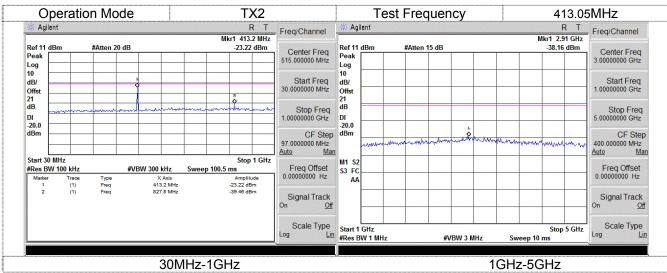
- 1. In general, the worse case attenuation requirement shown above was applied.
- 2. The measurement frequency range from 30 MHz to 5GHz.


Test plot as follows:

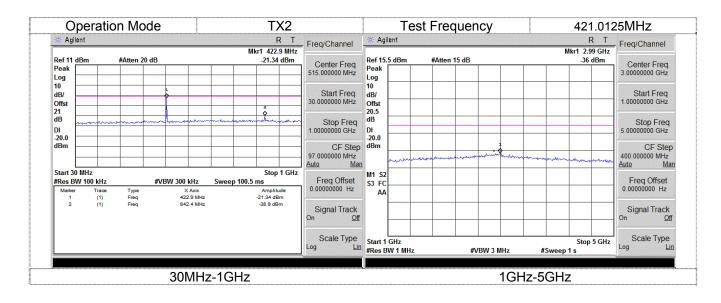


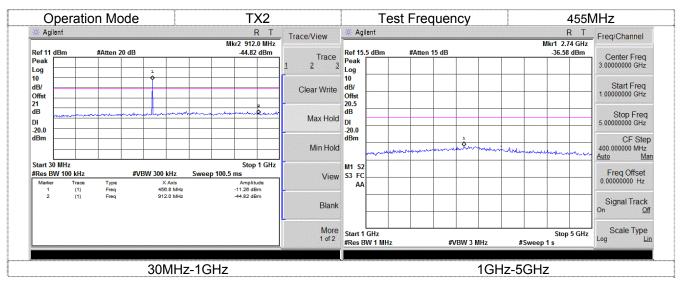


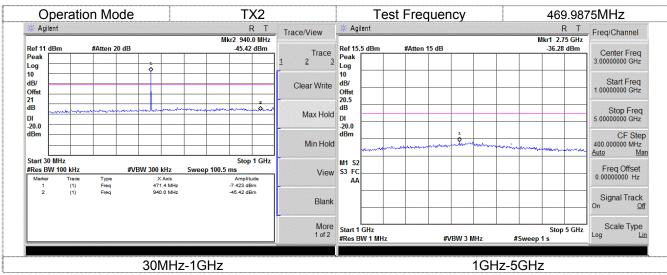

Report No: TRE15090106 Page 41 of 68 Issued: 2015-11-10

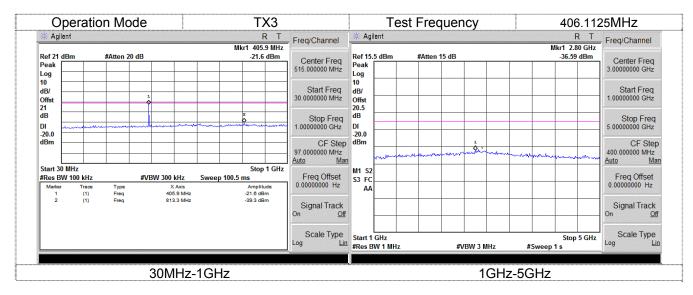


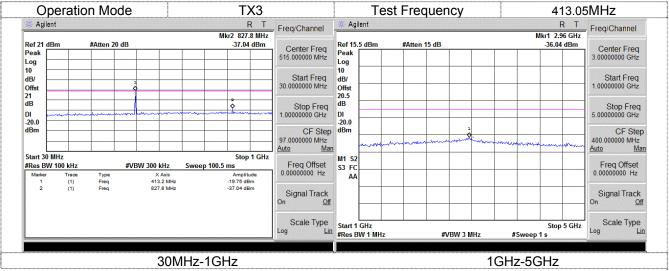


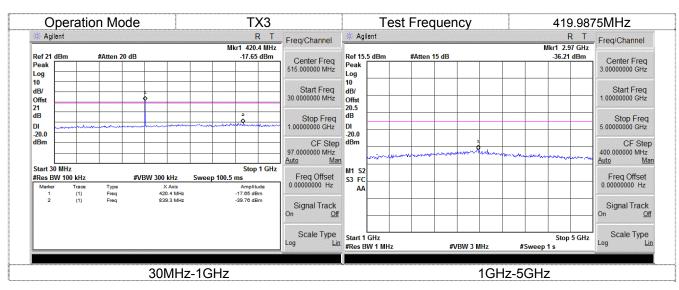

Report No : TRE15090106 Page 42 of 68 Issued: 2015-11-10

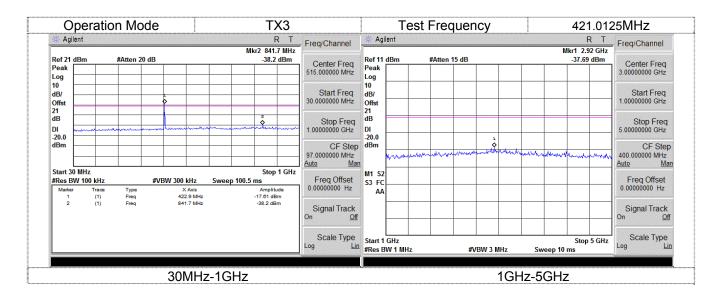


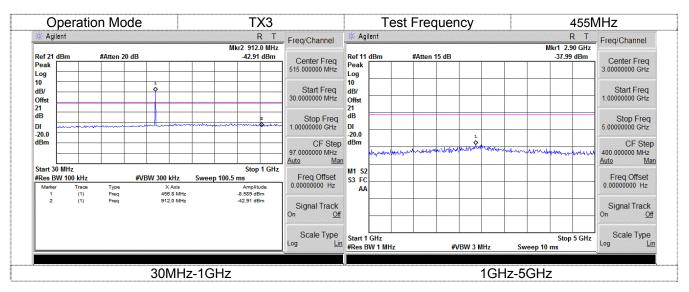


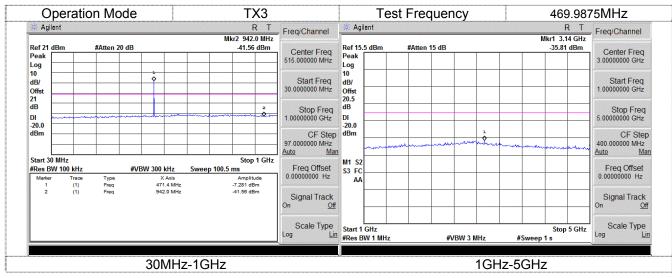



Report No : TRE15090106 Page 43 of 68 Issued: 2015-11-10

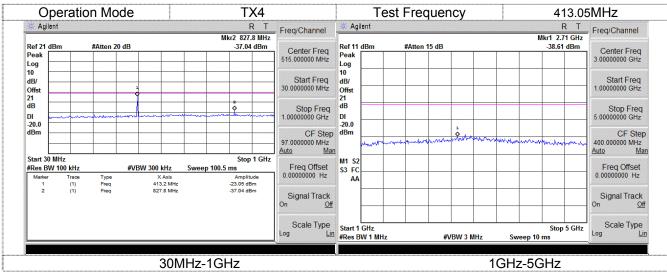


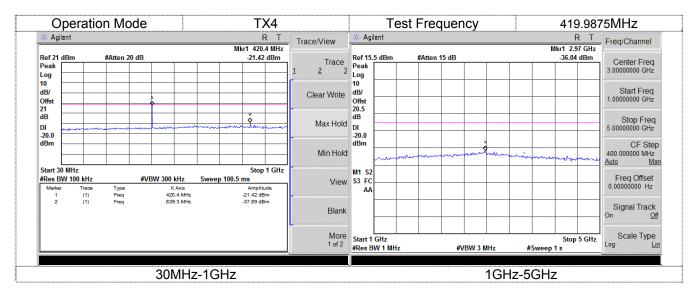


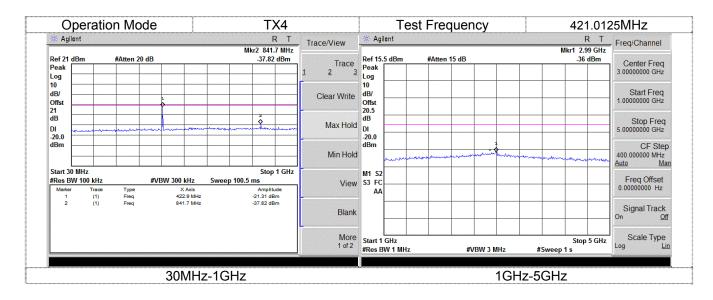


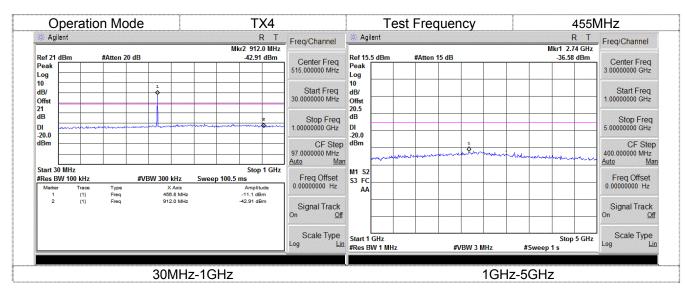


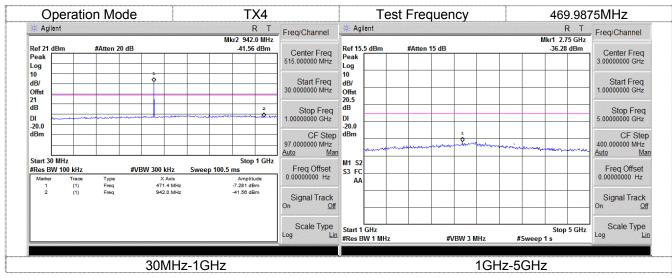
Report No : TRE15090106 Page 45 of 68 Issued: 2015-11-10






Report No : TRE15090106 Page 46 of 68 Issued: 2015-11-10





Report No : TRE15090106 Page 47 of 68 Issued: 2015-11-10

Report No : TRE15090106 Page 48 of 68 Issued: 2015-11-10

Report No: TRE15090106 Page 49 of 68 Issued: 2015-11-10

4.8. Transmitter Radiated Spurious Emission

LIMIT

Modulation Type: 4FSK

FCC Part 22.359, 74.462, 80.211 and 90.210 (12.5 kHz Bandwidth only):

On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (3.83) = 55.83dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (1.25) = 50.97dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 36.63 dBm.

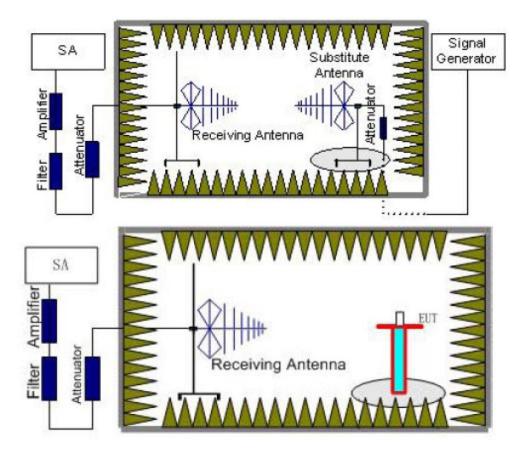
Limit (dBm) = $36.63-50-10\log_{10}(3.83) = -20 \text{ dBm}$

Modulation Type: FM

FCC Part 22.359, 74.462, 80.211 and 90.210 (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

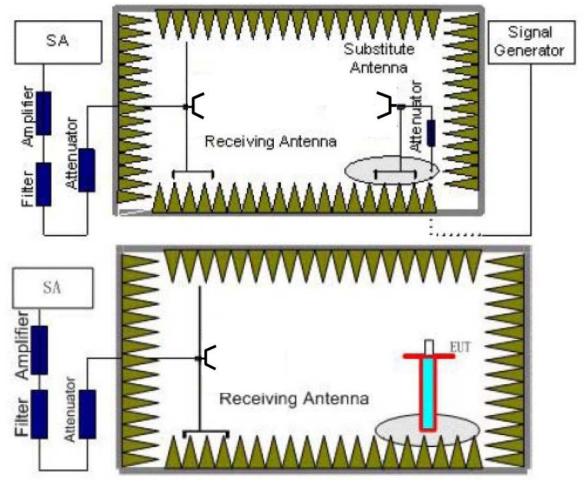
Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (3.83) = 55.83 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (1.25) = 50.97 dB$

Note: In general, the worse case attenuation requirement shown above was applied.


Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 36.63 dBm. Limit (dBm) = $36.63-50-10\log_{10}(3.83) = -20 \text{ dBm}$


TEST CONFIGURATION

Below 1GHz:

Report No: TRE15090106 Page 50 of 68 Issued: 2015-11-10

Above 1GHz:

TEST PROCEDURE

- 1. EUT was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.0 m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in six channels were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz for above 1GHz and RBW=100kHz,VBW=300kHz for 30MHz to 1GHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=P_{Mea}- P_{Aq} - P_{cl} - G_a

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: $Power(EIRP) = P_{Mea} - P_{cl} - G_{a}$

Report No : TRE15090106 Page 51 of 68 Issued: 2015-11-10

- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

Not Applicable

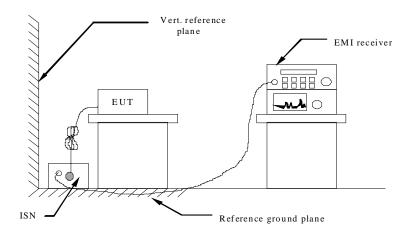
Note:

- 1. In general, the worse case attenuation requirement shown above was applied.
- 2. The measurement frequency range from 30 MHz to 5 GHz.
- 3. We tested TX1to TX4.recorded worst case at TX1 and TX3.
- 4. Absolute Level=SG Level-Cable loss+Antenna Gain, Margin=Limit-Absulute Level

Issued: 2015-11-10

Issued: 2015-11-10

4.9. Conducted Emissions Test


The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 u Henry as specified by section 5.1 of ANSI C63.4 - 2009. Cables and peripherals were moved to find the maximum emission levels for each frequency.

Limit

FCC part 15.107(a)

Frequency of Emission (MHz)	Conducted I	Limit (dBµV)
	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 If a EUT received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please reference to the section 2.4

TEST RESULTS

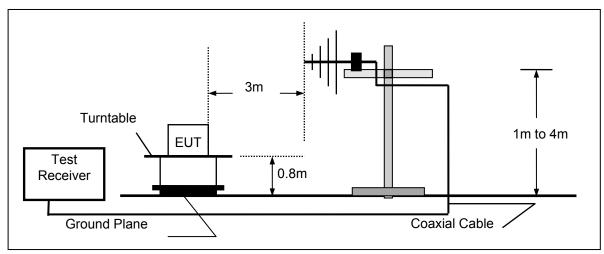
 $oxed{oxed}$ Passed $oxed{oxed}$ Not Applicable

est mode:	Cha	rging	Pol	arization	N		
Level [dBµ√]							
70							
60			<u> </u>				!
50							
40	<u> </u>				- 		
30			i 	!!			i
20	<u>^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	ين ــ يولايا الماركة المار	ار - حامری براطال	H4	AAAAA		
10 - 10		×	x My J	xV¦VxV	$\Delta \Delta $	Millerani	
0	-Wym-~~	W. W		\mathcal{M}	<u> </u>	MM. LIM	
-10			" '	' '	1	114000411	1
150k	300k 400k 60	0k 800k 1M	2M		5M 6M 8M 10N	1 2	OM 30N
			Frequency	[HZ]			
x x MES GM10	22501_fin						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dΒμV	dB			
0.289500	19.60	10.2	61	40.9	QP	N	GND
0.555000		10.2	56	36.3	QP	N	GND
0.834000		10.2	56	42.8	QΡ	N	GND
1.351500		10.2	56	42.4	QP	N	GND
2.499000		10.3	56	40.9	QP	N	GND
3.646500	13.60	10.3	56	42.4	QP	N	GND
						- ·	PE
Frequency			Limit	Margin	Detector	r Line	: []
Frequency MHz			Limit dBµV	Margin dB	Detecto	r Line	
MH 2	: dBµV	dB	dΒμV	dB			
MHz	dBμV	dB 10.3	dBµV 46	dB 35.7	AV	N	GNI
MH 2	dBμV 10.30 8.80	dB 10.3 10.3	dΒμV	dB			GNI GNI
MHz 2.422500 3.597000	dBμV 10.30 8.80 10.10	dB 10.3 10.3 10.3	dΒμV 46 46	dB 35.7 37.2	AV AV	N N	GNI GNI GNI
2.422500 3.597000 4.105500 4.641000	dBμV 10.30 8.80 10.10 10.40 13.50	dB 10.3 10.3 10.3 10.4 11.0	dBμV 46 46 46	dB 35.7 37.2 35.9 35.6 36.5	AV AV AV AV	N N N	GNI GNI GNI GNI
MHz 2.422500 3.597000 4.105500 4.641000	dBμV 10.30 8.80 10.10 10.40 13.50	dB 10.3 10.3 10.3 10.4 11.0	dBμV 46 46 46 46	35.7 37.2 35.9 35.6	AV AV AV	N N N	GNI GNI GNI GNI GNI GNI

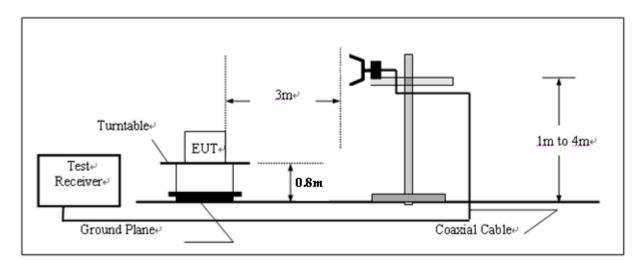
est mode:	Charg	ing	Pola	arization	L1		
Level [dBµ∨]							
70							
60			 	- 			
50						i	i
40		- - -					
30							ا لـ ـ ـ ـ ـ ـ ـ ـ
20	\		m - A - A	A-A-A-	^/^/ /////////////////////////////////	₩₩₩₩	i Martinali
10 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www	- W	410	1	^ ^ ^ ^ ^ ^ ^ ^ ^ ^	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	
0			Y .:\	__ <u>\</u> __\\			
-10	2001- 4001- 000		2004	004 404 51	NA CNA - ONA - 40NA	1	NA 00NA
150k	300k 400k 600	k 800k 1M	2M Frequency		M 6M 8M 10M	20	M 30M
x x MES GM102	2502_fin						
Frequency		Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.541500	22.00	10.2	56	34.0	OP	L1	GND
0.541500 0.613500	22.00 19.10	10.2 10.2	56 56	34.0 36.9	QP OP	L1 L1	
0.541500 0.613500 0.627000					QP QP QP		GNE
0.613500	19.10	10.2	56	36.9	QP	L1	GNE GNE
0.613500 0.627000	19.10 18.90	10.2 10.2	56 56	36.9 37.1	QP QP	L1 L1	GNE GNE GNE
0.613500 0.627000 0.807000	19.10 18.90 19.00	10.2 10.2 10.2	56 56 56	36.9 37.1 37.0	QP QP QP	L1 L1 L1	GNE GNE GNE GNE
0.613500 0.627000 0.807000 2.476500	19.10 18.90 19.00 18.70 18.40	10.2 10.2 10.2 10.3	56 56 56 56	36.9 37.1 37.0 37.3	QP QP QP QP	L1 L1 L1 L1	GNE GNE GNE GNE GNE FE
0.613500 0.627000 0.807000 2.476500 3.052500	19.10 18.90 19.00 18.70 18.40	10.2 10.2 10.2 10.3 10.3	56 56 56 56	36.9 37.1 37.0 37.3 37.6	QP QP QP QP QP	L1 L1 L1 L1 L1	GNE GNE GNE GNE GNE
0.613500 0.627000 0.807000 2.476500 3.052500 Frequency MHz	19.10 18.90 19.00 18.70 18.40 Level dBµV	10.2 10.2 10.2 10.3 10.3 Transd dB	56 56 56 56 56 Limit dBµV	36.9 37.1 37.0 37.3 37.6 Margin dB	QP QP QP QP QP Detector	L1 L1 L1 L1 L1 Line	GNE GNE GNE GNE FE
0.613500 0.627000 0.807000 2.476500 3.052500 Frequency MHz 0.550500	19.10 18.90 19.00 18.70 18.40 Level dBµV	10.2 10.2 10.3 10.3 Transd dB	56 56 56 56 56 Limit dBµV	36.9 37.1 37.0 37.3 37.6 Margin dB	QP QP QP QP QP Detector	L1 L1 L1 L1 L1 Line	GNE GNE GNE GNE FE
0.613500 0.627000 0.807000 2.476500 3.052500 Frequency MHz 0.550500 2.427000	19.10 18.90 19.00 18.70 18.40 Level dBµV 13.70 10.90	10.2 10.2 10.3 10.3 Transd dB	56 56 56 56 56 Limit dBµV 46 46	36.9 37.1 37.0 37.3 37.6 Margin dB	QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 Line Line	GNE GNE GNE GNE PE GNE GNE
0.613500 0.627000 0.807000 2.476500 3.052500 Frequency MHz 0.550500 2.427000 3.034500	19.10 18.90 19.00 18.70 18.40 Level dBµV 13.70 10.90 11.50	10.2 10.2 10.3 10.3 Transd dB 10.2 10.3 10.3	56 56 56 56 56 Limit dBµV 46 46	36.9 37.1 37.0 37.3 37.6 Margin dB 32.3 35.1 34.5	QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 Line L1 L1 L1	GNE GNE GNE GNE PE GNE GNE GNE
0.613500 0.627000 0.807000 2.476500 3.052500 Frequency MHz 0.550500 2.427000 3.034500 3.597000	19.10 18.90 19.00 18.70 18.40 Level dBµV 13.70 10.90 11.50 11.10	10.2 10.2 10.3 10.3 Transd dB 10.2 10.3 10.3	56 56 56 56 Limit dBµV 46 46 46	36.9 37.1 37.0 37.3 37.6 Margin dB 32.3 35.1 34.5 34.9	QP QP QP QP QP Detector AV AV AV	L1 L1 L1 L1 Line L1 L1 L1 L1	GNE GNE GNE GNE PE GNE GNE GNE GNE
0.613500 0.627000 0.807000 2.476500 3.052500 Frequency MHz 0.550500 2.427000 3.034500	19.10 18.90 19.00 18.70 18.40 Level dBµV 13.70 10.90 11.50	10.2 10.2 10.3 10.3 Transd dB 10.2 10.3 10.3	56 56 56 56 56 Limit dBµV 46 46	36.9 37.1 37.0 37.3 37.6 Margin dB 32.3 35.1 34.5	QP QP QP QP QP Detector AV AV	L1 L1 L1 L1 Line L1 L1 L1	GNE GNE GNE GNE FE

4.10. Radiated Spurious Emission

LIMIT


For unintentional device, according to § 15.109(a) except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency below 1000MHz

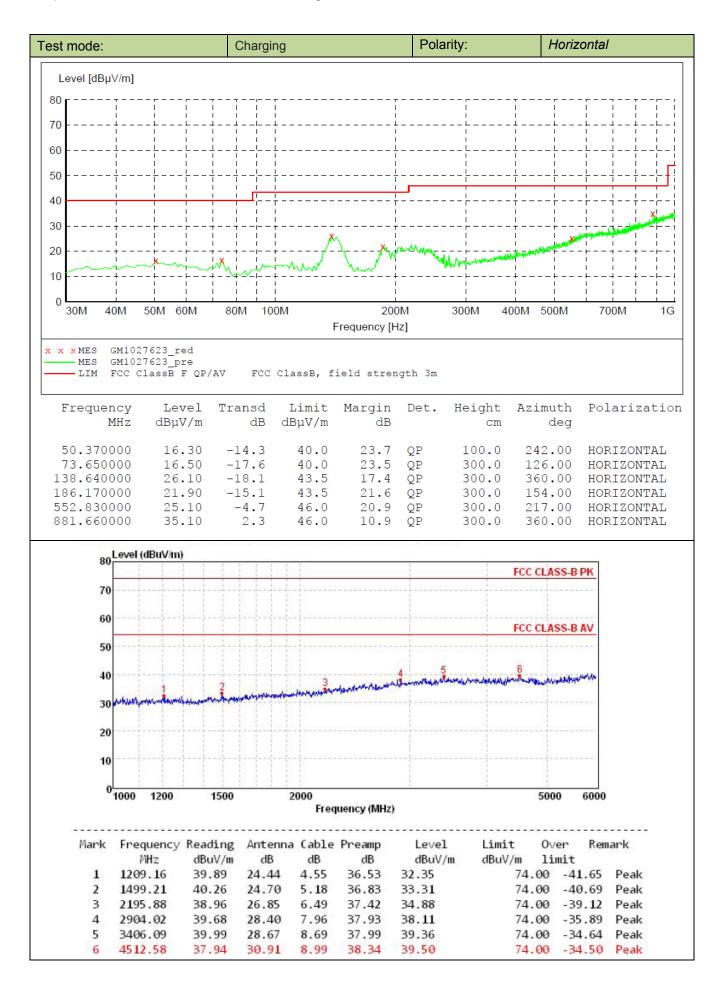
(B) Radiated Emission Test Set-Up, Frequency above 1000MHz

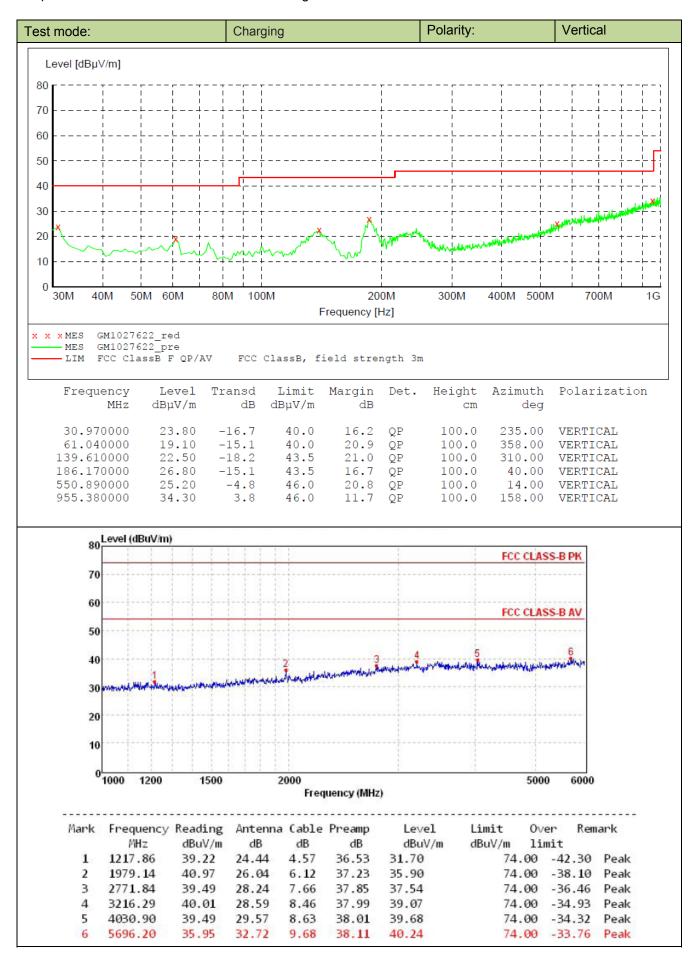
Report No: TRE15090106 Page 58 of 68 Issued: 2015-11-10

TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to acquire the highest emissions from EUT
- 3 And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4 Repeat above procedures until all frequency measurements have been completed.

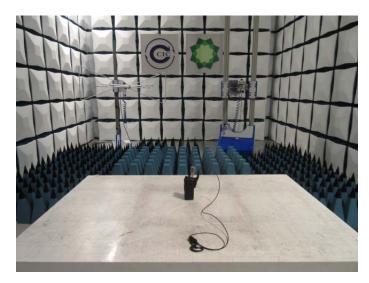
Please reference to the section 2.4


TEST RESULTS


$oxed{oxed}$ Passed	☐ Not Applicable

Note:

The EUT shall be scanned from 30 MHz to the 5th harmonic of the highest oscillator frequency in the digital devices or 1 GHz whichever is higher.

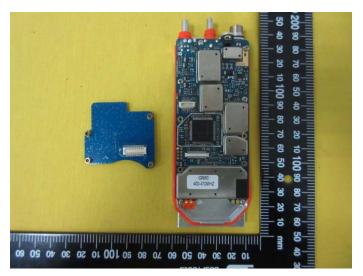

Please refer to the below test data:

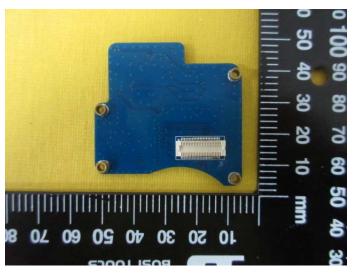
Report No : TRE15090106 Page 61 of 68 Issued: 2015-11-10

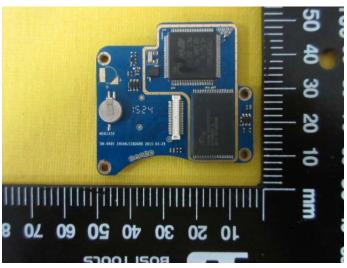
5. Test Setup Photos of the EUT

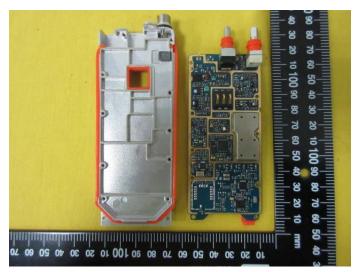
6. External and Internal Photos of the EUT

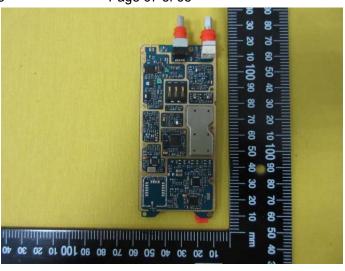
External photos of the EUT






Internal photos of the EUT









Report No : TRE15090106 Page 68 of 68 Issued: 2015-11-10

.....End of Report.....