

PolyVision Corporation

PolyVision Bluetooth Radio Model: Eno Receiver

Report #: POLV0114

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: August 6, 2012 PolyVision Corporation PolyVision Bluetooth Radio Model: Eno Receiver

Emissions

Test Description	Specification	Test Method	Pass/Fail
Occupied Bandwidth	FCC 15.247:2012	ANSI C63.10:2009	Pass
Channel Spacing	FCC 15.247:2012	ANSI C63.10:2009	Pass
Dwell Time	FCC 15.247:2012	ANSI C63.10:2009	Pass
Number of Hopping Channels	FCC 15.247:2012	ANSI C63.10:2009	Pass
Output Power	FCC 15.247:2012	ANSI C63.10:2009	Pass
Band Edge Compliance	FCC 15.247:2012	ANSI C63.10:2009	Pass
Spurious Conducted Emissions	FCC 15.247:2012	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.247:2012	ANSI C63.10:2009	Pass
AC Powerline Conducted Emissions	FCC 15.207:2012	ANSI C63.10:2009	Pass

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

NVLAP Lab Code: 200630-0

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: (503) 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision Number	D	escription	Date	Page Number
00	None			

Accreditations and Authorizations

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025. The scope includes radio, ITE, and medical standards from around the world. See: http://www.nwemc.com/accreditations/

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission — Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA – Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST — Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

Locations

Revision 8/3/12

2834D-1, 2834D-2

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy, #400 Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs SU01-SU07 14128 339 th Ave. SE Sultan, WA 98294 (360) 793-8675		
VCCI						
A-0108	A-0029		A-0109	A-0110		
	Industry Canada					

2834B-1, 2834B-2, 2834B-3

2834C-1

2834E-1

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	PolyVision Corporation
Address:	3970 Johns Creek Ct., Suite 325
City, State, Zip:	Suwanee, GA 30024
Test Requested By:	David Behner
Model:	PolyVision Bluetooth Radio, Model: Eno Receiver
First Date of Test:	August 2, 2012
Last Date of Test:	August 6, 2012
Receipt Date of Samples:	August 2, 2012
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Bluetooth EDR radio, 3dBm output, PCB antenna with a gain less than 2dBi

Clocks and Oscillators of the EUT:

None Provided

Testing Objective:

To demonstrate compliance to FCC 15.247 requirements.

CONFIGURATIONS

Configuration POLV0114-1

Software/Firmware Running during test	
Description	Version
Firmware	0.81

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Dongle	PolyVision Corporation	Eno Receiver	PV1928006A

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
USB Power Supply - Remote	unknown	unknown	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	2.0m	No	Bluetooth Dongle	USB Power Supply
PA = Cat	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.				

Configuration POLV0114-3

Software/Firmware Running during test				
Description	Version			
Firmware	0.81			
BlueTest3	None			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Dongle	PolyVision Corporation	Eno Receiver	PV1928006A

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Power Supply	MPJA	DC Regulated Power Supply	006708		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	2.0m	No	Bluetooth Dongle	USB Power Supply
DC Power	No	0.9m	No	Bluetooth Dongle	Power Supply
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATIONS

Configuration POLV0114-4

Software/Firmware Running during test	
Description	Version
Firmware	0.81
BlueTest3	None

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Bluetooth Dongle	PolyVision Corporation	Eno Receiver	PV1982006C

Remote Equipment Outside	of Test Setup Boundar	у	
Description	Manufacturer	Model/Part Number	Serial Number
Programming Board	CSR	SPI Level Shifter	None
USB-SPI Converter	CSR	1324	259370

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	4.0m	No	Bluetooth Dongle	Computer
USB	Yes	1.8m	No	USB-SPI Converter	Computer
RJ-45	No	1.8m	No	USB-SPI Converter	Programming Board
Programming	No	0.2m	No	Bluetooth Dongle	Programming Board
DA - Cal	ble ic permane	atly attached to the de	vice Chieldin	g and/or presence of ferrite ma	

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

MODIFICATIONS

Equipment Modifications

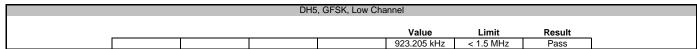
Item	Date	Test	Modification	Note	Disposition of EUT
1	8/2/2012	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	8/3/2012	AC Power Line Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	8/6/2012	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	8/6/2012	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.
5	8/6/2012	Channel Spacing	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	8/6/2012	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	8/6/2012	Number of Hopping Frequencies	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
8	8/6/2012	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
9	8/6/2012	Dwell Time	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440	AFE	1/23/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

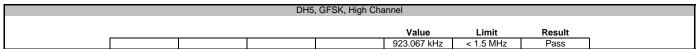
MEASUREMENT UNCERTAINTY

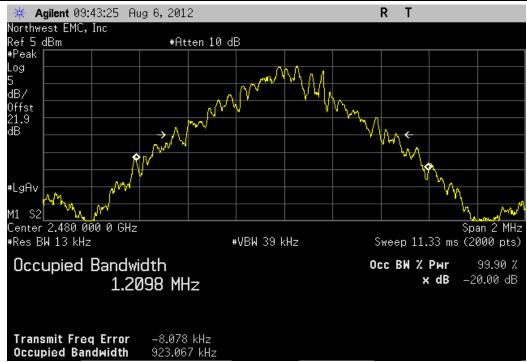

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

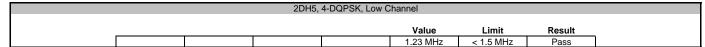
TEST DESCRIPTION

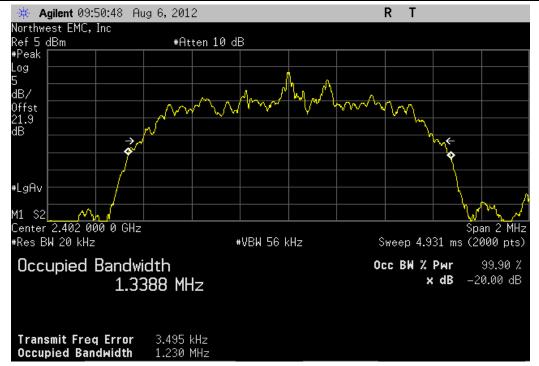
The occupied bandwidth was measured with the EUT set to low, medium and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode.

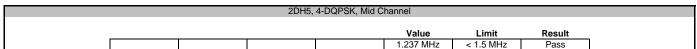
EUT: PolyVision Bluetooth Radio	Work Order:		
Serial Number: PV1928006C		08/06/12	
Customer: PolyVision Corporation	Temperature:		
Attendees: David Behner	Humidity:		
Project: None	Barometric Pres.:		
Tested by: Jennifer Herrett Power: 5VDC USB	Job Site:	EV06	
TEST SPECIFICATIONS Test Method			
FCC 15.247:2012 ANSI C63.10:2009			
COMMENTS			
None			
DEVIATIONS FROM TEST STANDARD			
None			
Configuration # 4 Jennifec Herrott			
1 10			
Configuration # 4 Jennifec Herrott	Value	Limit	Result
Configuration # 4 Jennifec Herrett Signature	Value	Limit	Result
Configuration # 4 Jennifec Herrett Signature	Value 923.205 kHz	Limit	Result
Configuration # 4 Signature Semifec Herrett DH5, GFSK			
Configuration # 4 Signature Semmifee Herrett DH5, GFSK Low Channel	923.205 kHz	< 1.5 MHz	Pass
Configuration # 4 Signature Service Herrott DH5, GFSK Low Channel Mid Channel High Channel	923.205 kHz 921.102 kHz	< 1.5 MHz < 1.5 MHz	Pass Pass
Configuration # 4 Signature Service Herrott DH5, GFSK Low Channel Mid Channel High Channel	923.205 kHz 921.102 kHz	< 1.5 MHz < 1.5 MHz	Pass Pass
Configuration # 4 Signature Semmifee Herrett DH5, GFSK Low Channel Mid Channel High Channel 2DH5, 4-DQPSK	923.205 kHz 921.102 kHz 923.067 kHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass
Configuration # 4 Signature Service Herrott DH5, GFSK Low Channel Mid Channel High Channel 2DH5, 4-DQPSK Low Channel Mid Channel Mid Channel	923.205 kHz 921.102 kHz 923.067 kHz 1.23 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass Pass Pass
Configuration # 4 Signature Semmifer Herrett DH5, GFSK Low Channel Mid Channel High Channel 2DH5, 4-DQPSK Low Channel Mid Channel Mid Channel High Channel	923.205 kHz 921.102 kHz 923.067 kHz 1.23 MHz 1.237 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass
Configuration # 4 Signature Service Servett DH5, GFSK Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Mid Channel High Channel High Channel	923.205 kHz 921.102 kHz 923.067 kHz 1.23 MHz 1.237 MHz 1.234 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass Pass Pass
Configuration # 4 Signature Semifer Herrett DH5, GFSK Low Channel Mid Channel High Channel Of Channel Mid Channel High Channel High Channel High Channel Low Channel High Channel High Channel Low Channel Low Channel	923.205 kHz 921.102 kHz 923.067 kHz 1.23 MHz 1.237 MHz 1.234 MHz 1.26 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass Pass Pass Pass Pass
Configuration # 4 Signature Semifectivett DH5, GFSK Low Channel Mid Channel High Channel 2DH5, 4-DQPSK Low Channel Mid Channel High Channel High Channel High Channel High Channel	923.205 kHz 921.102 kHz 923.067 kHz 1.23 MHz 1.237 MHz 1.234 MHz	< 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz < 1.5 MHz	Pass Pass Pass Pass Pass

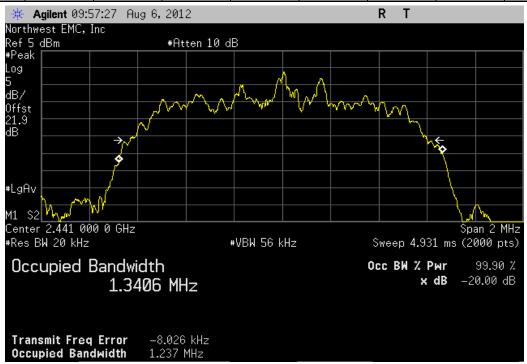


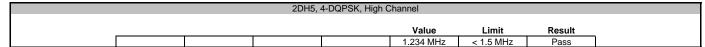


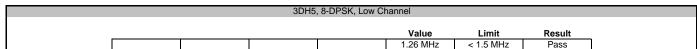


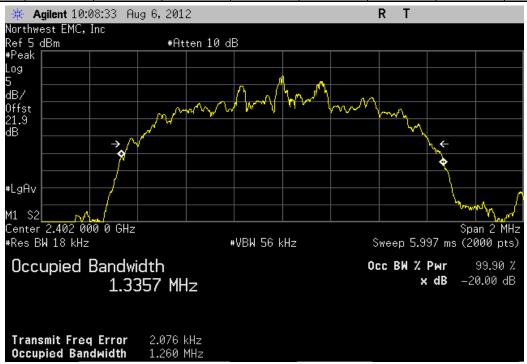


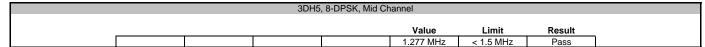


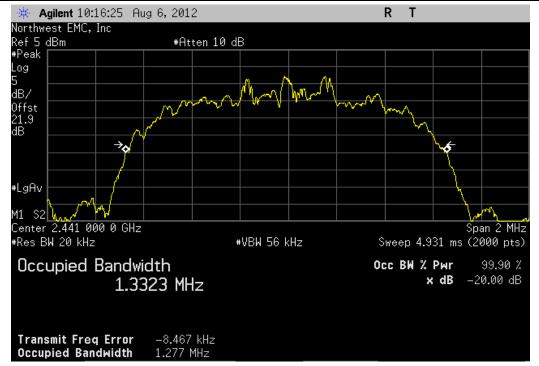


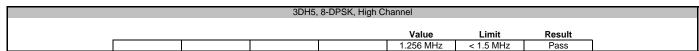


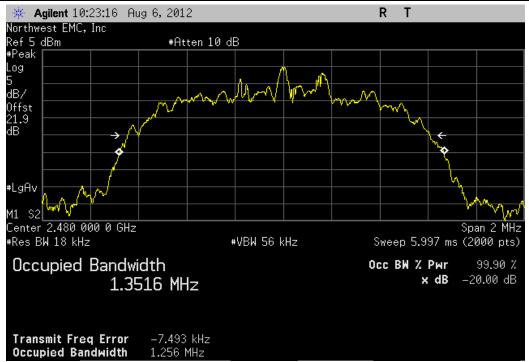












Channel Spacing

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

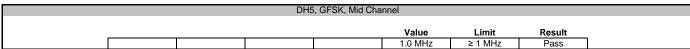
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440	AFE	1/23/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

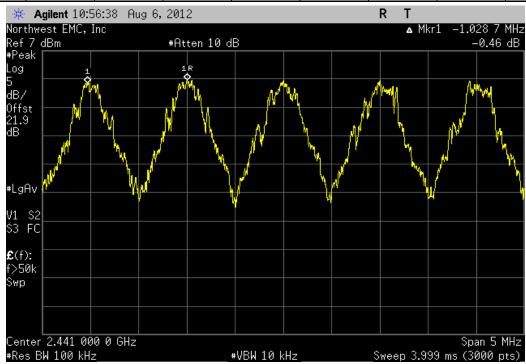
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The channel carrier frequencies in the 2400-2483.5MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Or, if the output power is less than 125 mW, the channel separation can be 25 kHz or 2/3 of the 20dB bandwidth. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.




Channel Spacing

EUT:	PolyVision Bluetooth Rad	io		Work Order	POLV0114	
Serial Number:	PV1928006C			Date	08/06/12	
Customer:	PolyVision Corporation			Temperature	24c°C	
Attendees:	David Behner			Humidity	45%	
Project:	None			Barometric Pres.	1015.5	
Tested by:	Jennifer Herrett		Power: 5VDC USB	Job Site	EV06	
TEST SPECIFICAT	IONS		Test Method			
FCC 15.247:2012			ANSI C63.10:2009			
COMMENTS						
None						
	M TEST STANDARD					
None						
Configuration #	4	Signature	ennifec Herrett			
		Signature .				
				Value	Limit	Result
DH5, GFSK						
	Mid Channel			1.0 MHz	≥ 1 MHz	Pass

Channel Spacing

Dwell Time

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440	AFE	1/23/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

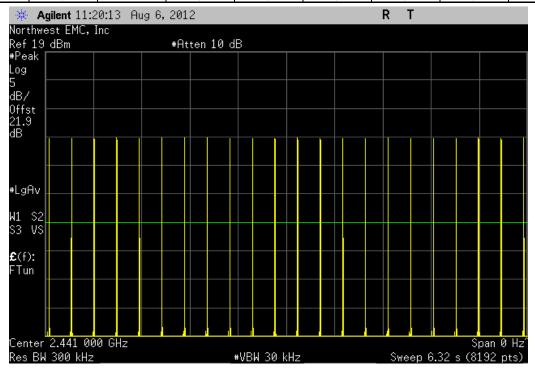
The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

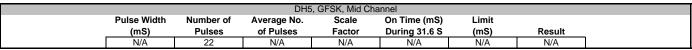
The dwell time limit is based on the Number of Hopping Channels * 400 mS. For Bluetooth this would be 79 Channels * 400 mS = 31.6 Sec.

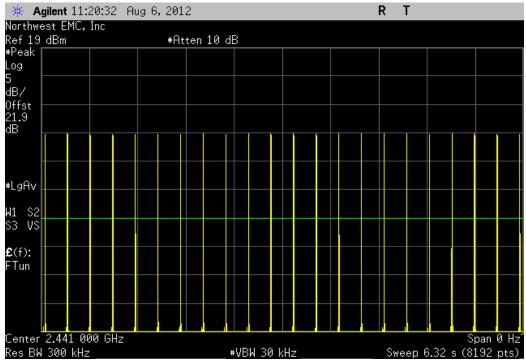
On Time During 31.6 Sec = Pulse Width * Average Number of Pulses * Scale Factor

>Average Number of Pulses is based on 4 samples.

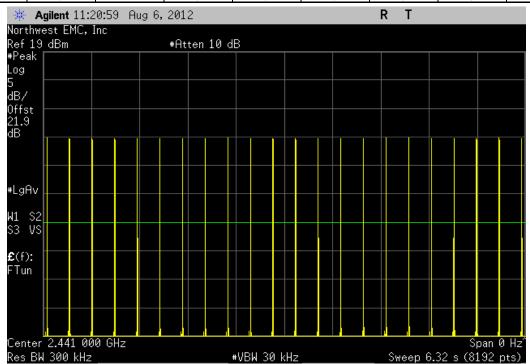
Scale Factor = 31.6 Sec / Screen Capture Sweep Time = 31.6 Sec / 6.32 Sec = 5

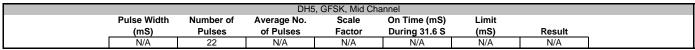

	PolyVision Bluetooth Rad	lio					Work Order:		
Serial Number:								08/06/12	
	PolyVision Corporation						Temperature:		
	David Behner						Humidity:		
Project:							Barometric Pres.:		
	Jennifer Herrett			5VDC USB			Job Site:	EV06	
ST SPECIFICATI	IONS			Test Method					
CC 15.247:2012				ANSI C63.10:2009					
OMMENTS									
one									
VIATIONS FROM	I TEST STANDARD								
one									
		1	ennifec	21.					
onfiguration #	4	Signature	mijec	Herrett	70				
	l l	Signature	Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit	
			(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result
15, GFSK								\ - <i>I</i>	
10, 01 011	Mid Channel		2.901	N/A	N/A	N/A	N/A	N/A	N/A
10, 0, 0,	Mid Channel Mid Channel		2.901 N/A		N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
10, 0, 0,				N/A 22 22					
10, 6: 6:1	Mid Channel		N/A	22 22	N/A	N/A	N/A	N/A	N/A
10, 0. 0.	Mid Channel Mid Channel		N/A N/A	22 22 22	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
10, 0. 0.	Mid Channel Mid Channel Mid Channel		N/A N/A N/A	22 22	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	Mid Channel Mid Channel Mid Channel Mid Channel		N/A N/A N/A N/A	22 22 22 22 22	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
9H5, 4-DQPSK	Mid Channel Mid Channel Mid Channel Mid Channel		N/A N/A N/A N/A	22 22 22 22 22	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
9H5, 4-DQPSK	Mid Channel Mid Channel Mid Channel Mid Channel Mid Channel		N/A N/A N/A N/A 2.901	22 22 22 22 22 N/A	N/A N/A N/A N/A 22	N/A N/A N/A N/A 5	N/A N/A N/A N/A 319.11	N/A N/A N/A N/A 400	N/A N/A N/A N/A Pass
9H5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901	22 22 22 22 22 N/A	N/A N/A N/A N/A 22	N/A N/A N/A N/A 5	N/A N/A N/A N/A 319.11	N/A N/A N/A N/A 400	N/A N/A N/A N/A Pass
DH5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A	22 22 22 22 22 N/A N/A	N/A N/A N/A N/A 22 N/A N/A	N/A N/A N/A N/A 5 N/A N/A	N/A N/A N/A N/A 319.11 N/A N/A	N/A N/A N/A N/A 400 N/A N/A	N/A N/A N/A N/A Pass N/A N/A
DH5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A N/A	22 22 22 22 N/A N/A 22 22 22	N/A N/A N/A N/A 22 N/A N/A N/A	N/A N/A N/A N/A 5 N/A N/A N/A	N/A N/A N/A N/A 319.11 N/A N/A	N/A N/A N/A N/A 400 N/A N/A N/A	N/A N/A N/A N/A Pass N/A N/A
9H5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A N/A N/A	22 22 22 22 22 N/A N/A 22 22	N/A N/A N/A N/A 22 N/A N/A	N/A N/A N/A N/A 5 N/A N/A	N/A N/A N/A N/A 319.11 N/A N/A N/A	N/A N/A N/A N/A 400 N/A N/A	N/A N/A N/A N/A Pass N/A N/A N/A
H5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A N/A N/A	22 22 22 22 N/A N/A 22 22 22 22 22	N/A N/A N/A 22 N/A N/A N/A N/A	N/A N/A N/A N/A 5 N/A N/A N/A N/A	N/A N/A N/A N/A 319.11 N/A N/A N/A N/A	N/A N/A N/A N/A 400 N/A N/A N/A N/A	N/A N/A N/A N/A Pass N/A N/A N/A N/A
DH5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A N/A N/A	22 22 22 22 N/A N/A 22 22 22 22 22	N/A N/A N/A 22 N/A N/A N/A N/A	N/A N/A N/A N/A 5 N/A N/A N/A N/A	N/A N/A N/A N/A 319.11 N/A N/A N/A N/A	N/A N/A N/A N/A 400 N/A N/A N/A N/A	N/A N/A N/A N/A Pass N/A N/A N/A N/A
DH5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A N/A N/A N/A 2.91	22 22 22 22 N/A N/A 22 22 22 22 N/A	N/A N/A N/A N/A 22 N/A N/A N/A N/A N/A 22	N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A S	N/A N/A N/A N/A 319.11 N/A N/A N/A N/A N/A N/A 320.1	N/A N/A N/A A/O N/A N/A N/A N/A N/A N/A A/O	N/A N/A N/A N/A Pass N/A N/A N/A N/A Pass
DH5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A N/A N/A N/A 2.91	22 22 22 22 N/A N/A 22 22 22 22 N/A N/A	N/A N/A N/A N/A 22 N/A N/A N/A N/A N/A 22	N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A 5	N/A N/A N/A N/A 319.11 N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 400 N/A N/A N/A N/A N/A	N/A N/A N/A N/A Pass N/A N/A N/A N/A N/A N/A
DH5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A N/A N/A N/A 2.91	22 22 22 22 N/A N/A 22 22 22 22 N/A	N/A N/A N/A N/A 22 N/A N/A N/A N/A N/A 22 N/A	N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 319.11 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A 400 N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Pass N/A N/A N/A N/A N/A N/A N/A N/A
DH5, 4-DQPSK	Mid Channel		N/A N/A N/A N/A 2.901 2.91 N/A N/A N/A 2.91 2.91 N/A N/A	22 22 22 22 N/A N/A 22 22 22 22 N/A N/A 22 22 22 22 22 22 22 22 22 22 22 22 22	N/A N/A N/A N/A 22 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A 319.11 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A 400 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A Pass N/A N/A N/A N/A N/A N/A N/A N/A

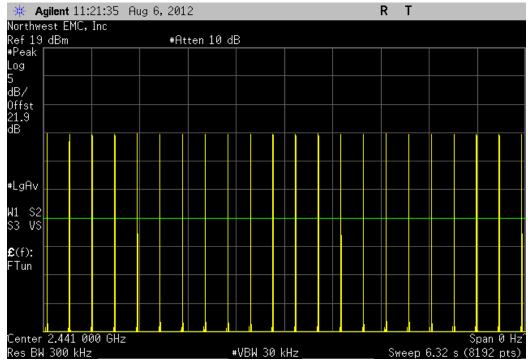




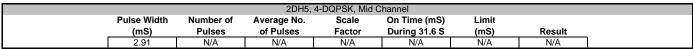
DH5, GFSK, Mid Channel						
Pulse Width Number of Average No. Scale On Time (mS) Limit						
(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result
N/A	22	N/A	N/A	N/A	N/A	N/A



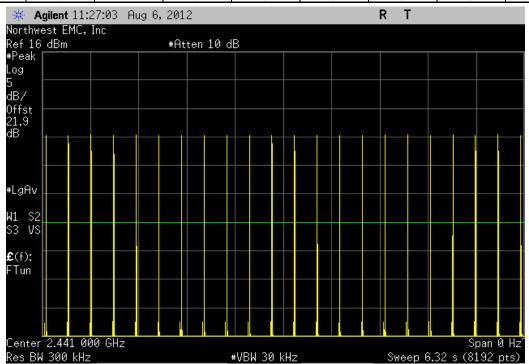


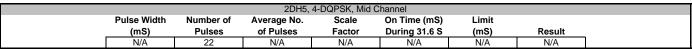


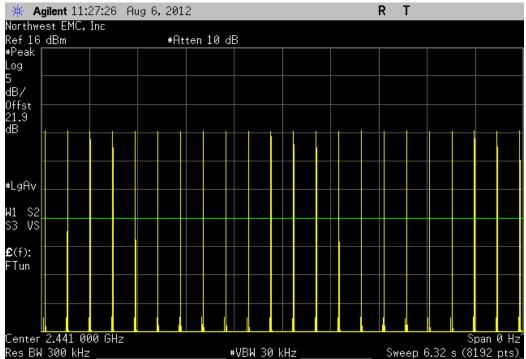
DH5, GFSK, Mid Channel									
Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit				
(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result			
N/A	22	N/A	N/A	N/A	N/A	N/A			



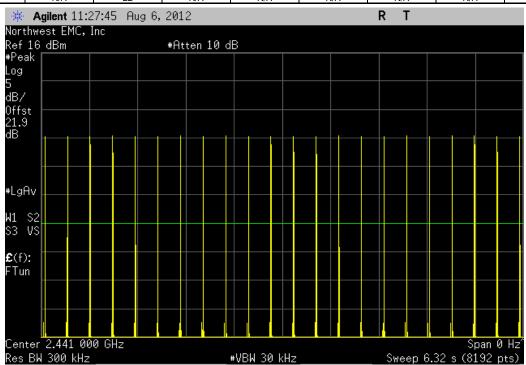


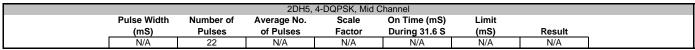

DH5, GFSK, Mid Channel										
	Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit				
	(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result			
	2.901	N/A	22	5	319.11	400	Pass			

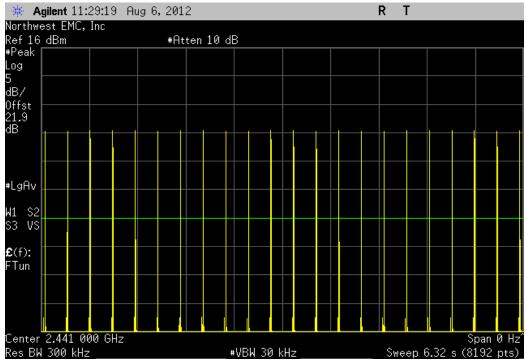




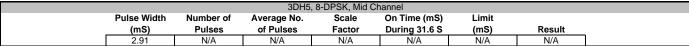
2DH5, 4-DQPSK, Mid Channel									
Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit				
(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result			
N/A	22	N/A	N/A	N/A	N/A	N/A			

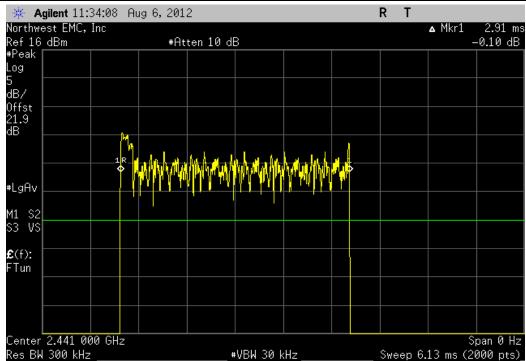


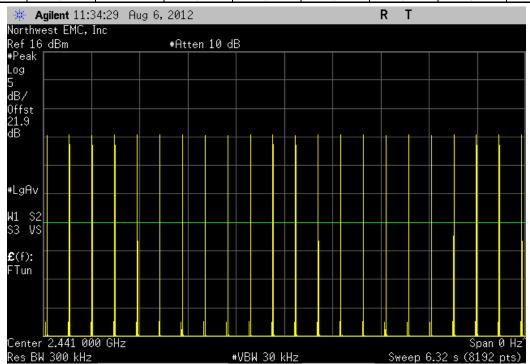


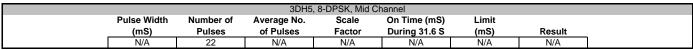


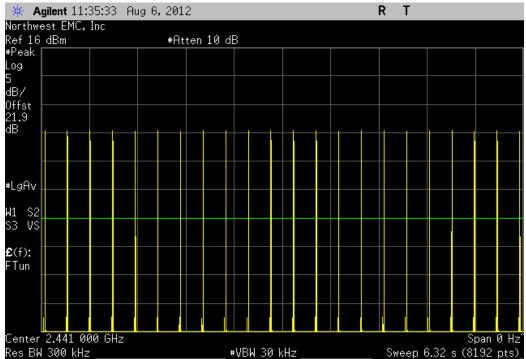
2DH5, 4-DQPSK, Mid Channel									
Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit				
(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result			
N/A	22	N/A	N/A	N/A	N/A	N/A			



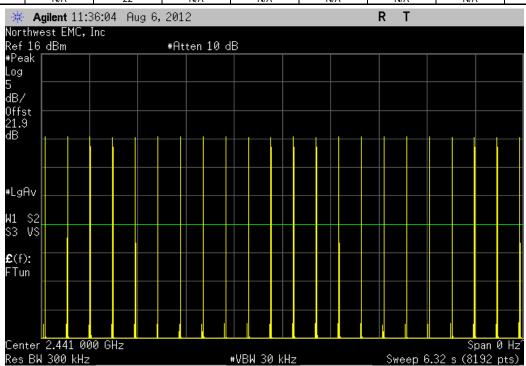


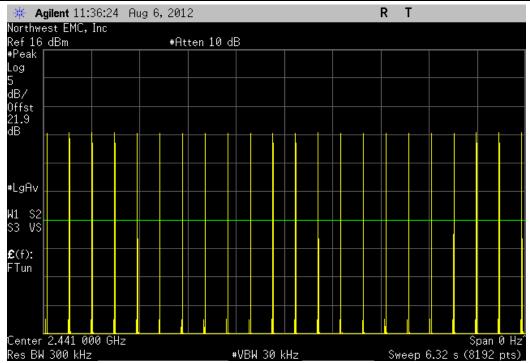

2DH5, 4-DQPSK, Mid Channel										
	Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit				
	(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result			
	2.91	N/A	22	5	320.1	400	Pass			





3DH5, 8-DPSK, Mid Channel									
F	Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit			
	(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result		
	N/A	22	N/A	N/A	N/A	N/A	N/A		





3DH5, 8-DPSK, Mid Channel									
Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit				
(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result			
N/A	22	N/A	N/A	N/A	N/A	N/A			

Dwell Time

3DH5, 8-DPSK, Mid Channel								
Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit			
(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result		
N/A	22	N/A	N/A	N/A	N/A	N/A		

3DH5, 8-DPSK, Mid Channel										
	Pulse Width	Number of	Average No.	Scale	On Time (mS)	Limit				
	(mS)	Pulses	of Pulses	Factor	During 31.6 S	(mS)	Result			
	2.91	N/A	22	5	320.1	400	Pass			

Number of Hopping Frequencies

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

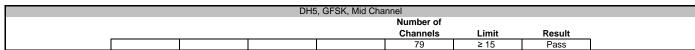
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440	AFE	1/23/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

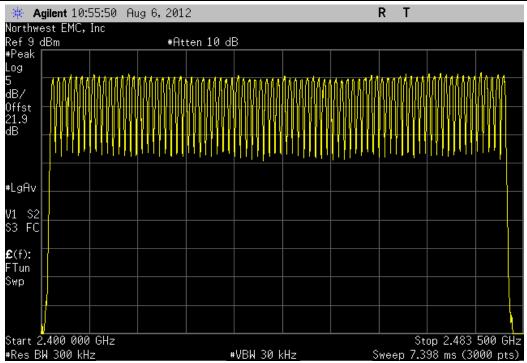
MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The number of hopping frequencies was measured across the authorized band. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.




Number of Hopping Frequencies

EUT: PolyVision Bluetooth Radio		Work Order:	POLV0114	
Serial Number: PV1928006C			08/06/12	
Customer: PolyVision Corporation		Temperature:	24c°C	
Attendees: David Behner		Humidity:		
Project: None		Barometric Pres.:		
Tested by: Jennifer Herrett	Power: 5VDC USB	Job Site:	EV06	
TEST SPECIFICATIONS	Test Method			
FCC 15.247:2012	ANSI C63.10:2009			
COMMENTS				
None				
DEVIATIONS FROM TEST STANDARD				
None				
Configuration # 4	ennifec Herrett			
Signature	and the same			
		Number of		
		Channels	Limit	Result
DH5, GFSK				
Mid Channel		79	≥ 15	Pass

Number of Hopping Frequencies

Output Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

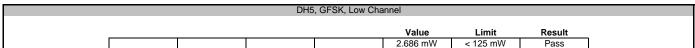
TEST EQUIPMENT

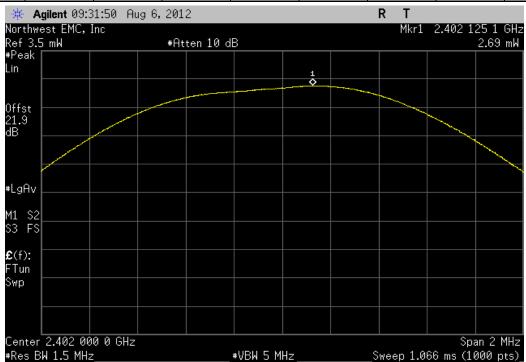
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440	AFE	1/23/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

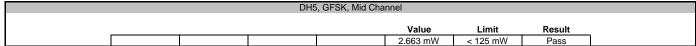
MEASUREMENT UNCERTAINTY

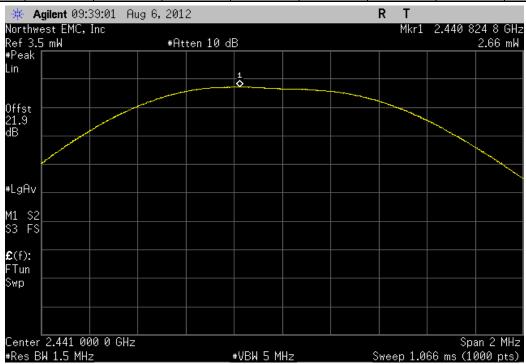
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

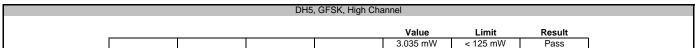
TEST DESCRIPTION

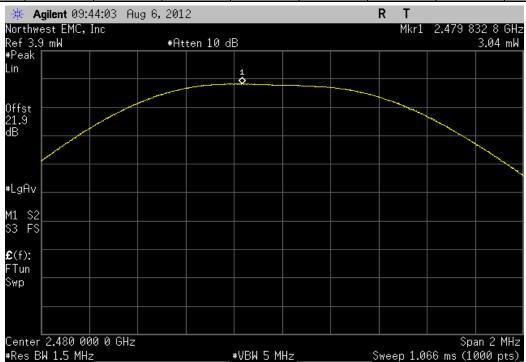

The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

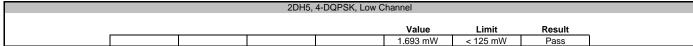

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +27dBm.

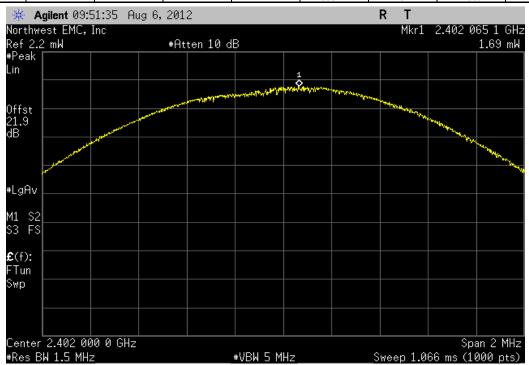


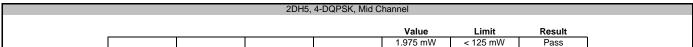

EUT.	: PolyVision Bluetooth Rad	!! =				Moule Ordon	DOI 1/0444	
Serial Number:		110				Work Order:	08/06/12	
	: PolyVision Corporation					Temperature:		
	: David Behner					Humidity:		
Project:						Barometric Pres.:		
	: Jennifer Herrett			Powe	er: 5VDC USB	Job Site:		
EST SPECIFICAT				1 Own	Test Method	JOD Site.	L V 00	
CC 15.247:2012 ANSI C63.10:2009								
CC 13.247.2012					71101 000.10.2000			
COMMENTS								
None								
	M TEST STANDARD							
	W IEST STANDARD							
DEVIATIONS FROM None	W IEST STANDARD							
	4	Signatui	. J	ennije.	Herrett			
lone		Signatui	e J	ennije	Herrott	Value	Limit	Result
one onfiguration #	4	Signatui	e J	ennife	Herrett			
one onfiguration #	4 Low Channel	Signatui	e J	lennije	c Herrett	2.686 mW	< 125 mW	Pass
one	4 Low Channel Mid Channel	Signatur	e J	lennife	CHerrett	2.686 mW 2.663 mW	< 125 mW < 125 mW	Pass Pass
one onfiguration # H5, GFSK	4 Low Channel	Signatui	e d	lennije	C Herrott	2.686 mW	< 125 mW	Pass
one configuration # H5, GFSK	4 Low Channel Mid Channel High Channel	Signatui	. 1	lennife	C Herrett	2.686 mW 2.663 mW 3.035 mW	< 125 mW < 125 mW < 125 mW	Pass Pass Pass
one configuration # H5, GFSK	Low Channel Mid Channel High Channel Low Channel	Signatur	e J	ennife	c Herrett	2.686 mW 2.663 mW 3.035 mW	< 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass
one configuration # H5, GFSK	Low Channel Mid Channel High Channel Low Channel Mid Channel	Signatui	e J	lennife	C Herrott	2.686 mW 2.663 mW 3.035 mW 1.693 mW 1.975 mW	< 125 mW < 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass Pass
one onfiguration # H5, GFSK DH5, 4-DQPSK	Low Channel Mid Channel High Channel Low Channel	Signatui	е ქ	ennife	C Herrett	2.686 mW 2.663 mW 3.035 mW	< 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass
one onfiguration # H5, GFSK DH5, 4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	Signatul	е	lennife	C Herrott	2.686 mW 2.663 mW 3.035 mW 1.693 mW 1.975 mW 2.488 mW	< 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass Pass Pass
lone	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel	Signatui	. 3	lennife	C Herrett	2.686 mW 2.663 mW 3.035 mW 1.693 mW 1.975 mW 2.488 mW	< 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass Pass Pass
onfiguration # 0H5, GFSK DH5, 4-DQPSK	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	Signatui	е 3	ennife	C Herrett	2.686 mW 2.663 mW 3.035 mW 1.693 mW 1.975 mW 2.488 mW	< 125 mW < 125 mW < 125 mW < 125 mW < 125 mW < 125 mW	Pass Pass Pass Pass Pass Pass

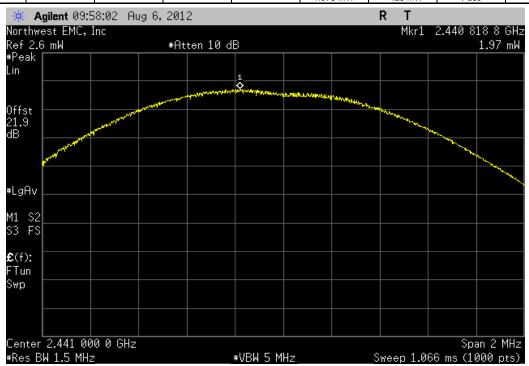


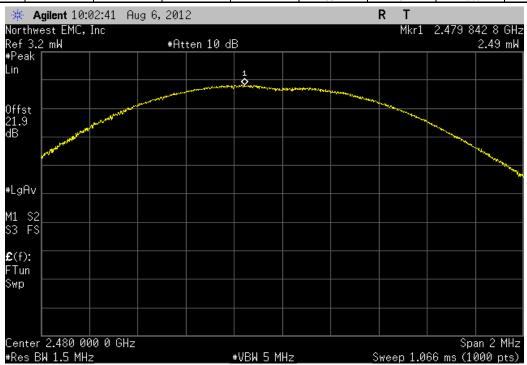


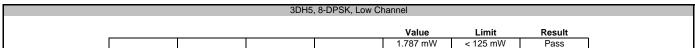


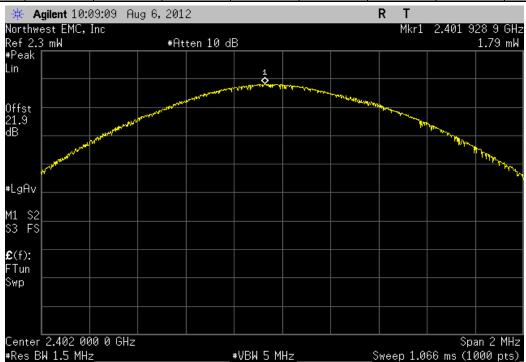


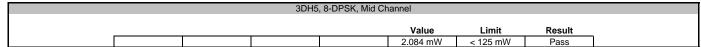


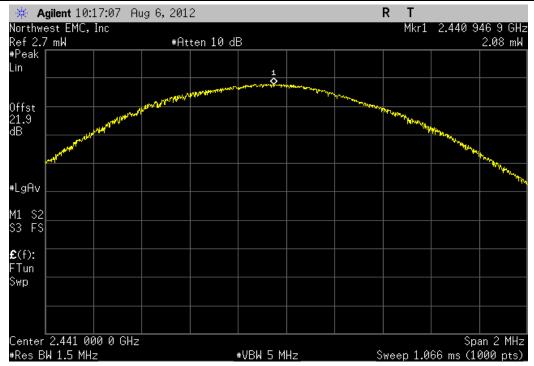


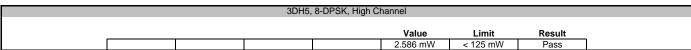


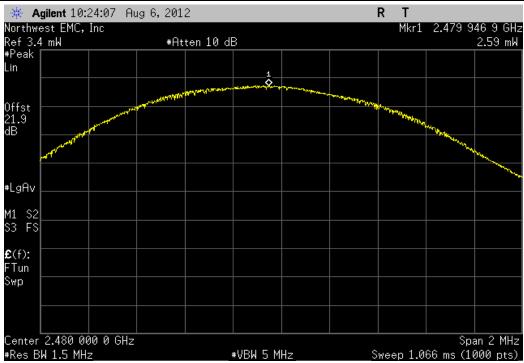





	2DH5,	4-DQPSK, High C	Channel		
			Value	Limit	Result
			2.488 mW	< 125 mW	Pass







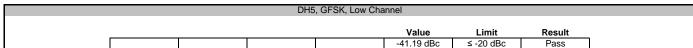
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

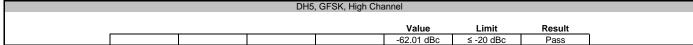
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440	AFE	1/23/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

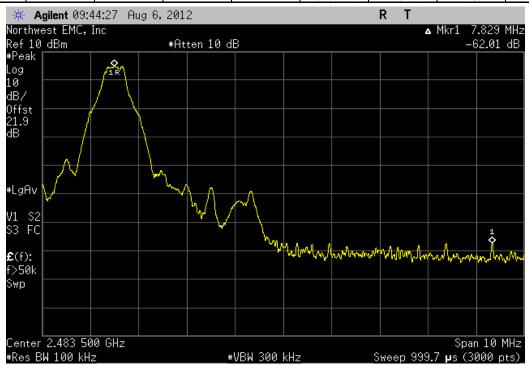
MEASUREMENT UNCERTAINTY

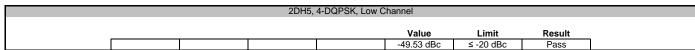
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

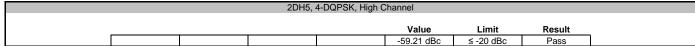

TEST DESCRIPTION

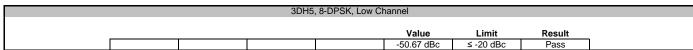
The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet in a no hop mode. The channels closest to the band edges were selected.


The spectrum was scanned below the lower band edge and above the higher band edge.

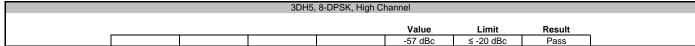



FIIT	Deluvision Blustooth Bodio				Work Order:	IDOL VO444	
	PolyVision Bluetooth Radio PV1928006C					08/06/12	
	r: PolyVision Corporation				Temperature:		
	David Behner				Humidity: Barometric Pres.:		
	t: None		Power: 5VDC	IIOD.			
EST SPECIFICA	/: Jennifer Herrett		Test M		Job Site:	IEV06	
	IIONS						
CC 15.247:2012			ANSIC	63.10:2009			
COMMENTS							
lone							
DEVIATIONS FRO	M TEST STANDARD						
lone							
Configuration #	4	Signature	Jennifec He	rett			
					Value	Limit	Result
DH5, GFSK	Low Channel				-41.19 dBc	≤ -20 dBc	Pass
	High Channel				-62.01 dBc	≤ -20 dBc	Pass
DH5, 4-DQPSK	<u> </u>					,	
.,	Low Channel				-49.53 dBc	≤ -20 dBc	Pass
	High Channel				-59.21 dBc	≤ -20 dBc	Pass
							, ass
DH5 8-DPSK	riigii Cilariici						
DH5, 8-DPSK					-50 67 dBc	< -20 dBc	Pass
DH5, 8-DPSK	Low Channel High Channel				-50.67 dBc -57 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass





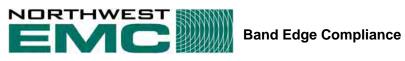




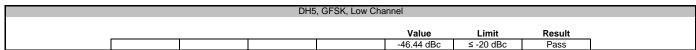
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

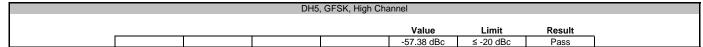
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440	AFE	1/23/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

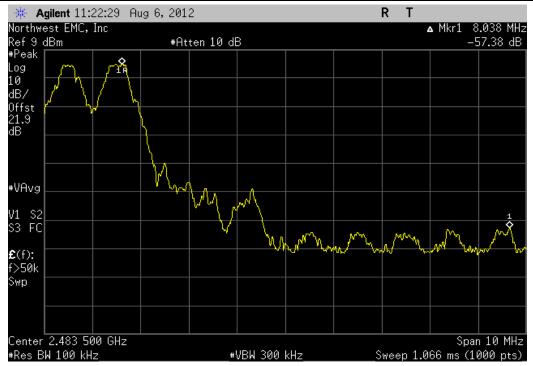

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

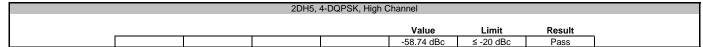

TEST DESCRIPTION

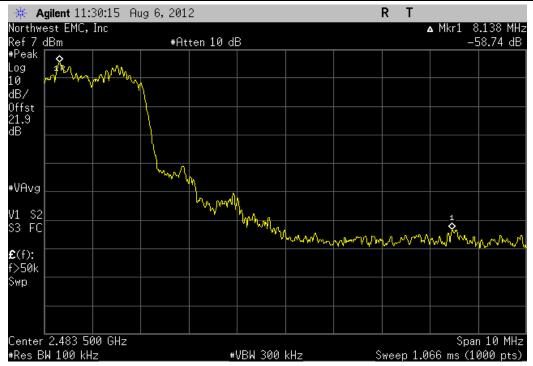
The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudorandom hopping sequence. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

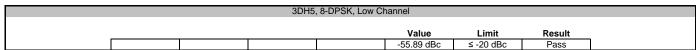

The spectrum was scanned below the lower band edge and above the higher band edge.

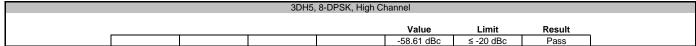


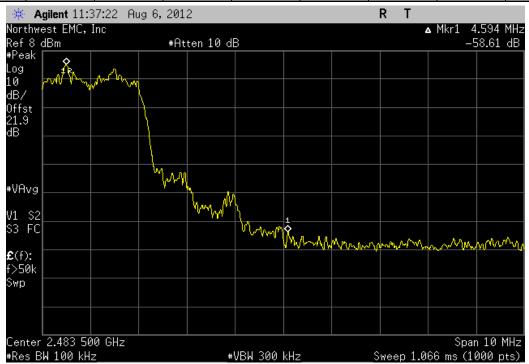
FUT	D-LAV-I Disserted D-	# -					Marala Ondern	DOL VO444	
	F: PolyVision Bluetooth Rad	110					Work Order:	08/06/12	
	r: PolyVision Corporation						Temperature: Humidity:		
	s: David Behner t: None						Barometric Pres.:		
	: Jennifer Herrett				Power: 5VD	CHEB	Job Site:		
TEST SPECIFICAT						Method	Job Site:	E V U 0	
FCC 15.247:2012	IION3					I C63.10:2009			
FCC 15.247:2012					ANS	1 C63.10.2009			
COMMENTS									
None									
None									
DEVIATIONS FRO	OM TEST STANDARD								
DEVIATIONS FRO	DM TEST STANDARD								
	OM TEST STANDARD			1	1.0				
	OM TEST STANDARD			Jenn	ifec 9	terrett			
None		Signatu	re	Jenn	ifec 9	terrett			
None		Signatu	re	Jenn	ifec ?	derrett			
None Configuration #		Signatui	re	Jenn	ifec ?	terrett	Value	Limit	Result
None	4	Signatui	re	Jenn	ifec P	terrett			
None Configuration #	4 Low Channel	Signatui	re	Jenn	ifec P	kerrett	-46.44 dBc	≤ -20 dBc	Pass
Configuration #	4	Signatu	re	Jenn	ifec 9	derrott			
None Configuration #	4 Low Channel High Channel	Signatu	re	Jenn	ifec 9	terrett	-46.44 dBc -57.38 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
None Configuration # DH5, GFSK	Low Channel High Channel Low Channel	Signatui	re	Jenn	ifec P	kerrott	-46.44 dBc -57.38 dBc -54.53 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
Configuration # DH5, GFSK DH5, 4-DQPSK	4 Low Channel High Channel	Signatui	re	Jenn	ifec F	derrett	-46.44 dBc -57.38 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
None Configuration # DH5, GFSK	Low Channel High Channel Low Channel High Channel	Signatu	re	Jenn	ifec P	terrett	-46.44 dBc -57.38 dBc -54.53 dBc -58.74 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass
None Configuration # DH5, GFSK DH5, 4-DQPSK	Low Channel High Channel Low Channel	Signatui	re	Jenn	ifec 9	kerrett	-46.44 dBc -57.38 dBc -54.53 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass











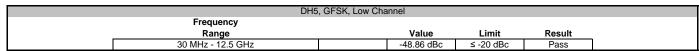
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

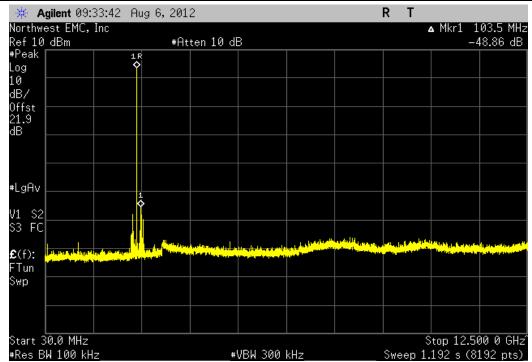
TEST EQUIPMENT

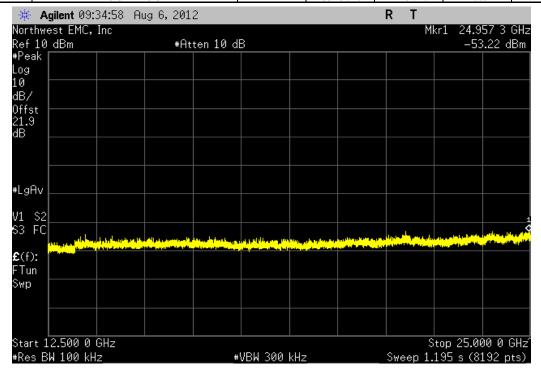
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440	AFE	1/23/2012	12
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	NCR	0
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

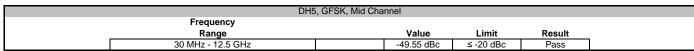
MEASUREMENT UNCERTAINTY

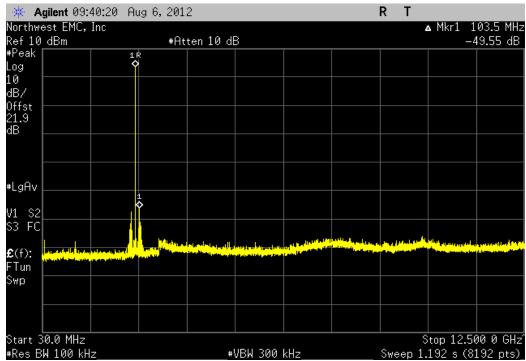
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.


TEST DESCRIPTION


The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

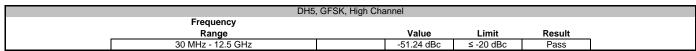

EHT	: PolvVision Bluetooth Radio		Work Order:	OI V0114	
Serial Number				08/06/12	
	: PolyVision Corporation		Temperature: 2		
	David Behner		Humidity: 4		
Project			Barometric Pres.: 1		
	: Jennifer Herrett	Power: 5VDC USB	Job Site: E		
EST SPECIFICAT		Test Method	JOD Site.	- 400	
CC 15.247:2012		ANSI C63.10:2009			
CC 13.247.2012		7/10/1000.10.2000			
OMMENTS					
lone					
00					
	M TEST STANDARD				
one					
		1. 101			
onfiguration #	4	Signature Servett			
		Frequency			
		Range	Value	Limit	Result
H5, GFSK					
					_
	Low Channel	30 MHz - 12.5 GHz	-48.86 dBc	≤ -20 dBc	Pass
	Low Channel	12.5 GHz - 25 GHz	-56.73 dBc	≤ -20 dBc	Pass
·	Low Channel Mid Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
	Low Channel Mid Channel Mid Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-56.73 dBc -49.55 dBc -56.3 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -51.24 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-56.73 dBc -49.55 dBc -56.3 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
DH5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -51.24 dBc -56.95 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass
DH5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -51.24 dBc -56.95 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass
DH5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass
DH5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
DH5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.68 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
DH5, 4-DQPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel High Channel High Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.68 dBc -50.84 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.68 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Low Channel Mid Channel Mid Channel High Channel High Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 25 GHz - 25 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.68 dBc -50.84 dBc -53.12 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel High Channel High Channel High Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.68 dBc -50.84 dBc -53.12 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -56.35 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.68 dBc -50.84 dBc -53.12 dBc -44.78 dBc -50.97 dBc	\$ -20 dBc \$ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel High Channel Low Channel High Channel Low Channel Low Channel Low Channel Low Channel Low Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.68 dBc -50.84 dBc -53.12 dBc -44.78 dBc -50.97 dBc -47.73 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel High Channel High Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.88 dBc -51.88 dBc -53.12 dBc -44.78 dBc -50.97 dBc -47.73 dBc -52.1 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass
DH5, 4-DQPSK DH5, 8-DPSK	Low Channel Mid Channel Mid Channel High Channel High Channel Low Channel Low Channel Mid Channel Mid Channel Mid Channel High Channel Low Channel High Channel Low Channel Low Channel Low Channel Low Channel Low Channel	12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-56.73 dBc -49.55 dBc -56.3 dBc -56.3 dBc -51.24 dBc -56.95 dBc -49.05 dBc -52.75 dBc -46.15 dBc -51.68 dBc -50.84 dBc -53.12 dBc -44.78 dBc -50.97 dBc -47.73 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass Pass Pass Pass Pass

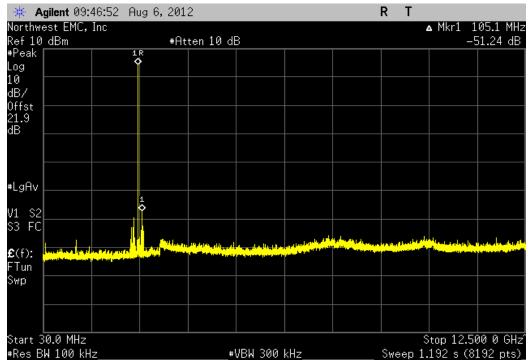




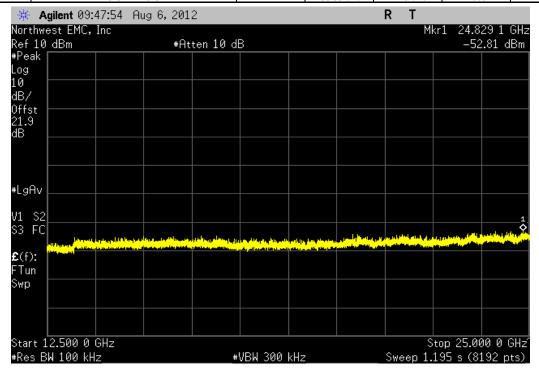
DH5, G	FSK, Low Channel		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-56.73 dBc	≤ -20 dBc	Pass

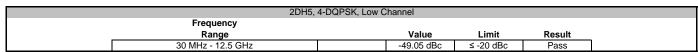




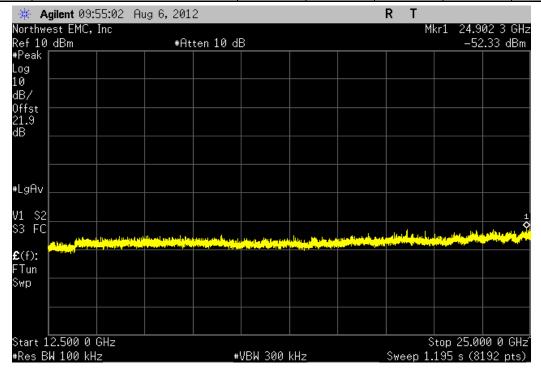


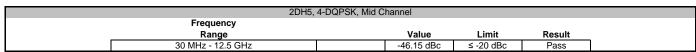
DH5,	GFSK, Mid Channel		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-56.3 dBc	≤ -20 dBc	Pass

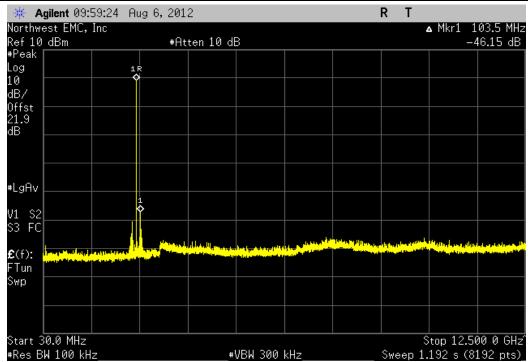




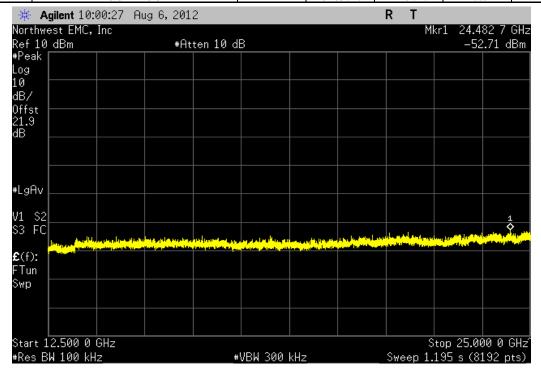
DH5, G	FSK, High Channel		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-56.95 dBc	≤ -20 dBc	Pass

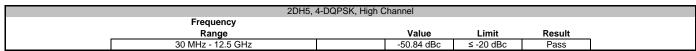


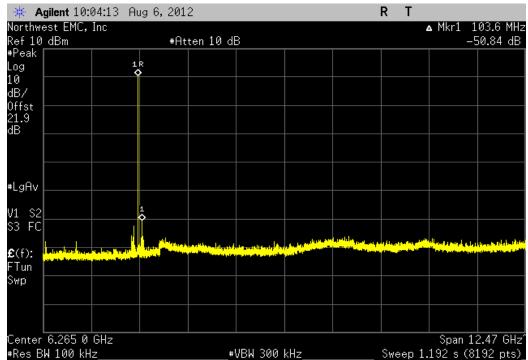




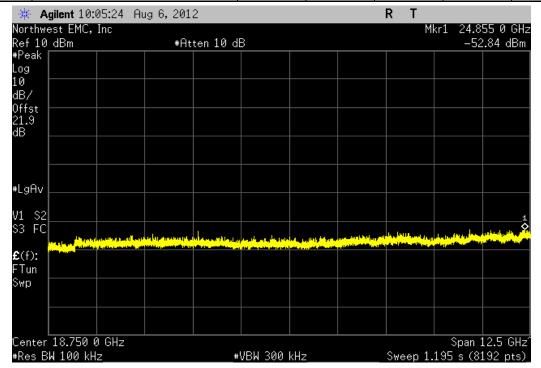
	2DH:	5, 4-DQPSK, Low C	hannel		
	Frequency				
	Range		Value	Limit	Result
l	12.5 GHz - 25 GHz		-52.75 dBc	≤ -20 dBc	Pass

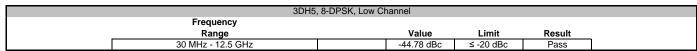


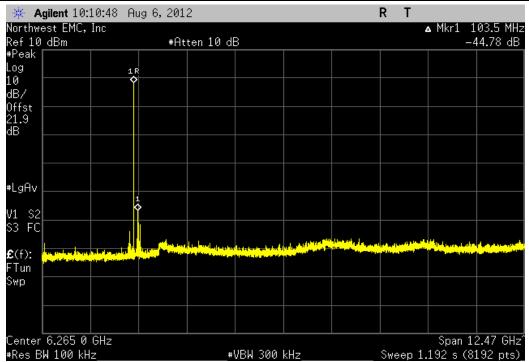




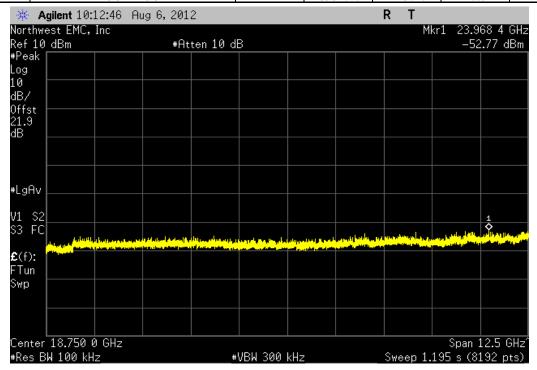
2DH5, 4	-DQPSK, Mid Channel		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-51.68 dBc	≤ -20 dBc	Pass

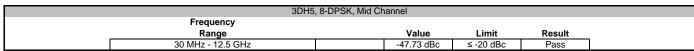


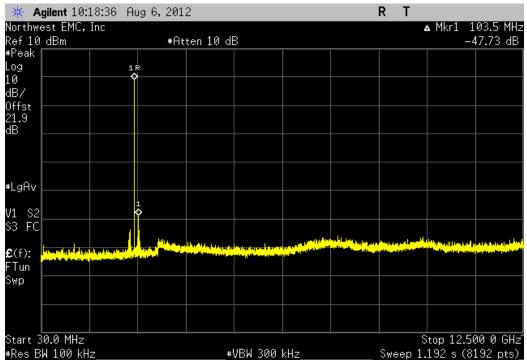




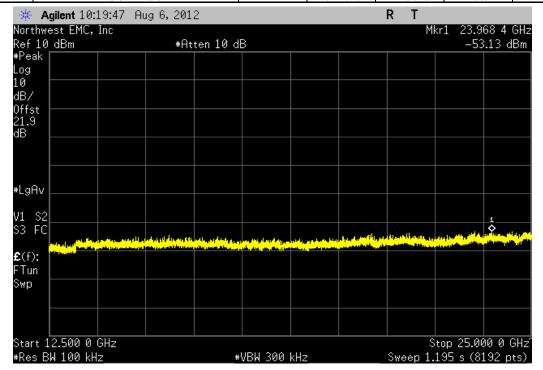
2DH	, 4-DQPSK, High (Channel		
Frequency				
Range		Value	Limit	Result
12.5 GHz - 25 GHz		-53.12 dBc	≤ -20 dBc	Pass

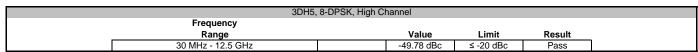


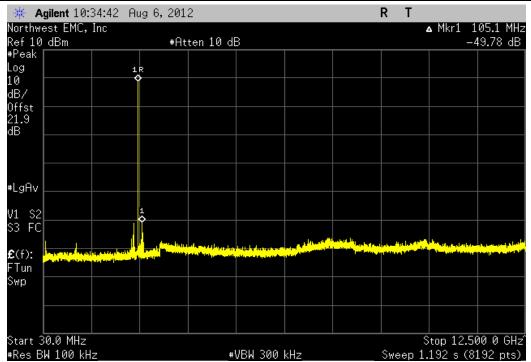




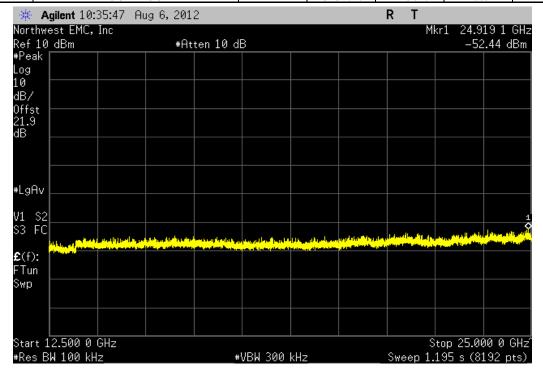
3DH5, 8-DP	SK, Low Channel		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-50.97 dBc	≤ -20 dBc	Pass







3DH5,	8-DPSK, Mid Channel		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-52.1 dBc	≤ -20 dBc	Pass



3DH5, 8-	DPSK, High Channel		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-51.34 dBc	≤ -20 dBc	Pass

RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting with modullation and channel as noted in comments

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

POLV0114 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 26000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	2/7/2012	12 mo
Pre-Amplifier	Miteq	AM-1616-1000	AOL	6/26/2012	12 mo
Antenna, Biconilog	EMCO	3142	AXJ	5/16/2012	12 mo
EV01 Cables	N/A	Bilog Cables	EVA	6/26/2012	12 mo
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFD	7/6/2012	24 mo
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	6/27/2012	12 mo
Antenna, Horn	ETS	3115	AIZ	1/24/2011	24 mo
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	6/27/2012	12 mo
High Pass Filter	Micro-Tronics	HPM50111	HFO	7/6/2012	24 mo
Antenna, Horn	ETS	3160-07	AHU	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	2/28/2012	12 mo
Antenna, Horn	ETS	3160-08	AHV	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	2/28/2012	12 mo
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	2/28/2012	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

For radiated measurements against the average limit, the FCC allows a frequency hopping radio to calculate a duty cycle correction factor to be applied. The calculation is based upon a duty cycle the transmitter on time in either the period of the transmit pulse train or 100ms whichever is less. =20°LOG(On time/Period). The or time of the Eno Receiver during all modulations is 2.9ms within a period of 100ms. Therefore the duty cycle correction is 20°LOG(2.9/100) = -30.8 dB

10

0 | 10

RADIATED EMISSIONS

W	ork Order:	POLV0114	Date:	08/0	2/12			
**	Project:		Temperature:		5 °C	11	46	1
	Job Site:		Humidity:		RH			7
Seria	al Number:		Barometric Pres.:		mbar		y: Mark Baytan	
OCITE		Eno Receiver	Darometric i ics	1010.	Tilbai	1031001	by. Iwan Daylan	
Con	figuration:							
		Polyvision Corporation	<u> </u>					
		David Behner						
		120VAC/60Hz						
	ting Mode:	Tura a consistina a societa con a di	ullation and channel as r	noted in co	mments			
	Deviations:	Nana						
L	Deviations:							
C	Comments:	None						
					-			
st Speci CC 15.24	ifications				Test Method ANSI C63.10:200			
0 10.24	71.2012				A 1401 000. 10.200			
Run#	12	Test Distance (m)	3 Antenna	Height(s)	1-4	·m	Results	Pass
		Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
	12	Test Distance (m)	3 Antenna	Height(s)	1-4	·m	Results	Pass
8	30	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8		Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8	30	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8	30	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6 5	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 8 7 6 5 4 4	70 	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6 5 4 4	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6 5 4	70 	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6 5 5 3 3	70 	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass
8 7 6 5 5 4 4 3 3	70	Test Distance (m)	3 Antenna	Height(s)	1-4	m	Results	Pass

1000 **MHz**

100

'K	• /	AV (QF

100000

10000

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Duty Cycle Correction Factor (dB)	Adjusted ()	Spec. Limit	Compared to Spec. (dB)	Comments
2483.503	28.6	1.9	1.0	182.0	3.0	20.0	Horz	AV	0.0	50.5	54.0	-3.5	High Channel, DH5, EUT horizontal
2483.496	28.1	1.9	1.9	143.0	3.0	20.0	Vert	AV	0.0	50.0	54.0	-4.0	High Channel, DH5, EUT on side
2483.496	27.9	1.9	1.0	165.0	3.0	20.0	Horz	AV	0.0	49.8	54.0	-4.2	High Channel, 3DH5, EUT horizontal
2483.498	27.7	1.9	1.0	224.0	3.0	20.0	Vert	AV	0.0	49.6	54.0	-4.4	High Channel, DH5, EUT vertical
2483.500	26.5	1.9	1.0	194.0	3.0	20.0	Horz	AV	0.0	48.4	54.0	-5.6	High Channel, 2DH5, EUT horizontal
2483.503	26.5	1.9	2.1	176.0	3.0	20.0	Vert	AV	0.0	48.4	54.0	-5.6	High Channel, 3DH5, EUT vertical
2483.504	26.3	1.9	3.7	25.0	3.0	20.0	Vert	AV	0.0	48.2	54.0	-5.8	High Channel, 2DH5, EUT on side
4804.290	57.6	10.2	1.0	162.0	3.0	0.0	Vert	PK	0.0	67.8	74.0	-6.2	Low Channel, DH5, EUT on side
4804.345	57.2	10.2	1.0	186.0	3.0	0.0	Horz	PK	0.0	67.4	74.0	-6.6	Low Channel, DH5, EUT Horizontal
4804.270	57.0	10.2	1.0	183.0	3.0	0.0	Horz	PK	0.0	67.2	74.0	-6.8	Low Channel, 2-DH5, EUT horizontal
4882.180	56.6	10.4	1.0	186.0	3.0	0.0	Horz	PK	0.0	67.0	74.0	-7.0	Mid Channel, DH5, EUT horizontal
4803.900	56.8	10.2	1.0	182.0	3.0	0.0	Horz	PK	0.0	67.0	74.0	-7.0	Low Channel, 3-DH5, EUT horizontal
4804.160	56.4	10.2	1.1	169.0	3.0	0.0	Vert	PK	0.0	66.6	74.0	-7.4	Low Channel, 2-DH5, EUT on side
4804.015	56.0	10.2	1.0	183.0	3.0	0.0	Vert	PK	0.0	66.2	74.0	-7.8	Low Channel, 3-DH5, EUT on side
4881.825	55.7	10.4	1.0	169.0	3.0	0.0	Vert	PK	0.0	66.1	74.0	-7.9	Mid Channel, DH5, EUT on side
4803.705	55.0	10.2	1.1	164.0	3.0	0.0	Vert	PK	0.0	65.2	74.0	-8.8	Low Channel, DH5, EUT Horizontal
4959.670	54.0	10.7	1.0	184.0	3.0	0.0	Horz	PK	0.0	64.7	74.0	-9.3	High Channel, DH5, EUT Horizontal
4804.275	54.3	10.2	1.0	187.0	3.0	0.0	Horz	PK	0.0	64.5	74.0	-9.5	Low Channel, DH5, EUT on side
4959.630	52.8	10.7	1.0	172.0	3.0	0.0	Vert	PK	0.0	63.5	74.0	-10.5	High Channel, DH5, EUT on side
4804.265	52.4	10.2	1.0	149.0	3.0	0.0	Horz	PK	0.0	62.6	74.0	-11.4	Low Channel, DH5, EUT vertical
2483.505	39.0	1.9	1.0	165.0	3.0	20.0	Horz	PK	0.0	60.9	74.0	-13.1	High Channel, 3DH5, EUT horizontal
2483.504	38.9	1.9	1.0	182.0	3.0	20.0	Horz	PK	0.0	60.8	74.0	-13.2	High Channel, DH5, EUT horizontal
2483.503	38.7	1.9	1.9	143.0	3.0	20.0	Vert	PK	0.0	60.6	74.0	-13.4	High Channel, DH5, EUT on side
4804.190	50.3	10.2	1.0	195.0	3.0	0.0	Vert	PK	0.0	60.5	74.0	-13.5	Low Channel, DH5, EUT vertical
2483.504	38.5	1.9	1.0	224.0	3.0	20.0	Vert	PK	0.0	60.4	74.0	-13.6	High Channel, DH5, EUT vertical
2483.503	37.8	1.9	2.1	176.0	3.0	20.0	Vert	PK	0.0	59.7	74.0	-14.3	High Channel, 3DH5, EUT vertical
2483.498	37.4	1.9	1.0	194.0	3.0	20.0	Horz	PK	0.0	59.3	74.0	-14.7	High Channel, 2DH5, EUT horizontal
7322.865	40.1	19.0	1.9	303.0	3.0	0.0	Vert	PK	0.0	59.1	74.0	-14.9	Mid Channel, DH5, EUT on side

19219.950	45.0	-6.4	1.0	274.0	3.0	0.0	Vert	AV	0.0	38.6	54.0	-15.4	Low Channel, DH5, EUT on side
2483.505	36.5	1.9	3.7	25.0	3.0	20.0	Vert	PK	0.0	58.4	74.0	-15.6	High Channel, 2DH5, EUT on side
7439.515	38.1	19.5	1.6	312.0	3.0	0.0	Vert	PK	0.0	57.6	74.0	-16.4	High Channel, DH5, EUT on side
7323.395	38.2	19.0	1.6	18.0	3.0	0.0	Horz	PK	0.0	57.2	74.0	-16.8	Mid Channel, DH5, EUT horizontal
7439.565	37.5	19.5	1.7	328.0	3.0	0.0	Horz	PK	0.0	57.0	74.0	-17.0	Low Channel, DH5, EUT Horizontal
4804.000	56.2	10.2	1.0	162.0	3.0	0.0	Vert	AV	-30.8	35.6	54.0	-18.4	Low Channel, DH5, EUT on side
19219.990	41.6	-6.4	1.0	229.0	3.0	0.0	Horz	AV	0.0	35.2	54.0	-18.8	Low Channel, DH5, EUT horizontal
19838.670	41.3	-6.2	1.0	244.0	3.0	0.0	Vert	AV	0.0	35.1	54.0	-18.9	High Channel, DH5, EUT vertical
4803.990	55.7	10.2	1.0	186.0	3.0	0.0	Horz	AV	-30.8	35.1	54.0	-18.9	Low Channel, DH5, EUT Horizontal
4881.955	55.1	10.4	1.0	186.0	3.0	0.0	Horz	AV	-30.8	34.7	54.0	-19.3	Mid Channel, DH5, EUT horizontal
19520.470	40.6	-6.3	1.0	108.0	3.0	0.0	Vert	AV	0.0	34.3	54.0	-19.7	Mid Channel, DH5, EUT on side
19518.270	40.6	-6.3	1.0	64.0	3.0	0.0	Horz	AV	0.0	34.3	54.0	-19.7	Mid Channel, DH5, EUT horizontal
4881.985	54.2	10.4	1.0	169.0	3.0	0.0	Vert	AV	-30.8	33.8	54.0	-20.2	Mid Channel, DH5, EUT on side
4803.995	53.4	10.4	1.1	164.0	3.0	0.0	Vert	AV	-30.8	32.8	54.0	-20.2	Low Channel, DH5, EUT Horizontal
4959.990	52.2				3.0	0.0	Horz	AV		32.0		-21.2	Low Channel, DH5, EUT Horizontal
	52.2 52.7	10.7	1.0 1.0	184.0					-30.8		54.0 54.0	-21.9	
4803.995		10.2		187.0	3.0	0.0	Horz	AV	-30.8	32.1			Low Channel, DH5, EUT on side
4804.095	52.5	10.2	1.0	183.0	3.0	0.0	Horz	AV	-30.8	31.9	54.0	-22.1	Low Channel, 2-DH5, EUT horizontal
4804.095	52.2	10.2	1.0	182.0	3.0	0.0	Horz	AV	-30.8	31.6	54.0	-22.4	Low Channel, 3-DH5, EUT horizontal
4804.010	51.9	10.2	1.1	169.0	3.0	0.0	Vert	AV	-30.8	31.3	54.0	-22.7	Low Channel, 2-DH5, EUT on side
4959.995	50.9	10.7	1.0	172.0	3.0	0.0	Vert	AV	-30.8	30.8	54.0	-23.2	High Channel, DH5, EUT on side
4804.070	51.3	10.2	1.0	183.0	3.0	0.0	Vert	AV	-30.8	30.7	54.0	-23.3	Low Channel, 3-DH5, EUT on side
12399.140	32.7	-2.4	1.0	5.0	3.0	0.0	Horz	AV	0.0	30.3	54.0	-23.7	High Channel, DH5, EUT horizontal
12010.400	34.8	-4.9	1.0	187.0	3.0	0.0	Horz	AV	0.0	29.9	54.0	-24.1	Low Channel, DH5, EUT horizontal
4804.005	50.5	10.2	1.0	149.0	3.0	0.0	Horz	AV	-30.8	29.9	54.0	-24.1	Low Channel, DH5, EUT vertical
12399.410	32.2	-2.4	1.0	143.0	3.0	0.0	Vert	AV	0.0	29.8	54.0	-24.2	High Channel, DH5, EUT on side
12009.310	34.1	-4.9	1.0	143.0	3.0	0.0	Vert	AV	0.0	29.2	54.0	-24.8	Low Channel, DH5, EUT on side
12198.070	31.8	-3.7	1.0	176.0	3.0	0.0	Horz	AV	0.0	28.1	54.0	-25.9	Mid Channel, DH5, EUT horizontal
12198.400	31.7	-3.7	1.0	34.0	3.0	0.0	Vert	AV	0.0	28.0	54.0	-26.0	Mid Channel, DH5, EUT on side
4804.000	48.0	10.2	1.0	195.0	3.0	0.0	Vert	AV	-30.8	27.4	54.0	-26.6	Low Channel, DH5, EUT vertical
19219.900	52.7	-6.4	1.0	274.0	3.0	0.0	Vert	PK	0.0	46.3	74.0	-27.7	Low Channel, DH5, EUT on side
19840.080	52.2	-6.2	1.0	244.0	3.0	0.0	Vert	PK	0.0	46.0	74.0	-28.0	High Channel, DH5, EUT vertical
19841.990	52.0	-6.2	1.0	122.0	3.0	0.0	Horz	PK	0.0	45.8	74.0	-28.2	High Channel, DH5, EUT on side
19520.730	51.8	-6.3	1.0	108.0	3.0	0.0	Vert	PK	0.0	45.5	74.0	-28.5	Mid Channel, DH5, EUT on side
19519.120	51.0	-6.3	1.0	64.0	3.0	0.0	Horz	PK	0.0	44.7	74.0	-29.3	Mid Channel, DH5, EUT horizontal
19220.650	51.0	-6.4	1.0	229.0	3.0	0.0	Horz	PK	0.0	44.6	74.0	-29.4	Low Channel, DH5, EUT horizontal
7322.890	32.8	19.0	1.9	303.0	3.0	0.0	Vert	AV	-30.8	21.0	54.0	-33.0	Mid Channel, DH5, EUT on side
12399,770	43.1	-2.4	1.0	143.0	3.0	0.0	Vert	PK	0.0	40.7	74.0	-33.3	High Channel, DH5, EUT on side
12398.880	43.1	-2.4	1.0	5.0	3.0	0.0	Horz	PK	0.0	40.7	74.0	-33.3	High Channel, DH5, EUT horizontal
12010.220	45.2	-4.9	1.0	187.0	3.0	0.0	Horz	PK	0.0	40.3	74.0	-33.7	Low Channel, DH5, EUT horizontal
12010.670	44.3	-4.9	1.0	143.0	3.0	0.0	Vert	PK	0.0	39.4	74.0	-34.6	Low Channel, DH5, EUT on side
12199.830	42.7	-3.7	1.0	176.0	3.0	0.0	Horz	PK	0.0	39.0	74.0	-35.0	Mid Channel, DH5, EUT horizontal
7322.910	30.3	19.0	1.6	18.0	3.0	0.0	Horz	AV	-30.8	18.5	54.0	-35.5	Mid Channel, DH5, EUT horizontal
12201.410	42.0	-3.7	1.0	34.0	3.0	0.0	Vert	PK	0.0	38.3	74.0	-35.7	Mid Channel, DH5, EUT on side
7439.920	28.9	19.5	1.6	312.0	3.0	0.0	Vert	AV	-30.8	17.6	54.0	-36.4	High Channel, DH5, EUT on side
7439.810	27.9	19.5	1.7	328.0	3.0	0.0	Horz	AV	-30.8	16.6	54.0	-30.4	Low Channel, DH5, EUT Horizontal
1439.010	21.9	19.5	1.7	320.0	3.0	0.0	HUIZ	AV	-30.0	10.0	54.0	-37.4	Low Charmer, DHO, EUT HURZONTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

MODEO OF OFERTAION
Tx, High Channel, GFSK/DH5
Tx, Mid Channel, GFSK/DH5
Tx, Low Channel, GFSK/DH5

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

POLV0114 - 3

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

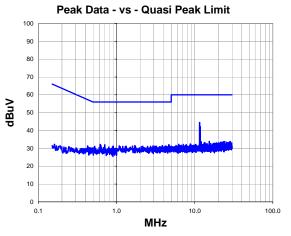
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARH	3/29/2012	12 mo
High Pass Filter	TTE	H97-100K-50-720B	HHD	2/1/2012	24 mo
Attenuator	Coaxicom	66702 2910-20	RBR	8/3/2011	12 mo
EV07 Cables	N/A	Conducted Cables	EVG	4/27/2012	12 mo
LISN	Solar	9252-50-R-24-BNC	LIR	11/4/2011	12 mo

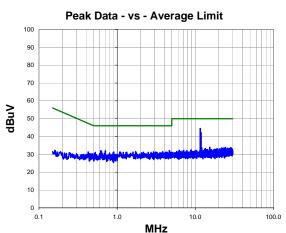
MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Measurements were made using the bandwidths and detectors specified. No video filter was used.

MEASUREMENT UNCERTAINTY

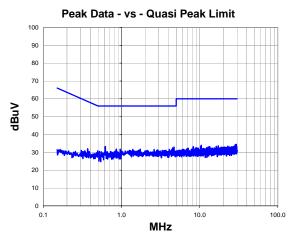

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

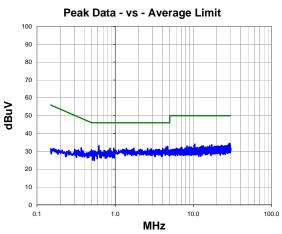

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

Work Order:	POLV0114	Date:	08/03/12	1	1 01
Project:	None	Temperature:	24 °C	Jenne	Jec Herrett
Job Site:	EV07	Humidity:	45% RH		
Serial Number:	PV1928006A	Barometric Pres.:	1015 mbar	Tested by:	Jennifer Herrett
EUT:	PolyVision Bluetooth	Radio			
Configuration:	3				
Customer:	PolyVision Corporatio	n			
Attendees:	David Behner				
EUT Power:	120VAC/60Hz				
Operating Mode:	Tx, Low Channel, GF	SK/DH5			
Deviations:	None				
Comments:	None				
Test Specifications			Test Meth	od	
FCC 15.207:2012			ANSI C63.	10:2009	
Run # 3	Line:	High Line	Ext. Attenuation:	20	Results Pass

Peak	Data	- vs -	Quasi	Peak	Limit

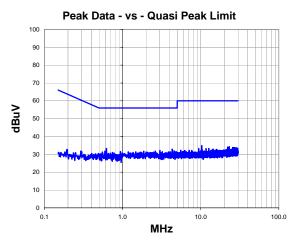

		Data 10	Quadi i dai		
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
11.550	23.4	21.0	44.4	60.0	-15.6
11.820	21.0	21.1	42.1	60.0	-17.9
0.619	11.9	20.3	32.2	56.0	-23.8
0.708	11.7	20.3	32.0	56.0	-24.0
4.680	11.3	20.7	32.0	56.0	-24.0
0.631	11.3	20.3	31.6	56.0	-24.4
3.840	11.0	20.6	31.6	56.0	-24.4
1.720	11.1	20.4	31.5	56.0	-24.5
2.920	10.9	20.5	31.4	56.0	-24.6
1.088	11.0	20.4	31.4	56.0	-24.6
1.600	10.9	20.4	31.3	56.0	-24.7
3.096	10.8	20.5	31.3	56.0	-24.7
4.224	10.7	20.6	31.3	56.0	-24.7
0.903	10.9	20.4	31.3	56.0	-24.7
4.384	10.6	20.7	31.3	56.0	-24.7
3.224	10.7	20.5	31.2	56.0	-24.8
2.168	10.7	20.5	31.2	56.0	-24.8
1.744	10.7	20.5	31.2	56.0	-24.8
2.720	10.6	20.5	31.1	56.0	-24.9
2.496	10.6	20.5	31.1	56.0	-24.9

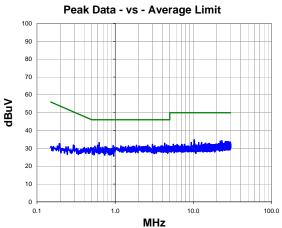

Peak	Data -	VS -	Average	I imit

Peak Data - vs - Average Limit					
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
11.550	23.4	21.0	44.4	50.0	-5.6
11.820	21.0	21.1	42.1	50.0	-7.9
0.619	11.9	20.3	32.2	46.0	-13.8
0.708	11.7	20.3	32.0	46.0	-14.0
4.680	11.3	20.7	32.0	46.0	-14.0
0.631	11.3	20.3	31.6	46.0	-14.4
3.840	11.0	20.6	31.6	46.0	-14.4
1.720	11.1	20.4	31.5	46.0	-14.5
2.920	10.9	20.5	31.4	46.0	-14.6
1.088	11.0	20.4	31.4	46.0	-14.6
1.600	10.9	20.4	31.3	46.0	-14.7
3.096	10.8	20.5	31.3	46.0	-14.7
4.224	10.7	20.6	31.3	46.0	-14.7
0.903	10.9	20.4	31.3	46.0	-14.7
4.384	10.6	20.7	31.3	46.0	-14.7
3.224	10.7	20.5	31.2	46.0	-14.8
2.168	10.7	20.5	31.2	46.0	-14.8
1.744	10.7	20.5	31.2	46.0	-14.8
2.720	10.6	20.5	31.1	46.0	-14.9
2.496	10.6	20.5	31.1	46.0	-14.9

Work Order:	POLV0114	Date:	08/03/12	1 101	
Project:	None	Temperature:	24 °C	Jennifec He	nett
Job Site:	EV07	Humidity:	45% RH		
Serial Number:	PV1928006A	Barometric Pres.:	1015 mbar	Tested by: Jennifer Herrett	
EUT:	PolyVision Bluetooth	Radio			
Configuration:	3				
Customer:	PolyVision Corporatio	n			
Attendees:	David Behner				
EUT Power:	120VAC/60Hz				
Operating Mode:	Tx, Low Channel, GF	SK/DH5			
Deviations:	None				
Comments:	None :				
Test Specifications			Test Meth	od	
FCC 15.207:2012			ANSI C63	10:2009	
Run # 4	Line:	Neutral	Ext. Attenuation:	20 Results	Pass

Peak	Data	- VS -	Quasi	Peak	I imit

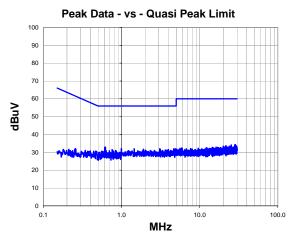

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.619	13.0	20.3	33.3	56.0	-22.7
4.688	12.1	20.7	32.8	56.0	-23.2
4.488	11.8	20.7	32.5	56.0	-23.5
0.861	11.5	20.4	31.9	56.0	-24.1
0.961	11.4	20.4	31.8	56.0	-24.2
1.736	11.3	20.5	31.8	56.0	-24.2
4.064	11.1	20.6	31.7	56.0	-24.3
1.392	11.2	20.4	31.6	56.0	-24.4
2.608	11.1	20.5	31.6	56.0	-24.4
4.376	10.8	20.7	31.5	56.0	-24.5
2.896	10.9	20.5	31.4	56.0	-24.6
1.664	10.8	20.4	31.2	56.0	-24.8
3.696	10.6	20.6	31.2	56.0	-24.8
3.336	10.6	20.5	31.1	56.0	-24.9
2.824	10.6	20.5	31.1	56.0	-24.9
1.256	10.7	20.4	31.1	56.0	-24.9
2.136	10.6	20.5	31.1	56.0	-24.9
0.497	10.6	20.3	30.9	56.1	-25.2
0.833	10.4	20.3	30.7	56.0	-25.3
0.723	10.2	20.3	30.5	56.0	-25.5

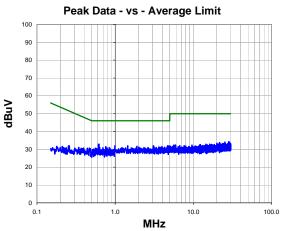

Peak Data	- VS -	Average	I imit

Peak Data - vs - Average Limit					
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.619	13.0	20.3	33.3	46.0	-12.7
4.688	12.1	20.7	32.8	46.0	-13.2
4.488	11.8	20.7	32.5	46.0	-13.5
0.861	11.5	20.4	31.9	46.0	-14.1
0.961	11.4	20.4	31.8	46.0	-14.2
1.736	11.3	20.5	31.8	46.0	-14.2
4.064	11.1	20.6	31.7	46.0	-14.3
1.392	11.2	20.4	31.6	46.0	-14.4
2.608	11.1	20.5	31.6	46.0	-14.4
4.376	10.8	20.7	31.5	46.0	-14.5
2.896	10.9	20.5	31.4	46.0	-14.6
1.664	10.8	20.4	31.2	46.0	-14.8
3.696	10.6	20.6	31.2	46.0	-14.8
3.336	10.6	20.5	31.1	46.0	-14.9
2.824	10.6	20.5	31.1	46.0	-14.9
1.256	10.7	20.4	31.1	46.0	-14.9
2.136	10.6	20.5	31.1	46.0	-14.9
0.497	10.6	20.3	30.9	46.1	-15.2
0.833	10.4	20.3	30.7	46.0	-15.3
0.723	10.2	20.3	30.5	46.0	-15.5

Work Order:	POLV0114	Date:	08/03/12	1	1 01
Project:	None	Temperature:	24 °C	Jenne	Jec Herrett
Job Site:	EV07	Humidity:	45% RH		
Serial Number:	PV1928006A	Barometric Pres.:	1015 mbar	Tested by	Jennifer Herrett
EUT:	PolyVision Bluetooth	Radio			
Configuration:	3				
Customer:	PolyVision Corporatio	n			
Attendees:	David Behner				
EUT Power:	120VAC/60Hz				
Operating Mode:	Tx, Mid Channel, GFS	SK/DH5			
Deviations	None				
Comments	None				
Test Specifications			Test Meth	od	
FCC 15.207:2012			ANSI C63	10:2009	
Run # 5	Line:	Neutral	Ext. Attenuation:	20	Results Pass

Peak	Data	- vs -	Quasi	Peak	Limit

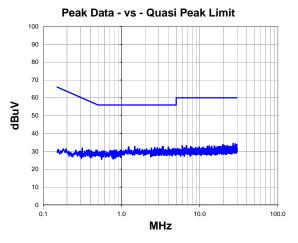

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.623	13.0	20.3	33.3	56.0	-22.7
4.304	12.3	20.6	32.9	56.0	-23.1
3.008	11.7	20.5	32.2	56.0	-23.8
4.552	11.3	20.7	32.0	56.0	-24.0
4.336	11.3	20.6	31.9	56.0	-24.1
2.616	11.3	20.5	31.8	56.0	-24.2
1.872	11.3	20.5	31.8	56.0	-24.2
0.595	11.4	20.3	31.7	56.0	-24.3
0.940	11.2	20.4	31.6	56.0	-24.4
4.848	10.8	20.7	31.5	56.0	-24.5
3.224	10.9	20.5	31.4	56.0	-24.6
1.480	11.0	20.4	31.4	56.0	-24.6
1.184	11.0	20.4	31.4	56.0	-24.6
3.912	10.8	20.6	31.4	56.0	-24.6
0.551	11.0	20.3	31.3	56.0	-24.7
4.088	10.7	20.6	31.3	56.0	-24.7
2.000	10.8	20.5	31.3	56.0	-24.7
1.688	10.8	20.4	31.2	56.0	-24.8
2.488	10.7	20.5	31.2	56.0	-24.8
4.000	10.6	20.6	31.2	56.0	-24.8

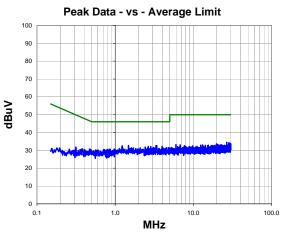

Peak	Data -	VS -	Average	I imit

Feak Data - vs - Average Littlit					
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.623	13.0	20.3	33.3	46.0	-12.7
4.304	12.3	20.6	32.9	46.0	-13.1
3.008	11.7	20.5	32.2	46.0	-13.8
4.552	11.3	20.7	32.0	46.0	-14.0
4.336	11.3	20.6	31.9	46.0	-14.1
2.616	11.3	20.5	31.8	46.0	-14.2
1.872	11.3	20.5	31.8	46.0	-14.2
0.595	11.4	20.3	31.7	46.0	-14.3
0.940	11.2	20.4	31.6	46.0	-14.4
4.848	10.8	20.7	31.5	46.0	-14.5
3.224	10.9	20.5	31.4	46.0	-14.6
1.480	11.0	20.4	31.4	46.0	-14.6
1.184	11.0	20.4	31.4	46.0	-14.6
3.912	10.8	20.6	31.4	46.0	-14.6
0.551	11.0	20.3	31.3	46.0	-14.7
4.088	10.7	20.6	31.3	46.0	-14.7
2.000	10.8	20.5	31.3	46.0	-14.7
1.688	10.8	20.4	31.2	46.0	-14.8
2.488	10.7	20.5	31.2	46.0	-14.8
4.000	10.6	20.6	31.2	46.0	-14.8

Work Orde	: POLV0114	Date:	08/03/12	1	1 01	
Projec	:: None	Temperature:	24 °C	Jenn	Jec Herro	#
Job Site	EV07	Humidity:	45% RH			
Serial Numbe	: PV1928006A	Barometric Pres.:	1015 mbar	Tested b	y: Jennifer Herrett	
EUT	: PolyVision Bluetooth	Radio				
Configuration	: 3					
Custome	: PolyVision Corporation	on				<u> </u>
Attendees	: David Behner					
EUT Powe	: 120VAC/60Hz					
Operating Mode	Tx, Mid Channel, GFS	SK/DH5				
Deviations	None					
Comments	None					
Test Specifications	3		Test Meth	od		
FCC 15.207:2012	_		ANSI C63	.10:2009		
Run # 6	Line:	High Line	Ext. Attenuation:	20	Results Pass	;

Peak	Data	- vs -	Quasi	Peak	Limit

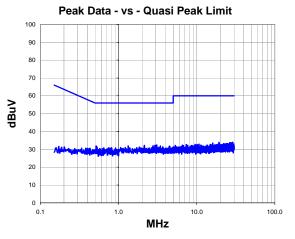

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.621	12.6	20.3	32.9	56.0	-23.1
0.611	12.5	20.3	32.8	56.0	-23.2
0.997	11.7	20.4	32.1	56.0	-23.9
3.088	11.5	20.5	32.0	56.0	-24.0
1.448	11.6	20.4	32.0	56.0	-24.0
4.872	11.3	20.7	32.0	56.0	-24.0
4.672	11.3	20.7	32.0	56.0	-24.0
1.904	11.3	20.5	31.8	56.0	-24.2
3.120	11.2	20.5	31.7	56.0	-24.3
3.976	11.0	20.6	31.6	56.0	-24.4
0.757	11.2	20.3	31.5	56.0	-24.5
4.920	10.8	20.7	31.5	56.0	-24.5
2.016	10.8	20.5	31.3	56.0	-24.7
3.616	10.7	20.6	31.3	56.0	-24.7
3.888	10.6	20.6	31.2	56.0	-24.8
3.704	10.6	20.6	31.2	56.0	-24.8
3.760	10.5	20.6	31.1	56.0	-24.9
0.838	10.7	20.4	31.1	56.0	-24.9
3.360	10.5	20.5	31.0	56.0	-25.0
2.648	10.5	20.5	31.0	56.0	-25.0

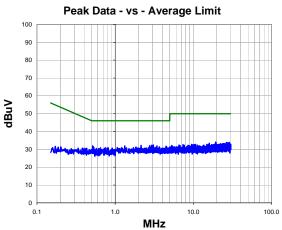

Peak I	Data -	vs - A	Average	l imit

Peak Data - vs - Average Limit					
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.621	12.6	20.3	32.9	46.0	-13.1
0.611	12.5	20.3	32.8	46.0	-13.2
0.997	11.7	20.4	32.1	46.0	-13.9
3.088	11.5	20.5	32.0	46.0	-14.0
1.448	11.6	20.4	32.0	46.0	-14.0
4.872	11.3	20.7	32.0	46.0	-14.0
4.672	11.3	20.7	32.0	46.0	-14.0
1.904	11.3	20.5	31.8	46.0	-14.2
3.120	11.2	20.5	31.7	46.0	-14.3
3.976	11.0	20.6	31.6	46.0	-14.4
0.757	11.2	20.3	31.5	46.0	-14.5
4.920	10.8	20.7	31.5	46.0	-14.5
2.016	10.8	20.5	31.3	46.0	-14.7
3.616	10.7	20.6	31.3	46.0	-14.7
3.888	10.6	20.6	31.2	46.0	-14.8
3.704	10.6	20.6	31.2	46.0	-14.8
3.760	10.5	20.6	31.1	46.0	-14.9
0.838	10.7	20.4	31.1	46.0	-14.9
3.360	10.5	20.5	31.0	46.0	-15.0
2.648	10.5	20.5	31.0	46.0	-15.0

Work Order:	POLV0114	Date:	08/03/12	1	1 01
Project:	None	Temperature:	24 °C	Jenne	Jec Herrett
Job Site:	EV07	Humidity:	45% RH		
Serial Number:	PV1928006A	Barometric Pres.:	1015 mbar	Tested by	: Jennifer Herrett
EUT:	PolyVision Bluetooth	Radio			
Configuration:	3				
Customer:	PolyVision Corporation	n			
Attendees	David Behner				
EUT Power:	120VAC/60Hz				
Operating Mode	Tx, High Channel, GF	SK/DH5			
Deviations	None				
Comments	None :				
Test Specifications			Test Meth	od	
FCC 15.207:2012			ANSI C63	10:2009	
Run # 7	Line:	High Line	Ext. Attenuation:	20	Results Pass

Peak Data - v	vs - Quasi	Peak	I imit


Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
1.480	12.3	20.4	32.7	56.0	-23.3
3.408	12.1	20.5	32.6	56.0	-23.4
3.336	12.1	20.5	32.6	56.0	-23.4
1.232	12.2	20.4	32.6	56.0	-23.4
3.976	11.7	20.6	32.3	56.0	-23.7
2.656	11.7	20.5	32.2	56.0	-23.8
2.864	11.6	20.5	32.1	56.0	-23.9
2.416	11.3	20.5	31.8	56.0	-24.2
3.072	11.1	20.5	31.6	56.0	-24.4
4.824	10.9	20.7	31.6	56.0	-24.4
4.576	10.9	20.7	31.6	56.0	-24.4
2.088	10.9	20.5	31.4	56.0	-24.6
1.712	10.9	20.4	31.3	56.0	-24.7
3.192	10.7	20.5	31.2	56.0	-24.8
2.600	10.7	20.5	31.2	56.0	-24.8
4.032	10.6	20.6	31.2	56.0	-24.8
3.632	10.6	20.6	31.2	56.0	-24.8
4.136	10.5	20.6	31.1	56.0	-24.9
4.440	10.4	20.7	31.1	56.0	-24.9
3.248	10.5	20.5	31.0	56.0	-25.0


Peak Data - vs - Average Limit

Peak Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
1.480	12.3	20.4	32.7	46.0	-13.3	
3.408	12.1	20.5	32.6	46.0	-13.4	
3.336	12.1	20.5	32.6	46.0	-13.4	
1.232	12.2	20.4	32.6	46.0	-13.4	
3.976	11.7	20.6	32.3	46.0	-13.7	
2.656	11.7	20.5	32.2	46.0	-13.8	
2.864	11.6	20.5	32.1	46.0	-13.9	
2.416	11.3	20.5	31.8	46.0	-14.2	
3.072	11.1	20.5	31.6	46.0	-14.4	
4.824	10.9	20.7	31.6	46.0	-14.4	
4.576	10.9	20.7	31.6	46.0	-14.4	
2.088	10.9	20.5	31.4	46.0	-14.6	
1.712	10.9	20.4	31.3	46.0	-14.7	
3.192	10.7	20.5	31.2	46.0	-14.8	
2.600	10.7	20.5	31.2	46.0	-14.8	
4.032	10.6	20.6	31.2	46.0	-14.8	
3.632	10.6	20.6	31.2	46.0	-14.8	
4.136	10.5	20.6	31.1	46.0	-14.9	
4.440	10.4	20.7	31.1	46.0	-14.9	
3.248	10.5	20.5	31.0	46.0	-15.0	

Work Order:	POLV0114	Date:	08/03/12	1	1 01
Project:		Temperature:	24 °C	Jenn	Jec Herrett
Job Site:	EV07	Humidity:	45% RH	0	
Serial Number:	PV1928006A	Barometric Pres.:	1015 mbar	Tested by	/: Jennifer Herrett
EUT:	PolyVision Bluetooth I	Radio			
Configuration:					
Customer:	PolyVision Corporatio	n			
Attendees:	David Behner				
EUT Power:	120VAC/60Hz				
Operating Mode:	Tx, High Channel, GF	SK/DH5			
Deviations:	None				
Comments:	None				
Test Specifications			Test Meth	od	
FCC 15.207:2012			ANSI C63	10:2009	
Run # 8	Line:	Neutral	Ext. Attenuation:	20	Results Pass

Peak	Data	- VS -	Quasi	Peak	I imit

	1 can bata vs Quasi i can Elitiit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)		
3.080	11.9	20.5	32.4	56.0	-23.6		
2.920	11.8	20.5	32.3	56.0	-23.7		
3.040	11.7	20.5	32.2	56.0	-23.8		
2.144	11.7	20.5	32.2	56.0	-23.8		
2.760	11.5	20.5	32.0	56.0	-24.0		
3.432	11.4	20.5	31.9	56.0	-24.1		
1.328	11.5	20.4	31.9	56.0	-24.1		
0.516	11.6	20.3	31.9	56.0	-24.1		
4.472	11.1	20.7	31.8	56.0	-24.2		
4.536	10.8	20.7	31.5	56.0	-24.5		
2.792	10.9	20.5	31.4	56.0	-24.6		
3.672	10.8	20.6	31.4	56.0	-24.6		
0.531	11.0	20.3	31.3	56.0	-24.7		
1.848	10.8	20.5	31.3	56.0	-24.7		
4.944	10.3	20.7	31.0	56.0	-25.0		
1.064	10.6	20.4	31.0	56.0	-25.0		
1.712	10.5	20.4	30.9	56.0	-25.1		
0.815	10.5	20.3	30.8	56.0	-25.2		
0.747	10.5	20.3	30.8	56.0	-25.2		
0.648	10.5	20.3	30.8	56.0	-25.2		

Peak	Data -	VS -	Average	I imit

Feak Data - vs - Average Littit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
3.080	11.9	20.5	32.4	46.0	-13.6	
2.920	11.8	20.5	32.3	46.0	-13.7	
3.040	11.7	20.5	32.2	46.0	-13.8	
2.144	11.7	20.5	32.2	46.0	-13.8	
2.760	11.5	20.5	32.0	46.0	-14.0	
3.432	11.4	20.5	31.9	46.0	-14.1	
1.328	11.5	20.4	31.9	46.0	-14.1	
0.516	11.6	20.3	31.9	46.0	-14.1	
4.472	11.1	20.7	31.8	46.0	-14.2	
4.536	10.8	20.7	31.5	46.0	-14.5	
2.792	10.9	20.5	31.4	46.0	-14.6	
3.672	10.8	20.6	31.4	46.0	-14.6	
0.531	11.0	20.3	31.3	46.0	-14.7	
1.848	10.8	20.5	31.3	46.0	-14.7	
4.944	10.3	20.7	31.0	46.0	-15.0	
1.064	10.6	20.4	31.0	46.0	-15.0	
1.712	10.5	20.4	30.9	46.0	-15.1	
0.815	10.5	20.3	30.8	46.0	-15.2	
0.747	10.5	20.3	30.8	46.0	-15.2	
0.648	10.5	20.3	30.8	46.0	-15.2	