

Elliott Laboratories Inc. 684 West Maude Avenue www.elliottlabs.com Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the Alien Technology Model: NanoScanner

FCC ID:	P65BHNPR001
GRANTEE:	Alien Technology 18410 Butterfield Blvd, Ste 150 Morgan Hill, CA. 95037
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: July 2, 2002

FINAL TEST DATE:

Juan man

June 11 and June 18, 2002

AUTHORIZED SIGNATORY:

Juan Martinez Senior EMC Engineer

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE1 TABLE OF CONTENTS	
SCOPE	;
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
EMISSION TEST RESULTS	ļ
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE	1 1
LIMITS OF POWER AND BANDWIDTH	5
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	55577
TEST SITE	
GENERAL INFORMATION	3
MEASUREMENT INSTRUMENTATION	
INSTRUMENT CONTROL COMPUTER))))
TEST PROCEDURES	
EUT AND CABLE PLACEMENT. 11 CONDUCTED EMISSIONS. 11 RADIATED EMISSIONS. 11 CONDUCTED EMISSIONS FROM ANTENNA PORT. 12	l
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207	3 4 5

SCOPE

An electromagnetic emissions test has been performed on the Alien Technology, Model: NanoScanner pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Alien Technology model NanoScanner and therefore apply only to the tested sample. The sample was selected and prepared by Robert Martin of Alien Technology.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Alien Technology model NanoScanner complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions, should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Alien Technology model NanoScanner. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

		0.73	= 30101112, 12	0 1/00112		
Frequency	Level	Power	FCC 1	5.207	Detector	Comments
MHz	dBuV	Lead	Limit	Margin	QP/Ave	
0.543	42.6	Line 1	48.0	-5.4	QP	

LIMITS OF ANTENNA CONDUCTED POWER

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The highest out-of-band (Un-restricted) emission recorded in any 100 kHz band was 22 dB below the in-band level at 1795 MHz. The actual test data and any correction factors are contained in an exhibit of this report.

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247 and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Frequenc	y Level	Pol	FCC C	Class A	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
387.095	44.2	h	46.4	-2.2	QP	138	2.3	

LIMITS OF POWER AND BANDWIDTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The maximum power output was 29.3 dBm on channel 1. The minimum 20-dB bandwidth was 330 kHz on channel 1. For a system with 63 channels and an antenna gain of 6dB the maximum permitted output power is 30dBm.

The actual test data and any correction factors are contained in an exhibit of this report.

CHANNEL SEPARATION, CHANNEL OCCUPANCY, AND NUMBER OF CHANNLES.

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The maximum Channel Separation is 400 kHz. The minimum Channel Occupancy was 316.7 mS. The number of Channels is 63. The Theory of Operations details how these channels are, on average, equally used.

The actual test data and any correction factors are contained in an exhibit of this report.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Alien Technology model NanoScanner is a radio, which is designed to read RF ID tags. The radio is a frequency hopping spread spectrum device that uses 63 channels between 902.6MHz and 927.4 MHz. Normally; the EUT would be mounted to a wall during operation. For testing purposes the EUT was treated as tabletop equipment during testing.

The sample was received on June 11, 2002 and tested on June 18 and June 20, 2002.

The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
Alien Technology NanoScanner FHSS Radio	11

OTHER EUT DETAILS

EUT operates in the 902 -928 MHz ISM band

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Manufacturer	Model	Description	Serial Number
Dell	Latitude C600	Laptop	HQH9N01
Hewlett Packard	2225C	Printer	2714540166

No remote support equipment was used during testing.

EUT INTERFACE PORTS

			Cable(s)	
Port	Connected To	Description	Shielded or Unshielded	Length(m)
RS-232	PC	RS-232	Shielded	1
Ethernet	PC	Cat-5	Unshielded	1
I/O	Alarms	RS-232	Shielded	1
Antenna 0	Antenna	HF141	Shielded	2
Antenna 1	Terminated 50Ohms	-	-	-
Power	AC mains	Power cable	Unshielded	1

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION

The EUT was in the interrogation mode (transmitting) during tests performed against 15.247. For measurements made on individual channels the unit was operating only on that channel. For channel occupancy measurements the unit was operating in hopping mode.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on June 11 and June 18, 2002 at the Elliott Laboratories Open Area Test Site #3 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions' testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48
RADIATED E	MISSIONS SPECIFICATION LIMITS,	SECTION 15.209
Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

Spurious Emission	ns 12-lun-Ω2					
Engineer: Rafael						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	High Pass filter, 1.5GHz	P/N 84300-80037	1158	12	3/4/2002	3/4/2003
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	12	3/2/2002	3/2/2003
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	12	4/23/2002	4/23/2003
Miteq	Pre-amp, 1-18GHz	AFS44	1346	12	1/7/2002	1/7/2003
Hewlett Packard	Spectrum Analyzer 9KHz - 26GHz	8563E	284	12	3/21/2002	3/21/2003
Conducted Emissi	ons. 18-Jun-02					
Engineer: Rafael						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	LISN 2 x (Solar 8028 LISN + 6512 Caps)	LISN-5,Support	379	12	8/10/2001	8/10/2002
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	12	7/27/2001	7/27/2002
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	12	5/6/2002	5/6/2003
Solar Electronics	Support Equipment LISN, 0.150-30.0 MHz	8012-50-R-24-BNC	305	12	7/30/2001	7/30/2002
Antenna Conducte	d Emissions, 18-Jun-02					
Engineer: Rafael						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/21/2002	2/21/2003
Radiated Emission	ıs, 30 - 1000 MHz, 20-Jun-02					
Engineer: bwright						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	DM-105-T1	382	12	8/22/2001	8/22/2002
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1404	12	2/26/2002	2/26/2003
Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	273	12	2/6/2002	2/6/2003

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 47291_Radio 20 Pages T 47291_Digital 10 Pages

T111			
Elliot	t	ЕМС	C Test D
Client:	Alien Technology	Job Number: J	47256
	NanoScanner	T-Log Number: T	47291
		Proj Eng: D	avid Bare
Contact:	Rob Martin		
	FCC15.247(FHSS), 15.109,		
Emissions Spec:		Class:	A
Immunity Spec:	-	Environment:	-
	EMC Test Da	ta	
	For The		
	Alien Technolo	ogy	
	Model		
	No		
	NanoScanner		

Ellio	tt		ЕМ	C Test Data
	Alien Technology		Job Number:	J47256
	NanoScanner		T-Log Number:	T47291
			Proj Eng:	David Bare
	Rob Martin			
	: FCC15.247(FHSS), 15.10	09, 15.20	Class:	А
Immunity Spec	-		Environment:	-
	EU	IT INFORMATIO	ON	
63 channels between	202.6MHz and 927.4 MHz. treated as table-top equip	General Description ID tags. The radio is a free Normally, the EUT would b ment during testing.	e mounted to a wall during	
Manufacturer	Model	Description	Serial Number	FCC ID
Alien Technology	NanoScanner	FHSS Radio	11	-
	02 -928 MHz ISM band primarily constructed of fab	Other EUT Details EUT Enclosure ricated sheet steel. Modification History		
Mod. #	Test Da	ate	Modification	
1				

Model: N Contact: R	Alien Technology VanoScanner Rob Martin FCC15.247(FHSS), 15.109		Job Number:	
Contact: R Emissions Spec: F	Rob Martin		T-Log Number:	
Emissions Spec: F				David Bare
Emissions Spec: F				Barra Baro
•		, 15.20	Class:	Α
			Environment:	-
		Configuratio al Support Equipm		
Manufacturer	Model	Description	Serial Number	FCC ID
Dell	Latitude C600	Laptop	HQH9N01	-
Hewlett Packard	2225C	Printer	2714540166	-
Manufacturer None	Model	Description	Serial Number	FCC ID
	Model	Interface Ports		FCC ID
None		Interface Ports	Cable(s)	
None Port	Connected To	Interface Ports Description	Cable(s) Shielded or Unshield	led Length(r
None Port RS-232	Connected To PC	Interface Ports Description RS-232	Cable(s) Shielded or Unshield Shielded	led Length(r 1
None Port RS-232 Ethernet	Connected To PC PC	Interface Ports Description RS-232 Cat-5	Cable(s) Shielded or Unshield Shielded Unshielded	led Length(r 1 1
None Port RS-232 Ethernet I/O	Connected To PC PC Alarms	Interface Ports Description RS-232 Cat-5 RS-232	Cable(s) Shielded or Unshield Shielded Unshielded Shielded	led Length(r 1 1 1
None Port RS-232 Ethernet	Connected To PC PC	Interface Ports Description RS-232 Cat-5	Cable(s) Shielded or Unshield Shielded Unshielded	led Length(r 1 1

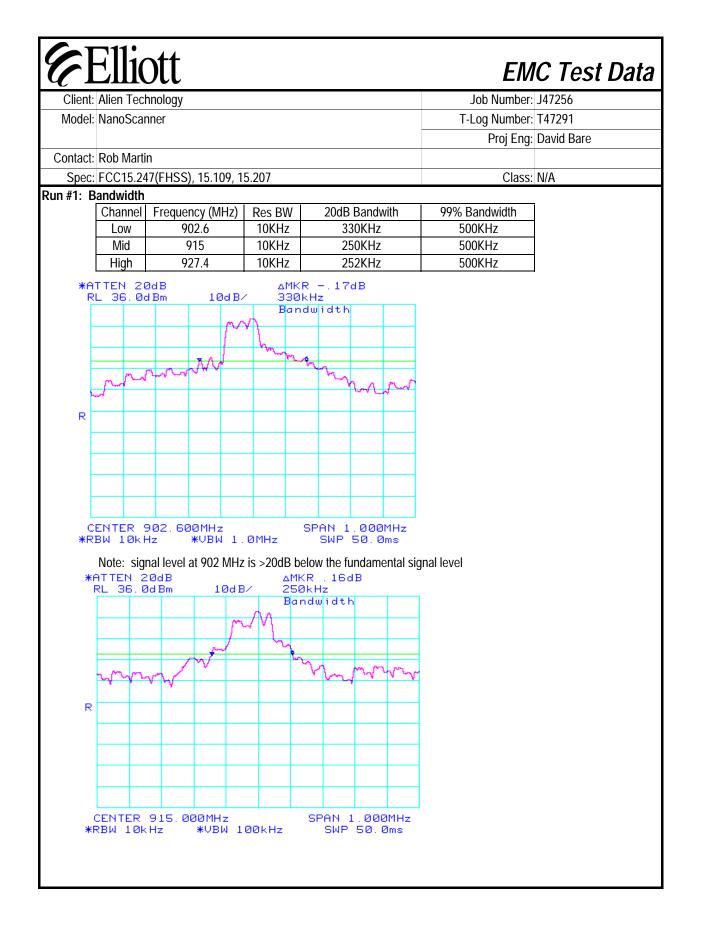
Client Alien Too					
Client: Alien Tec Model: NanoSca	03			ob Number: og Number:	
	Inei		1-L	•	: David Bare
Contact: Rob Marti	n			TTOJ Elig.	
	17(FHSS), 15.109, 15.207			Class:	: N/A
•	Radi	ated Emissio	ns		
est Specifics					
•	The objective of this test session specification listed above.	n is to perform final qualif	fication testir	ng of the EU	JT with respect to
Date of Test:	6/11/2002	Config. Used:			
Test Engineer:		Config Change:			
Test Location:	SVUAIS #4	EUT Voltage:	120V/60Hz		
For radiated emissi When measuring th	cal support equipment were locat ons testing the measurement and le conducted emissions from the	tenna was located 3 met EUT's antenna port, the	ers from the antenna poi	EUT. rt of the EU	T was connected
For radiated emissi When measuring the spectrum analyzer measurements are	ons testing the measurement and the conducted emissions from the or power meter via a suitable atterna- corrected to allow for the externa- wise the EUT was operating suc ons: Temperature: Rel. Humidity:	tenna was located 3 metre EUT's antenna port, the enuator to prevent overlo al attenuators used. h that it constantly hopped 14°C	ers from the antenna poi bading the m	EUT. It of the EU easurement	T was connected t system. All
For radiated emissi When measuring the spectrum analyzer measurements are Unless stated other Ambient Condition 08-578-5532 Summary of Res	ons testing the measurement and the conducted emissions from the or power meter via a suitable atternation corrected to allow for the externation wise the EUT was operating suctions: Temperature: Rel. Humidity: ults	tenna was located 3 met EUT's antenna port, the enuator to prevent overlo al attenuators used. h that it constantly hoppe 14°C 94%	ers from the antenna por pading the m ed on either	EUT. rt of the EU ⁻ easurement the low, cer	T was connected t system. All nter or high chan
For radiated emissi When measuring the spectrum analyzer measurements are Unless stated other Ambient Condition 08-578-5532	ons testing the measurement and the conducted emissions from the or power meter via a suitable atterna- corrected to allow for the externa- wise the EUT was operating suc ons: Temperature: Rel. Humidity:	tenna was located 3 metre EUT's antenna port, the enuator to prevent overlo al attenuators used. h that it constantly hopped 14°C	ers from the antenna poi bading the m	EUT. rt of the EUT easurement the low, cer	T was connected t system. All
For radiated emissi When measuring the spectrum analyzer measurements are Unless stated other Ambient Condition 08-578-5532 Summary of Resonal Run # 1	ons testing the measurement and the conducted emissions from the or power meter via a suitable atte corrected to allow for the externa wise the EUT was operating suc ons: Temperature: Rel. Humidity: ults Test Performed	tenna was located 3 met EUT's antenna port, the enuator to prevent overlo al attenuators used. h that it constantly hoppe 14°C 94% Limit	ers from the antenna por bading the m ed on either Result	EUT. rt of the EUT easurement the low, cer	T was connected t system. All hter or high chan argin

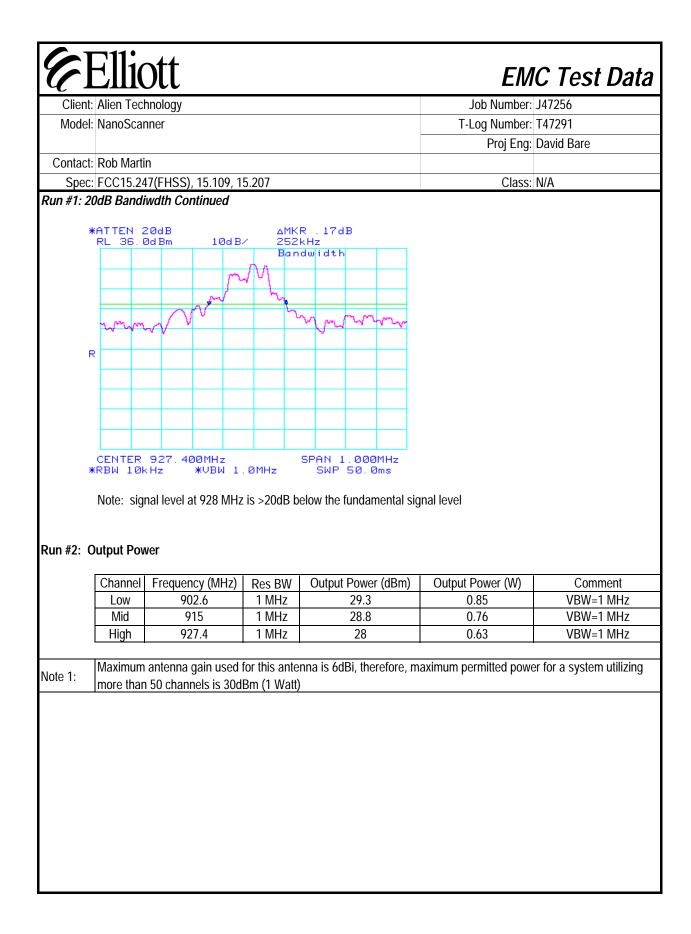
Client:	Alien Tech	nology						Job Number: J47256
Model:	NanoScan	ner					T-l	og Number: T47291
								Proj Eng: David Bare
Contact:	Rob Martir	 ו						, ,
			, 15.109, 1	5 207				Class: N/A
					nnel @ 902.0	5 MHz		
rcular A		P		, _0				
					Н	V]	
undame	ntal emissio	on level	@ 3m in 10	okHz RBW:	132.1	128		
Limit	for emission	ons outs	ide of restrie	cted bands:	112.1	dBµV/m		
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5415.563	48.0	V	54.0	-6.0	Avg	200	1.1	
707.763	44.5	H	54.0	-9.5	Avg	150	1.0	
5415.509 7220.710	43.1 41.9	H V	54.0 54.0	-10.9 -12.1	Avg Avg	185 190	1.0	
2707.736	41.9	V V	54.0 54.0	-12.1 -12.4	Avg Avg	190	1.0 1.0	
220.808	40.4	H	54.0	-12.4	Avg	225	1.0	
025.887	40.3	V	54.0	-13.7	Avg	190	1.0	
025.891	40.2	Ĥ	54.0	-13.8	Avg	0	0.0	
123.366	38.5	V	54.0	-15.5	Avg	215	1.1	
123.376	37.4	H	54.0	-16.6	Avg	215	1.2	
610.320	35.4	V	54.0	-18.6	Avg	210	1.2	
512.864	34.6	V	54.0	-19.4	Avg	200	1.0	
610.343	34.1	Н	54.0	-19.9	Avg	240	1.0	
512.990	33.2	Н	54.0	-20.8	Avg	185	1.1	
026.022	52.8	V	74.0	-21.2	Pk	190	1.0	
026.149	52.3	Н	74.0	-21.7	Pk	0	0.0	
415.637	52.1	V	74.0	-21.9	Pk	200	1.1	
221.002	51.2	V	74.0	-22.8	Pk Dk	190	1.0	
220.797	50.5	H	74.0	-23.5	Pk Dk	225	1.0	
707.985	50.4 49.9	H V	74.0 74.0	-23.6 -24.1	Pk Pk	150 215	1.0 1.1	
415.540	49.9	H	74.0	-24.1 -25.1	PK Pk	185	1.1	
122.944	48.6	H	74.0	-25.1	PK	215	1.0	
707.917	48.5	V	74.0	-25.5	Pk	170	1.2	
610.500	44.3	H	74.0	-29.7	Pk	240	1.0	
610.462	44.1	V	74.0	-29.9	Pk	210	1.0	
512.910	43.9	H	74.0	-30.1	Pk	185	1.1	
513.077	43.5	V	74.0	-30.5	Pk	200	1.0	
								•
4o 1.	For emissi	ons in re	stricted bar	nds, the limi	t of 15.209 w	as used. Fo	r all other e	missions, the limit was set 20d
ote 1:	the level of	f the fun	damental.					

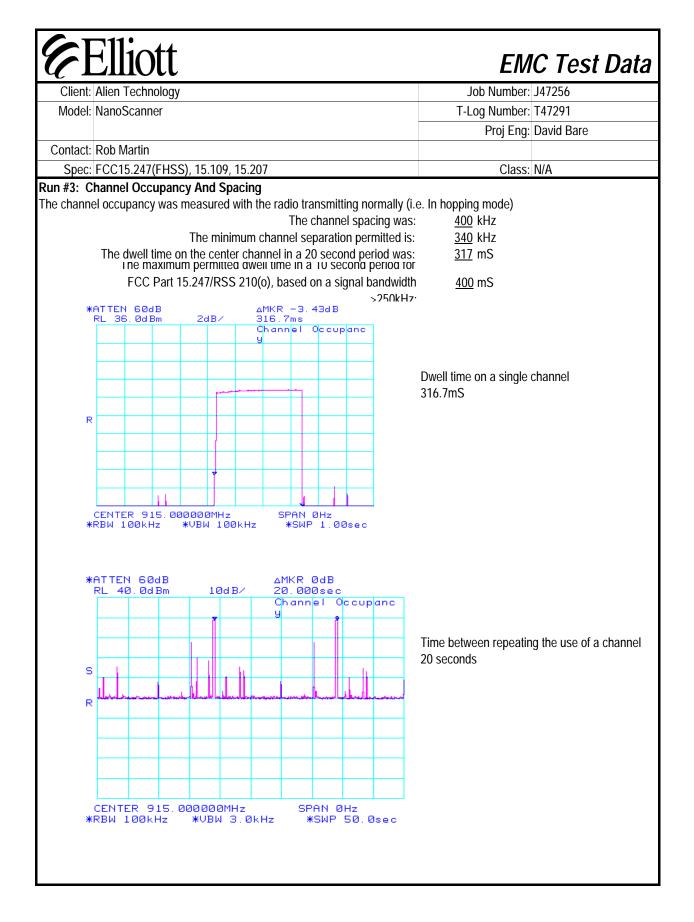
Client:	Ellic Alien Tech						~	Job Number:	J47256
Model:	NanoScan	ner					T-L	og Number:	T47291
								Proj Eng:	David Bare
Contact:	Rob Martir	1						, ,	
Spec:	FCC15.24	7(FHSS), 15.109, 1	5.207				Class:	N/A
					Channel @ 9	15 MHz			
ircular Ar		•							
					Н	V]		
Fundamer	ntal emissio	on level	@ 3m in 10	okHz RBW:		127.6			
Limit	for emissi	ons outs	ide of restrie	cted bands:	111.7	dBµV/m]		
	1		15 000	115 047	Deterter	A _!	11.2.5.1		
requency MHz	Level	Pol	15.209 Limit	/ 15.247 Margin	Detector	Azimuth	Height	Comments	
MHZ 5489.920	dBµV/m 53.9	v/h V	54.0	Margin -0.1	Pk/QP/Avg	degrees 315	meters 1.0		
5489.920 5489.878	53.9 48.3	V H	54.0 54.0	-0.1	Avg Avg	315	1.0		
2745.185	46.3 65.9	V	74.0	-3.7	Pk	345	1.0	Partial amb	nient
2744.893	42.8	V	54.0	-11.2	Avg	300	1.0	Partial amb	
7319.916	41.2	H	54.0	-12.8	Avg	330	1.0	unu	
7319.899	40.9	V	54.0	-13.1	Avg	295	1.0		
9149.889	40.9	Н	54.0	-13.1	Avg	335	1.0		
9149.884	40.6	V	54.0	-13.4	Avg	345	1.6		
8234.945	38.9	V	54.0	-15.1	Avg	325	1.1		
3659.938	38.5	V	54.0	-15.5	Avg	300	1.3		
2744.893	57.3	Н	74.0	-16.7	Pk	345	1.0	Partial amb	bient
8234.900	37.0	Н	54.0	-17.0	Avg	310	1.0		
5489.663	56.6	V	74.0	-17.4	Pk	315	1.0		
2744.953	36.4	H	54.0	-17.6	Avg	345	1.0	Partial amb	pient
3659.887 4574.913	35.9 32.5	H V	54.0 54.0	-18.1 -21.5	Avg	30 300	1.0 1.0		
4574.913 5489.987	32.5 52.3	V H	54.0 74.0	-21.5	Avg Pk	300	1.0		
9149.967	52.3	H	74.0	-21.7	PK Pk	335	1.0		
9149.668	52.5	V	74.0	-21.7	Pk	345	1.6		
4574.904	31.9	Ĥ	54.0	-22.1	Avg	345	1.0		
7319.377	51.2	V	74.0	-22.8	Pk	295	1.0	1	
7320.103	51.0	Н	74.0	-23.0	Pk	330	1.0		
8235.037	50.4	V	74.0	-23.6	Pk	325	1.1		
8234.923	49.3	Н	74.0	-24.7	Pk	310	1.0		
3659.800	45.6	V	74.0	-28.4	Pk	300	1.3		
3660.445	45.0	Н	74.0	-29.0	Pk	30	1.0		
4574.788	43.7	V	74.0	-30.3	Pk	300	1.0		
4574.766 4574.715	43.6	Н	74.0	-30.4	Pk	300	1.1		

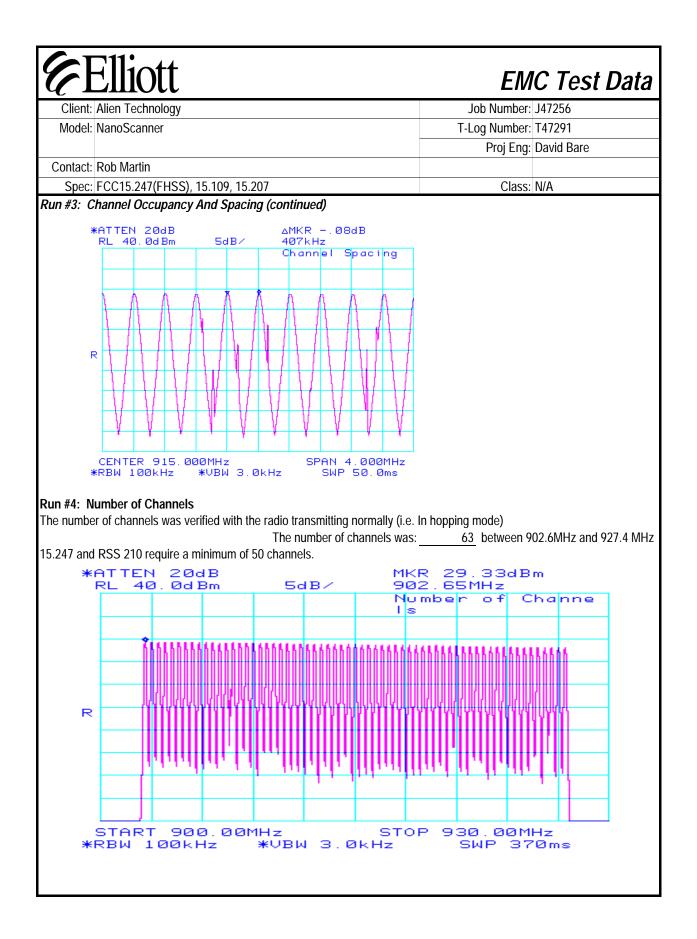
Client:	Alien Tech							Job Number: J47256
Model:	NanoScan	ner					T-l	og Number: T47291
								Proj Eng: David Bare
Contact:	Rob Martir	1						, ,
), 15.109, 1	5.207				Class: N/A
					annel @ 927	.4 MHz		
ircular Ar		P		-, -				
					Н	V]	
undame	ntal emissio	on level	@ 3m in 10	0kHz RBW:		127		
Limit	for emission	ons outs	ide of restri	cted bands:	110.8	dBµV/m]	
		<u> </u>	45.00-					
equency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters	
419.187 782.173	44.8 44.2	V V	54.0 54.0	-9.2 -9.8	Avg Avg	280 285	1.0 1.0	
419.137	44.2	H	54.0 54.0	-9.0	Avg	285	1.0	
564.382	43.0	V	54.0	-10.2	Avg	270	1.0	
564.385	41.6	H	54.0	-12.4	Avg	260	1.0	1
782.150	41.1	H	54.0	-12.9	Avg	275	2.1	
273.888	39.1	Н	54.0	-14.9	Avg	245	1.0	Ì
346.565	38.9	Н	54.0	-15.1	Avg	240	1.3	
273.998	38.7	V	54.0	-15.3	Avg	250	1.0	
346.524	37.9	V	54.0	-16.1	Avg	295	1.0	
419.127	53.5	V	74.0	-20.5	Pk	280	1.0	
419.251	52.9	Н	74.0	-21.1	Pk	230	1.0	
3709.591	32.6	H	54.0	-21.4	Avg	285	1.5	
3709.512	32.6	V	54.0	-21.4	Avg	260	1.0	
4636.876 9274.010	32.1	V V	54.0	-21.9	Avg Pk	255	1.0 1.0	
274.010	51.3 50.9	V H	74.0 74.0	-22.7 -23.1	Pk Pk	250 245	1.0	+
636.125	30.9	H	54.0	-23.1	Avg	245	1.0	Noise Floor
346.494	49.9	H	74.0	-23.2	Pk	243	1.0	
346.572	49.6	V	74.0	-24.4	Pk	295	1.0	1
564.455	48.7	H	74.0	-25.3	Pk	260	1.0	
564.493	48.4	V	74.0	-25.6	Pk	270	1.0	
2782.157	48.1	V	74.0	-25.9	Pk	285	1.0	
2782.327	46.2	Н	74.0	-27.8	Pk	275	2.1	
636.447	43.7	Н	74.0	-30.3	Pk	245	1.0	Noise Floor
3709.545	43.6	Н	74.0	-30.4	Pk	285	1.5	
636.435	43.6	V	74.0	-30.4	Pk	255	1.0	
3709.478	43.0	V	74.0	-31.0	Pk	260	1.0	1

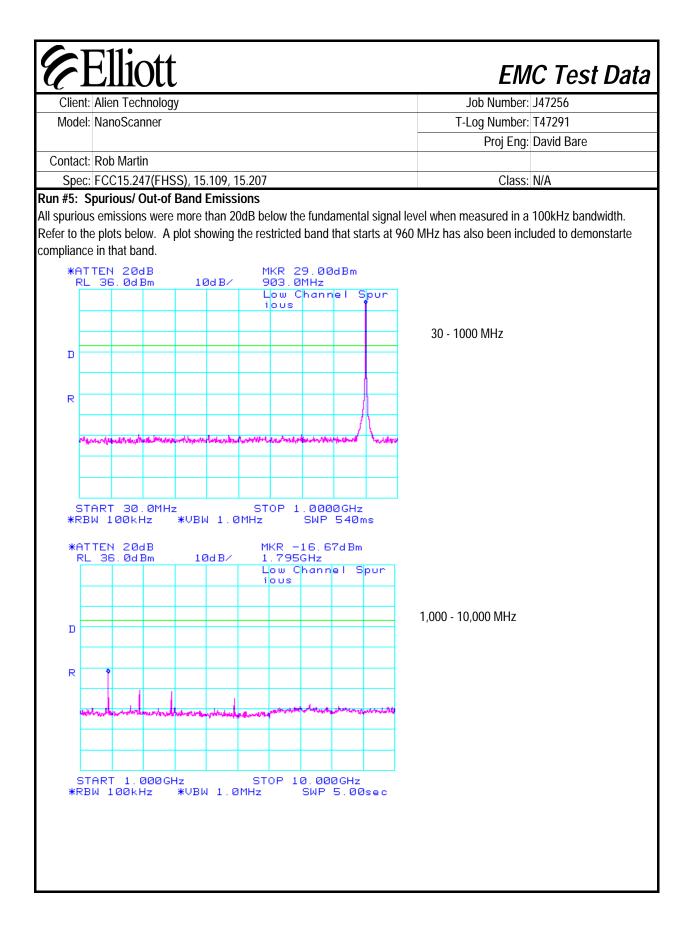
Client: Alien Teo	ott			EMC Tes
	hnology		J	ob Number: J47256
Model: NanoSca	nner		T-L	og Number: T47291
				Proj Eng: David Bare
Contact: Rob Mar				
Spec: FCC15.2	47(FHSS), 15.109, 15.207			Class: N/A
	Rad	iated Emissio	ns	
est Specifics				
•	The objective of this test sessio specification listed above.	n is to perform final qualifi	ication testi	ng of the EUT with resp
Date of Test:	6/11/2002	Config. Used:	1	
Test Engineer:		Config Change:		
Test Location:	SVOATS #4	EUT Voltage:	120V/60Hz	
measurements are	or power meter via a suitable att corrected to allow for the extern rwise the EUT was operating suc ons: Temperature: Rel. Humidity:	al attenuators used. In that it constantly hoppe 14°C	C C	-
Imbient Conditi	sults			
	Test Performed RE, Spurious Emissions In	Limit FCC Part 15.209 /	Result	Margin -1.7dB @ 2752.166

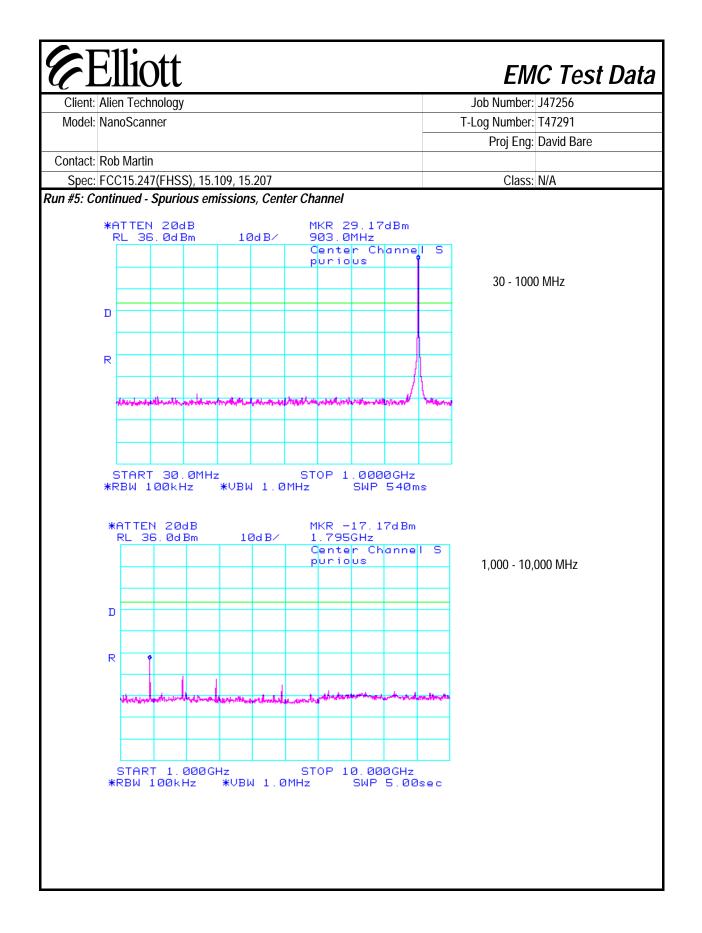

Client:	Alien Tech	inology						Job Number: J47256
Model:	NanoScan	ner					T-l	.og Number: T47291
								Proj Eng: David Bare
Contact:	Rob Martir	า						, 3
Spec:	FCC15.24	7(FHSS)	, 15.109, 1	5.207				Class: N/A
					MHz. Low (Channel @ (902.6 MHz	
near Ant		•						
					Н	V]	
undame	ntal emissio	on level	@ 3m in 10)kHz RBW:	121.1	135.3		
Limi	t for emission	ons outs	ide of restrie	cted bands:	115.3 (dBµV/m]	
		<u> </u>	45 000	45.0.7				
equency		Pol		15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
415.521	49.5 48.1	H V	54.0 54.0	-4.5 -5.9	Avg	100 75	1.0 1.2	
220.710	48.1	V V	54.0 54.0	-5.9 -7.1	Avg Avg	50	1.2	
8610.331	40.9	H	54.0	-7.1	Avg	115	1.1	
2707.740	42.2	H	54.0	-11.8	Avg	25	1.0	
610.375	41.2	V	54.0	-12.8	Avg	60	1.0	
220.765	41.0	H	54.0	-13.0	Avg	75	1.0	
025.936	39.8	V	54.0	-14.2	Avg	80	1.0	
025.846	39.7	Н	54.0	-14.3	Avg	90	1.0	
707.758	36.9	V	54.0	-17.1	Avg	40	1.2	
123.340	36.9	Н	54.0	-17.1	Avg	80	1.0	
123.259	36.5	V	54.0	-17.5	Avg	15	1.0	
1512.934	36.0	V	54.0	-18.0	Avg	60	1.1	
220.703	53.1	V	74.0	-20.9	Pk	50	1.1	
5415.471	52.9	Н	74.0	-21.1	Pk	100	1.0	
9026.091	52.6	V	74.0	-21.4	Pk	80	1.0	
025.326	52.2	H	74.0	-21.8	Pk	90	1.0	
415.576	52.0 51.5	V H	74.0	-22.0 -22.5	Pk Pk	75 75	1.2 1.0	
512.938	51.5 31.2	H H	74.0 54.0	-22.5 -22.8	PK Avg	55	1.0	+
610.276	51.2	H	74.0	-22.0	Pk	115	1.0	
707.886	49.8	H	74.0	-22.9	Pk	25	1.0	
123.933	49.3	H	74.0	-24.7	Pk	80	1.0	1
122.661	48.9	V	74.0	-25.1	Pk	15	1.0	
610.188	47.6	V	74.0	-26.4	Pk	60	1.2	
707.730		V	74.0	-29.0	Pk	40	1.2	
513.025		V	74.0	-29.0	Pk	60	1.1	
513.323	42.9	Н	74.0	-31.1	Pk	55	1.0	
ote 1:				ids, the limi	t of 15.209 w	as used. Fo	r all other e	missions, the limit was set 2
ις I.	the level of	f the fun	damental.					

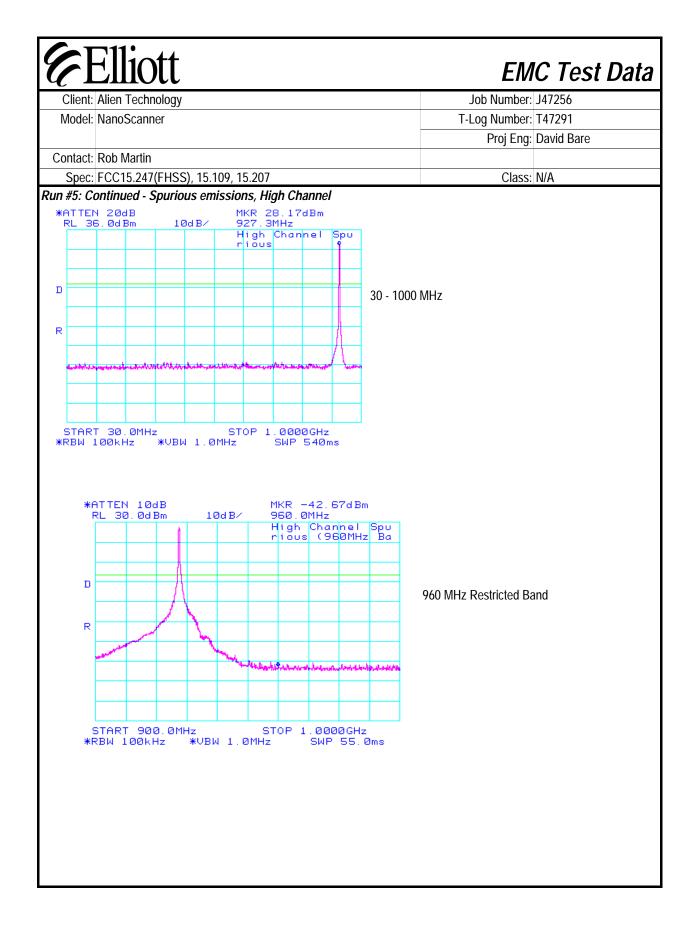

	Ellic Alien Tech							Job Number: J47256
Model:	NanoScar	nner					T-L	og Number: T47291
								Proj Eng: David Bare
Contact:	Rob Marti	n						, , , , , , , , , , , , , , , , , , , ,
			, 15.109, 15	5 207				Class: N/A
					hannel @ 9	17 4 MHz		01035. 14/1
							was an aml	bient in the 3rd harmonic.
inear Ante			5		·		-	
					Н	V		
Fundamer	ntal emissi	on level (@ 3m in 100	okHz RBW:	123.8	134.9		
1			ide of restric			dBµV/m		L
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2752.166	52.3	V	54.0	-1.7	Avg	335	1.3	
5504.362	51.6	V	54.0	-2.4	Avg	30	1.1	
2752.160 5504.354	49.0 46.4	H H	54.0 54.0	-5.0 -7.6	Avg	85 50	1.3 1.5	
5504.354 7339.143	40.4	H V	54.0 54.0	-7.6	Avg Avg	350	1.5	
3669.546	43.3	V	54.0	-10.7	Avg	0	1.1	
3669.555	41.9	H	54.0	-12.1	Avg	35	1.3	
7339.098	39.4	H	54.0	-14.6	Avg	340	1.4	
9174.100	39.3	Н	54.0	-14.7	Avg	360	1.3	
9173.747	38.9	V	54.0	-15.1	Avg	360	1.3	
3256.504	37.0	Н	54.0	-17.0	Avg	50	1.4	
3256.491	36.9	V	54.0	-17.1	Avg	10	1.3	
5504.527	54.9	V	74.0	-19.1	Pk	30	1.1	
2752.190	54.2	V	74.0	-19.8	Pk	335	1.3	
7338.993	52.2	V	74.0	-21.8	Pk	350	1.1	
9174.452	52.1	V	74.0	-21.9	Pk	360	1.3	
9173.923	51.9	H	74.0	-22.1	Pk	360	1.3	
2752.050	51.8	H	74.0	-22.2	Pk	85	1.3	
5504.042 7338.960	51.3 51.3	H H	74.0 74.0	-22.7 -22.7	Pk Pk	50 340	1.5 1.4	
4586.913	30.8	H	74.0 54.0	-22.7 -23.2	PK Avg	340	1.4	
1587.091	30.8	V	54.0	-23.2	Avg	340	1.0	
3256.277	49.6	H	74.0	-23.3	Pk	50	1.1	
8256.202	49.4	V	74.0	-24.6	Pk	10	1.4	1
3669.450	48.7	V	74.0	-25.3	Pk	0	1.3	
3669.505	48.5	H	74.0	-25.5	Pk	35	1.3	
1586.775	45.9	V	74.0	-28.1	Pk	340	1.1	
4586.310	42.7	Н	74.0	-31.3	Pk	350	1.0	
				nds, the limit	t of 15.209 w	as used. Fo	r all other e	missions, the limit was set 20d
	the level c	of the fund	damental.					

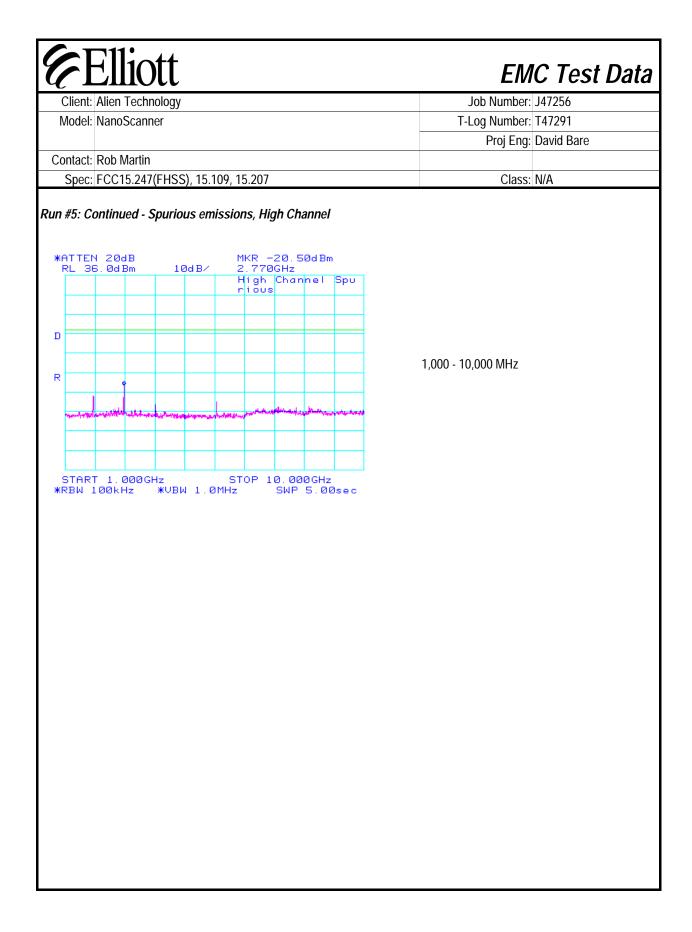

Client:	Alien Tech	nnology						Job Number:	J47256
Model:	NanoScan	ner					T-l	og Number:	T47291
								Proj Eng:	David Bare
Contact:	Rob Martir	<u>ו</u>							
), 15.109, 1	5.207				Class:	N/A
		, ,			annel @ 927	.4 MHz		010001	
near Ant				, g en					
					H	V	1		
undame	ntal emissio	on level	@ 3m in 10	OkHz RBW:	123.2	134.2			
Limit	for emissi	ons outs	ide of restri	cted bands:	114.2	dBµV/m			
								-	
equency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3709.565	41.2	H	54.0	-12.8	Avg	140	1.0		
419.124 419.063	40.7 40.5	H V	54.0 54.0	-13.3	Avg Avg	135 160	1.1 1.1		
419.063 564.370	40.5 39.3	V	54.0 54.0	-13.5 -14.7	Avg Avg	180	1.1		
273.969	39.5	V	54.0 54.0	-14.7	Avg	100	1.1		
564.355	38.5	H	54.0	-15.4	Avg	145	1.0		
709.520	38.4	V	54.0	-15.6	Avg	140	1.0		
273.969	38.3	H	54.0	-15.7	Avg	0	1.0		
346.563	37.2	Н	54.0	-16.8	Avg	135	1.4		
346.548	37.2	V	54.0	-16.8	Avg	145	1.0		
782.167	35.8	Н	54.0	-18.2	Avg	155	1.0		
782.170	35.4	V	54.0	-18.6	Avg	115	1.0		
636.965	33.8	V	54.0	-20.2	Avg	165	1.0		
419.519	51.7	V	74.0	-22.3	Pk	160	1.1		
636.877	31.6	H	54.0	-22.4	Avg	145	1.0		
273.908	51.4	V	74.0	-22.6	Pk	100	1.0		
418.861 274.658	51.1 51.1	H H	74.0 74.0	-22.9 -22.9	Pk Pk	135 0	1.1 1.0		
346.756		H H	74.0	-22.9 -23.8	PK Pk	135	1.0		
346.208	49.3	V	74.0	-23.8	PK	135	1.4		
564.233	47.8	V	74.0	-24.7	Pk	143	1.0		
564.613	47.4	Ĥ	74.0	-26.6	Pk	145	1.1		
3709.441	47.0	Н	74.0	-27.0	Pk	140	1.0		
709.576	45.9	V	74.0	-28.1	Pk	140	1.0		
637.053	45.3	V	74.0	-28.7	Pk	165	1.0		
782.418	44.7	V	74.0	-29.3	Pk	115	1.0		
782.018	44.3	Н	74.0	-29.7	Pk	155	1.0		
636.956	43.8	Н	74.0	-30.2	Pk	145	1.0	1	


Client: Alien Tee	chnology			Job Number: J4	7256
Model: NanoSca			T-L	og Number: T4	17291
				Proj Eng: Da	
Contact: Rob Mar	tin			, ,	
Spec: FCC15.2	247(FHSS), 15.109, 15.207			Class: N/	Ά
•			·		
	Radia	ated Emissi	ons		
Test Specifics					
Objective	: The objective of this test session specification listed above.	is to perform final qu	alification tes	ting of the EUT	with respect to the
Date of Test		Config. Use			
Test Engineer		Config Chang			
Test Location	: Chamber #2	EUT Voltag	e: 120V/60H	Z	
General Test Co When measuring spectrum analyze	the conducted emissions from the r via a suitable attenuator (30dB) to	•			
General Test Co When measuring spectrum analyze corrected to allow	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such	o prevent overloading h that it constantly ho 20°C	the measure	ement system.	All measurement
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4	o prevent overloading h that it constantly ho 20°C	the measure	ement system.	All measurement
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe Ambient Condit	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4	o prevent overloading h that it constantly ho 20°C	the measure	ement system.	All measurement
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe Ambient Condit	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4 sults	o prevent overloading h that it constantly ho 20°C 17%	the measure	ement system. er the low, cente	All measurement
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe Ambient Condit Summary of Res Run # 1 1	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4 sults Test Performed 20dB Bandwidth 99% Bandwidth	o prevent overloading h that it constantly ho 20°C 17% <u>Limit 15.247(a)</u> 15.247(a)	pped on eithe Result Pass	ement system. er the low, cente Comm 330kHz 500kHz	All measurement er or high channe ent
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe Ambient Condit Summary of Res Run # 1 1 2	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4 sults Test Performed 20dB Bandwidth 99% Bandwidth Output Power	o prevent overloading h that it constantly ho 20°C 17% <u>Limit 15.247(a) 15.247(a)</u> 15.247(b)	pped on eithe Result Pass Pass	ement system. er the low, cente 330kHz 500kHz 29.3 dBm / 0.8	All measurement er or high channe ent
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe Ambient Condit Gummary of Res Run # 1 1	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4 sults Test Performed 20dB Bandwidth 99% Bandwidth	o prevent overloading h that it constantly ho 20°C 17% <u>Limit 15.247(a)</u> 15.247(a)	pped on eithe Result Pass	ement system. er the low, cente 330kHz 500kHz 29.3 dBm / 0.4 400kHz	All measurement er or high channe ent
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe Ambient Condit Summary of Res Run # 1 1 2	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4 sults Test Performed 20dB Bandwidth 99% Bandwidth Output Power	o prevent overloading h that it constantly ho 20°C 17% <u>Limit 15.247(a) 15.247(a)</u> 15.247(b)	pped on eithe Result Pass Pass	ement system. er the low, cente 330kHz 500kHz 29.3 dBm / 0.8 400kHz < 400mS per	All measurement er or high channe ent
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe Ambient Condit Summary of Res Run # 1 1 2 3	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4 sults Test Performed 20dB Bandwidth 99% Bandwidth Output Power Channel Separation	b prevent overloading h that it constantly ho 20°C 17% <u>Limit 15.247(a) 15.247(a) 15.247(b) 15.247(a)</u>	the measure pped on eithe Result Pass Pass Pass	ement system. er the low, cente 330kHz 500kHz 29.3 dBm / 0.4 400kHz	All measurement er or high channe ent
General Test Co When measuring spectrum analyze corrected to allow Unless stated othe Ambient Condit Summary of Res Run # 1 1 2 3 3	the conducted emissions from the r via a suitable attenuator (30dB) to for the external attenuators used. erwise the EUT was operating such ions: Temperature: 2 Rel. Humidity: 4 sults Test Performed 20dB Bandwidth 99% Bandwidth 99% Bandwidth Output Power Channel Separation Channel Occupancy	b prevent overloading h that it constantly ho 20°C 17% <u>Limit 15.247(a) 15.247(a) 15.247(a) 15.247(a) 15.247(a)</u>	the measure pped on eithe Result Pass Pass Pass Pass	ement system. er the low, cente 330kHz 500kHz 29.3 dBm / 0.8 400kHz < 400mS per period	All measurement er or high channe ent 85 W 10 second


No deviations were made from the requirements of the standard.







Elliot	t	EM	C Test Data
	Alien Technology	Job Number:	J47256
Model:	NanoScanner	T-Log Number:	
		Proj Eng:	David Bare
	Rob Martin		
	FCC15.247(FHSS), 15.109,		
Emissions Spec:		Class:	
Immunity Spec:	-	Environment:	-
	EMC Test Data	а	
	For The		
	Alien Technolog	ду	
	Model		
	NanoScanner		

Elliot	t		EM	C Test Data
	Alien Technology		Job Number:	
	NanoScanner		T-Log Number:	
			<u> </u>	David Bare
Contact:	Rob Martin		<u>ل</u> ر-	
Emissions Spec:	FCC15.247(FHSS), 15.10	09, 15.20	Class:	Α
Immunity Spec:			Environment:	-
	EU	IT INFORMATIO	ON	
63 channels between 9	ch is designed to read RF 1 02.6MHz and 927.4 MHz. treated as table-top equip	General Description ID tags. The radio is a free Normally, the EUT would b ment during testing.	e mounted to a wall during	
Manufacturer	Model	Description	Serial Number	FCC ID
Alien Technology	NanoScanner	FHSS Radio	11	-
EUT operates in the 90 The EUT enclosure is p	primarily constructed of fab	Other EUT Details EUT Enclosure ricated sheet steel. Modification History		
Mod. #		ate	Modification	
1				

Client	Alien Technology		Job Number:	147256
	NanoScanner		T-Log Number:	
model				David Bare
Contact	Rob Martin			
	FCC15.247(FHSS), 15.109	, 15.20	Class:	Α
Immunity Spec	, ,		Environment:	-
		Configuratio al Support Equipm		
Manufacturer	Model	Description	Serial Number	FCC ID
Dell		Laptop	HQH9N01	-
Hewlett Packard	2225C	Printer	2714540166	-
		Interface Ports		
			Cable(s)	
Port	Connected To	Description	Shielded or Unshield	<u> </u>
RS-232	PC	RS-232	Shielded	1
F	PC	Cat-5	Unshielded	1
Ethernet	Alarms	RS-232	Shielded	1
I/O	Antenna	HF141	Shielded	2
I/O Antenna 0	Tominated E0Ohma	- Power cable	- Unshileded	1
I/O	Teminated 50Ohms AC mains		Unshileded	

6 Elli						
	<u> </u>				C Test	
Client: Alien Tec				ob Number:		
Model: NanoScar	nner		T-Lo	og Number:		
				Proj Eng:	David Bare	
Contact: Rob Marti				01	•	
Spec: FCC15.24	47(FHSS), 15.109, 15.207			Class:	A	
	Conducted I	Emissions - Po	ower P	orts		
Test Specifics						
•	The objective of this test sessio specification listed above.	n is to perform final qualifi	cation testir	ng of the EU	T with respec	t to the
Date of Test:	6/18/2002	Config. Used:	1			
Test Engineer:		Config Change:	None			
Test Location:	SVOATS #3	EUT Voltage:				
General Test Co	ofiguration					
	ingulation					
For tabletop equipn	nent, the EUT was located on a	wooden table, 40 cm from	a vertical c	oupling plan	ie and 80cm f	rom the
	ISN was used for all local suppo					
Ambient Conditi	ons: Temperature:	14.6°C				
	Rel. Humidity:					
	rton ridinidity.	0170				
Summary of Res	ults					
Run #	Test Performed	Limit	Result	Ma	argin	
1	CE, AC Power 120V/60Hz	FCC 15.207/Class B	Pass		.543MHz	
	ade During Testing: ere made to the EUT during test	ina				
	0					
Deviations From	The Standard					
No deviations were	made from the requirements of	the standard.				

C I		JII					EM	IC Test Da
Client:	Alien Tec	hnology					Job Number:	J47256
Model:	NanoSca	nner					T-Log Number:	
							Proj Eng:	David Bare
Contact:								
			, 15.109, 1				Class:	Α
				ssions, 0.4 7 / Class B				
requency MHz	Level dBµV	AC Line	Limit	Margin	Detector QP/Ave	Comments		
0.543	42.6	Line 1	48.0	-5.4	QP/Ave			
0.543	42.5	Neutral	48.0	-5.5	QP			
0.505	41.1	Neutral	48.0	-6.9	QP			
0.504	40.9	Line 1	48.0	-7.1	QP	1		
1.552	33.3	Neutral	48.0	-14.7	QP			
2.171	33.0	Line 1	48.0	-15.0	QP			

Client: Alien Technology Job Number: J47256 Model: NanoScanner T-Log Number: T47291 Proj Eng: David Ba Contact: Rob Martin Proj Eng: Spec: FCC15.247(FHSS), 15.109, 15.207 Class: A Radiated Emissions Fest Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with ressection listed above. Date of Test: 6/20/2002 Config. Used: 1 Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the GUT and elevation of the measurement antenna, and manipulation of the EUT's interface cables.		ott				IC Tes
Proj Eng. David Ba Contact: Rob Martin Proj Eng. David Ba Spec: FCC15.247(FHSS), 15.109, 15.207 Class: A Radiated Emissions est Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with ress specification listed above. Date of Test: 6/20/2002 Config. Used: 1 Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna.		0.				
Contact: Rob Martin Spec: FCC15.247(FHSS), 15.109, 15.207 Radiated Emissions Radiated Emissions est Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with ress specification listed above. Date of Test: 6/20/2002 Config. Used: 1 Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz eneral Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna.	Model: NanoSca	nner		T-L	•	
Spec: FCC15.247(FHSS), 15.109, 15.207 Class: A Radiated Emissions est Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with ress specification listed above. Date of Test: 6/20/2002 Config. Used: 1 Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna.					Proj Eng:	David Bare
Radiated Emissions est Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with ress specification listed above. Date of Test: 6/20/2002 Config. Used: 1 Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz Eneral Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna.					Class	۸
est Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with ress specification listed above. Date of Test: 6/20/2002 Config. Used: 1 Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz eneral Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated 10 ATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna.	Spec: FUCTO.24	4/(FH3S), 15.109, 15.207			Class:	A
Objective: The objective of this test session is to perform final qualification testing of the EUT with ress Date of Test: 6/20/2002 Config. Used: 1 Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz eneral Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna.		Rad	iated Emissio	ns		
specification listed above. Date of Test: 6/20/2002 Config. Used: 1 Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the	est Specifics					
Test Engineer: Blair Wright Config Change: none Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz General Test Configuration EUT voltage: none The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated of OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna.	Objective:	-	n is to perform final qualifi	ication testi	ng of the EU	IT with respec
Test Location: Ch#2 and Oats#3 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the						
General Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevatior measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the			0 0			
The EUT and all local support equipment were located on the turntable for radiated emissions testing. Preliminary scans in an anechoic chamber were made at a test distance of 4m and the data was extrapolated OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the	lest Location:	Ch#2 and Oats#3	EUT Voltage:	120V/60Hz		
mbient Conditions: Temperature: 14.4°C Rel. Humidity: 77% ummary of Results Image: Conditional statement of the state	of the measuremer	nt antenna, <u>and</u> manipulation of the second s	he EUT's interface cables 14.4°C		a by one nat	
Run # Test Performed Limit Result Margin	ummary of Res	sults				
2 RE, 30 - 1000MHz - Maximized FCC Class A Digital Pass -2.2dB @ 387.095M	2		Limit	Result	Ма	arain

	Ellic							EMC Test Dat
Client:	Alien Tech	nology						Job Number: J47256
Model:	NanoScan	ner					T-l	og Number: T47291
								Proj Eng: David Bare
Contact:	Rob Martir	 ו						
	FCC15.24		15 109 1	5 207				Class: A
Run #1: P		Radiate) MHz, OATS	scan based	l on run #1	
requency	Level	Pol	FCC (Class A	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
387.095	44.2	h	46.4	-2.2	QP	138	2.3	
265.420	43.3	h	46.4	-3.1	QP	123	3.5	
453.430	43.3	h	46.4	-3.1	QP	150	1.6	
265.420	42.7	V	46.4	-3.7	QP	91	1.0	
586.138	42.7	h	46.4	-3.7	QP	85	1.5	
453.430	41.6	V	46.4	-4.8	QP	210	1.0	2nd reading note 1
254.362	40.8	h	46.4	-5.6	QP	87	2.7	
464.486	40.6	h	46.4	-5.8	QP	138	1.5	
464.486	40.5	V	46.4	-5.9	QP OD	269	1.0	
475.546	40.2	h	46.4	-6.2	QP OD	202	1.6	
387.095	39.8	V	46.4 46.4	-6.6	QP QP	228	1.0	
243.290 475.546	39.7 39.6	h v	46.4	-6.7 -6.8	QP QP	100 290	2.6 1.4	
475.546	39.0 39.6	V V	46.4	-0.8	QP QP	359	1.4	
132.710	36.2	V	40.4	-0.8	QP	110	1.0	
309.657	39.1	V	46.4	-7.3	QP	249	1.0	
342.835	39.1	h	46.4	-7.3	QP	126	2.7	1
243.280	39.0	V	46.4	-7.4	QP	95	2.6	
309.657	39.0	ĥ	46.4	-7.4	QP	116	3.3	
276.470	38.9	V	46.4	-7.5	QP	95	1.0	
342.835	38.8	V	46.4	-7.6	QP	235	1.0	
254.340	38.3	V	46.4	-8.1	QP	127	1.0	
608.255	38.3	h	46.4	-8.1	QP	157	1.3	
597.242	38.0	h	46.4	-8.4	QP	169	1.8	
276.470		h	46.4	-8.8	QP	109	3.6	
331.777	37.5	h	46.4	-8.9	QP	126	2.7	
586.138	37.2	V	46.4	-9.2	QP	343	1.0	
331.777	37.0	V	46.4	-9.4	QP	268	1.0	
176.930	33.6	V	43.5	-9.9	QP	194	1.0	
442.405	36.4	h	46.4	-10.0	QP	152	1.9	
574.986	36.0	h	46.4	-10.4	QP	154	1.5	
442.405	34.2	V	46.4	-12.2	QP	256	1.0	
597.242	34.1	V	46.4	-12.3	QP	274	1.7	
519.780	34.0	h	46.4	-12.4	QP	162	1.9	
132.710	29.5	h	43.5	-14.0	QP	192	1.5	
300.015	32.2	V	46.4	-14.2	QP	274	1.0	

Client:	Alien Tech	nnology					J	lob Number:	J47256
Model:	NanoScar	ner					T-Log Number: T47291		
								<u> </u>	David Bare
Contact:	Rob Martii	n						- J - J	
Spec:	FCC15.24	7(FHSS), 15.109, 1	5.207				Class:	A
					MHz (Conti	nue)			
Measureme	,					,			
Frequency	Level	Pol	FCC C	Class A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
574.986	31.6	V	46.4	-14.8	QP	209	1.1		
608.255	29.5	V	46.4	-16.9	QP	270	2.0		
263.600	29.3	h	46.4	-17.1	QP	102	3.5		
319.800	20.2	V	46.4	-26.2	QP	244	1.0		
374.000	19.1	V	46.4	-27.3	QP	0	1.0		
Note 1:			seated. Pric						
Note 2:	Ambiant is	s to stron	g can not di	stinguish E	UT from Amb	piant.			
			d Emission	s From Ru	า #1				
Measureme									
Frequency		Pol		lass A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
387.095	44.2	h	46.4	-2.2	QP	138	2.3		
265.420	43.3	h	46.4	-3.1	QP	123	3.5		
453.430	43.3	h	46.4	-3.1	OP	150	1.6	1	

265.420

586.138 453.430 42.7

42.7

41.6

۷

h

۷

46.4

46.4

46.4

-3.7

-3.7

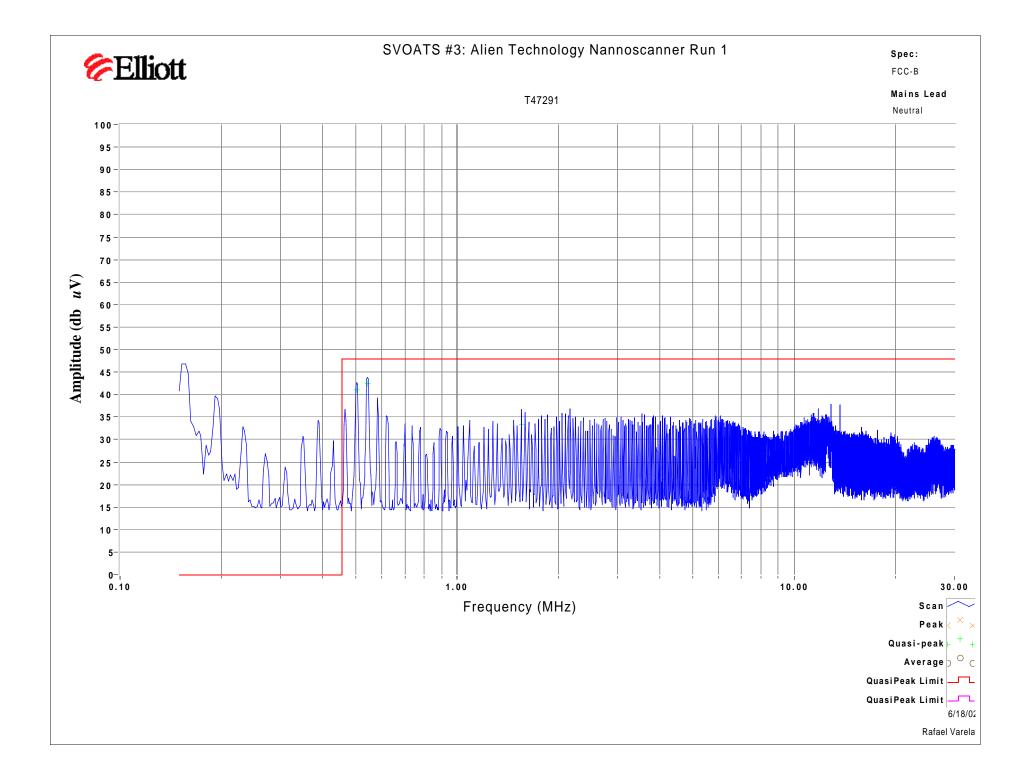
-4.8

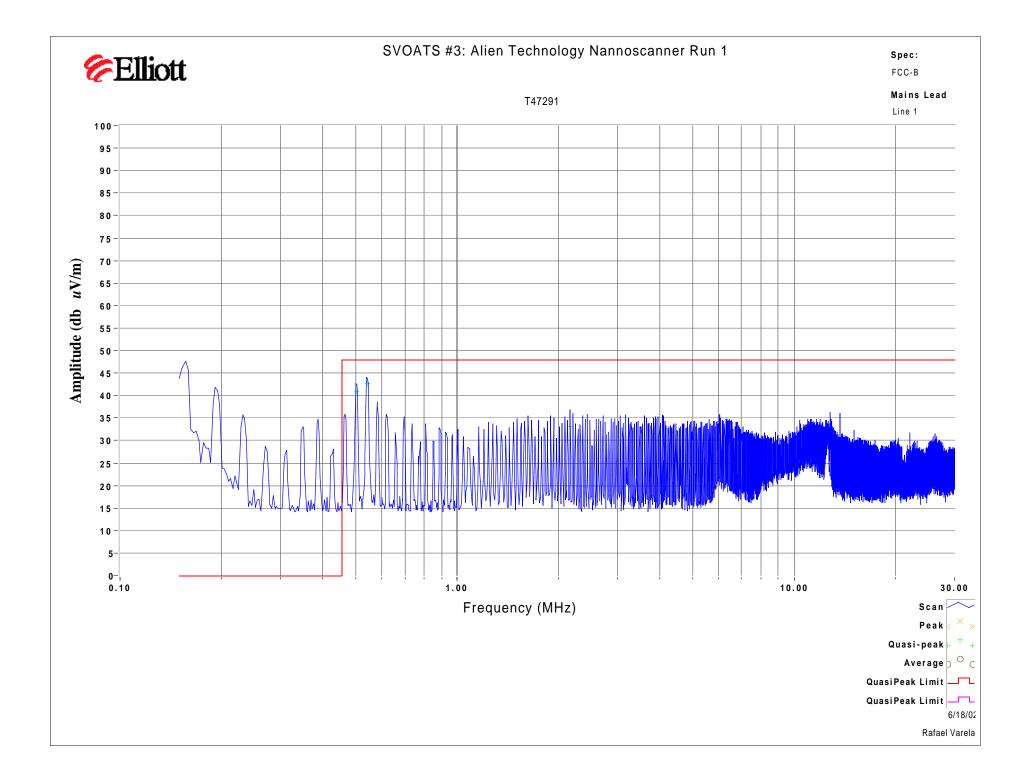
QP

QP

QP

91


85


210

1.0

1.5

1.0

