

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C (15.247) DTS Specifications and Industry Canada RSS 210 Issue 5 for an Intentional Radiator on the Alien Technology Model: B2450R01-A

FCC ID: P65B2450R01-A

GRANTEE: Alien Technology

> 18410 Butterfield Blvd, Ste 150 Morgan Hill, CA. 95037

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: May 20, 2003

FINAL TEST DATE: April 4 and April 8, 2003; May 20, 2003

Mark &

AUTHORIZED SIGNATORY:

Mark Briggs

Director of Engineering

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

Test Report Report Date: April 24, 2003

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:

B2450R01-A

Manufacturer:

Alien Technology 18410 Butterfield Blvd, Ste 150 Morgan Hill, CA. 95037

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices)
FCC Part 15.247 (FHSS)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV1** Dated July 30, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name Mark Briggs

Title Director of Engineering
Company Elliott Laboratories Inc.
684 W. Maude Ave

Sunnyvale, CA 94086

Mark Brigg

USA

Date: April 24, 2003

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R50982 Page 2 of 17 Pages

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION ANTENNA REQUIREMENTS	7 7 7 8 8
TEST SITE	9
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) POWER METER FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
TEST PROCEDURES	12
EUT AND CABLE PLACEMENTCONDUCTED EMISSIONSRADIATED EMISSIONSCONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
FCC 15.247 / RSS 210(0) OUTPUT POWER LIMITS FCC 15.247 / RSS 210(0) SPURIOUS RADIATED EMISSIONS LIMITS AC POWER PORT CONDUCTED EMISSIONS LIMITS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS SAMPLE CALCULATIONS - RADIATED EMISSIONS EXHIBIT 1: Test Equipment Calibration Data EXHIBIT 2: Test Data Log Sheets	
EATHDIT 2. Test Dam Log Sheets	∠

SCOPE

An electromagnetic emissions test has been performed on the Alien Technology model B2450R01-A pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for licence-exempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Alien Technology model B2450R01-A and therefore apply only to the tested sample. The sample was selected and prepared by Robert Martin of Alien Technology

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules and RSS-210 Issue 5 for license-exempt low power devices for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

File: R50982 Page 4 of 17 Pages

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247	6.2.2(o)(a)	20dB Bandwidth	470kHz	The channel spacing	Complies
15.247	6.2.2(o)(a)	Channel Separation	833kHz	shall be greater than the 20dB bandwidth	Complies
15.247	6.2.2(o)(a)	Number of Channels	75	2400- 2483.5 MHz: 75 hopping frequencies: average time of	Complies
15.247	6.2.2(o)(a)	Channel Dwell Time	0.388 Seconds per 30 seconds	occupancy <0.4 second within a 30 second period.	Complies
15.247	6.2.2(o)(a)	Channel Utilization	All channels are used equally	Refer to Theory of Operations for detailed description of the hopping algorithm	Complies
15.247 (b) (3)	6.2.2(o)(a)	Output Power, 2400 - 2483.5 MHz	29.97 dBm (0.99 Watts) EIRP = 4.0 W	2400 – 2483.5 MHz Maximum permitted is 1 Watt, with EIRP limited to 4 Watts for a 50-channel system.	Complies
15.247(c)	6.2.2(o)(e1)	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	All spurious emissions < -20dBc.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions 30MHz – 25GHz	46.8 dBuV/m @ 4900MHz (-7.21dB)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	37.1 dBuV@ 0.544MHz (-8.9dB)	Conducted emissions from the AC power port	Complies
	6.6	AC Conducted Emissions	37.6 dBuV @ 0.549 MHz (-10.4 dB)	Conducted emissions from the AC power port	Complies
15.247 (b) (5)		RF Exposure Requirements	FCC /IC limits of power density not exceeded provided antenna is located a minimum of 17.5cm from persons	Refer to MPE calculation for 17.5cm derivation. Refer to User's Guide for installation instructions requiring a 20cm separation	Complies
15.203		RF Connector	Unique antenna connector (Reverse sex TNC)	Integral antenna or specialized connector required	Complies

EIRP calculated using antenna gain of 6dBi (4) for the highest EIRP point-to-multipoint system.

The system was evaluated with two different antenna types.

File: R50982 Page 5 of 17 Pages

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

File: R50982 Page 6 of 17 Pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Alien Technology model B2450R01-A is a FHSS Transceiver, which is designed to interrogate tags for inventory tracking purposes. Normally, the EUT would be wall-mounted during normal operation. The EUT was treated as tabletop equipment during testing. The electrical rating of the EUT is 1200 V, 60 Hz, 1.5 Amps.

The EUT can use either a Brock antenna or an Alien Technology antenna, both of which have a gain of 6dBi.

The sample was received on April 4, 2003 and tested on April 4 and April 8, 2003. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Alien Technology	NanoScanner	Battery Powered	2RB2003-00001	P65B2450R01-A
	B2450R01-A	Tag Reader		
PhiHong	PSA-30V-120	AC-DC adapter	none	N/A
Alien Technology		6dBi Antenna		
Brock		6dBi antenna		

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated aluminum. It measures approximately 17.8 cm wide by 24.1 cm deep by 6.7 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP01L	Laptop PC	9LQ8901	DoC
Hewlett Packard	2225C	Printer	3028S76892	DS16XU2225

No remote support equipment was used during testing.

File: R50982 Page 7 of 17 Pages

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
Serial	Laptop PC	Multiwire	Shielded	3
Ethernet	Laptop PC	UTP	Unshielded	3

Note: The serial port would not normally be connected during normal operation as it used for configuration purposes only. The device is not intended to be used as a PC peripheral but as a network peripheral.

EUT OPERATION

The ethernet interface was being exercised using ping software and the serial port was used to control the EUT via the PC. As there were no transmit-frequency-related emissions below 1GHz radiated emissions tests below 1GHz were performed with the radio transmitting on 2445 MHz. For radiated emissions above 1GH the device was set to transmit on the specified channel.

ANTENNA REQUIREMENTS

The antenna port is a non standard, reverse gender coaxial connector, which meets the requirements of 15.203.

File: R50982 Page 8 of 17 Pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on April 4 and April 8, 2003at the Elliott Laboratories Open Area Test Site #1 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

Test Report

Report Date: April 24, 2003

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R50982 Page 9 of 17 Pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R50982 Page 10 of 17 Pages

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

Test Report

Report Date: April 24, 2003

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R50982 Page 11 of 17 Pages

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

Test Report

Report Date: April 24, 2003

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

File: R50982 Page 12 of 17 Pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

File: R50982 Page 13 of 17 Pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.247 / RSS 210(o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Number Of Channels	Output Power
902 – 928	>=50	1 W (30 dBm)
902 - 928	< 50	0.25 W (24 dBm)
2400 - 2483.5	>= 75	1 W (30 dBm)
2400 - 2483.5	< 75	0.125 W (21 dBm)
5725 – 5850	>=75	1 W (30 dBm)

For system using antennas with gains exceeding 6dBi, the output limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi.

Fixed point-to-point applications using the 5725 - 5850 MHz are not subject to a limitation in antenna gain.

File: R50982 Page 14 of 17 Pages

FCC 15.247 / RSS 210(o) SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Unwanted (spurious) emissions outside of the restricted bands are required to be 20dB below the highest in-band signal level..

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.207 and Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

File: R50982 Page 15 of 17 Pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R50982 Page 16 of 17 Pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_{m} = Measurement Distance in meters

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R50982 Page 17 of 17 Pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R50982 Exhibit Page 1 of 2

Antenna conducted measurements, 30MHz- 25GHz, 04-Apr-03 Engineer: imartinez

Engineer: jmartinez						
<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 9kHz - 40GHz)	84125C	1149	12	3/12/2003	3/12/2004
	iated Emissions, 05-Apr-03					
Engineer: Rafael						
<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	FCC / CISPR LISN	LISN-4, OATS	362	12	4/19/2002	4/19/2003
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	12	6/3/2002	6/3/2003
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1347	12	10/30/2002	10/30/2003
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	12	7/18/2002	7/18/2003
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	274	12	1/24/2003	1/24/2004
Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	213	12	7/22/2002	7/22/2003
Solar Electronics	Support Equipment LISN, 0.150-30.0 MHz	8012-50-R-24-BNC	305	12	8/20/2002	8/20/2003
	, 1 - 25 GHz, 08-Apr-03					
Engineer: jmartinez						
<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #		Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 9kHz - 40GHz)	84125C	1149	12	3/12/2003	3/12/2004
Conducted Emission	ns, 20-May-03					
Engineer: Chris						
Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	FCC / CISPR LISN	LISN-4, OATS	362	12	4/19/2002	5/30/2003
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	12	7/18/2002	7/18/2003
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	274	12	1/24/2003	1/24/2004

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS
TEST LOG SHEETS

AND

MEASUREMENT DATA

T50752 31 Pages

File: R50982 Exhibit Page 2 of 2

Elliott EMC Test Date				
Client:	Alien Technology	Job Number:	J50726	
Model:	B2450R01-A	T-Log Number:	T50752	
		Account Manager:	Robert Holt	
Contact:	Robert Martin			
Emissions Spec:	FCC	Class:	Α	
Immunity Spec:	N/A	Environment:	-	

EMC Test Data

For The

Alien Technology

Model

B2450R01-A

Elliott E			C Test Data
Client:	Alien Technology	Job Number:	J50726
Model:	B2450R01-A	T-Log Number:	T50752
		Account Mangager:	Robert Holt
Contact:	Robert Martin		
Emissions Spec:	FCC	Class:	А
Immunity Spec:	N/A	Environment:	-

EUT INFORMATION

General Description

The EUT is a FHSS Transceiver, which is designed to interrogate tags for inventory tracking purposes. Normally, the EUT would be wall-mounted. The EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 1200 V, 60 Hz, 1.5 Amps.

The EUT can use either a Brock 6dBi antenna or an Alien Technology 6dBi antenna.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Alien Technology	NanoScanner B2450R01-	Battery Powered Tag	2RB2003-00001	P65B2450R01-A
	Α	Reader		
PhiHong	PSA-30V-120	AC-DC adapter	none	N/A
Alien Technology		6dBi Antenna		
Brock		6dBi antenna		

Other EUT Details

This is a revision of an existing device.

EUT Enclosure

The EUT enclosure is primarily constructed of fabricated aluminum. It measures approximately 17.8 cm wide by 24.1 cm deep by 6.7 cm high.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None made

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Ellion	t	EM	C Test Data
Client:	Alien Technology	Job Number:	J50726
Model:	B2450R01-A	T-Log Number:	T50752
		Account Manager:	Robert Holt
Contact:	Robert Martin		
Emissions Spec:	FCC	Class:	А
Immunity Spec:	N/A	Environment:	-
		·	

Test Configuration #1

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP01L	Laptop PC	9LQ8901	DoC
Hewlett Packard	2225C	Printer	3028S76892	DS16XU2225

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
None				

Interface Cabling and Ports

Port	Connected To		Cable(s)	
		Description	Shielded or Unshielded	Length(m)
Serial	Laptop PC	Multiwire	Shielded	3
Ethernet	Laptop PC	UTP	Unshielded	3

Note: The serial port would not normally be connected during normal operation as it used for configuration purposes only. The device is not intended to be used as a PC peripheral but as a network peripheral.

EUT Operation During Emissions

The ethernet interface was being exercised using ping software and the serial port was used to control the EUT via the PC. As there were no transmit-frequency-related emissions below 1GHz radiated emissions tests below 1GHz were performed with the radio transmitting on 2445 MHz. For radiated emissions above 1GH the device was set to transmit on the specified channel.

Elliott	EMC Test Data
Client: Alien Technology	Job Number: J50726
Model: B2450R01-A	T-Log Number: T50752
	Account Manager: Robert Holt
Contact: Robert Martin	
Spec: FCC	Class: A

Conducted Emissions - Power Ports

Test Specifics

C- T111

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/20/2003 Config. Used: 1
Test Engineer: Chris Byleckie Config Change: None
Test Location: SVOATS #3 EUT Voltage: 120V/60Hz

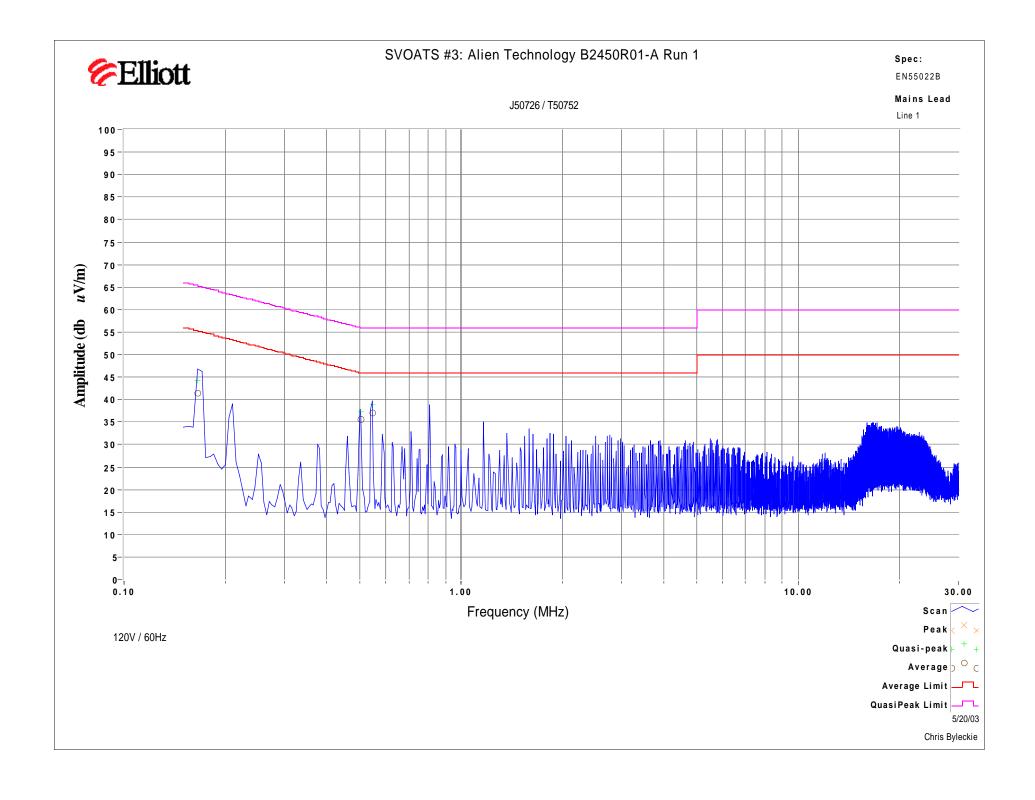
General Test Configuration

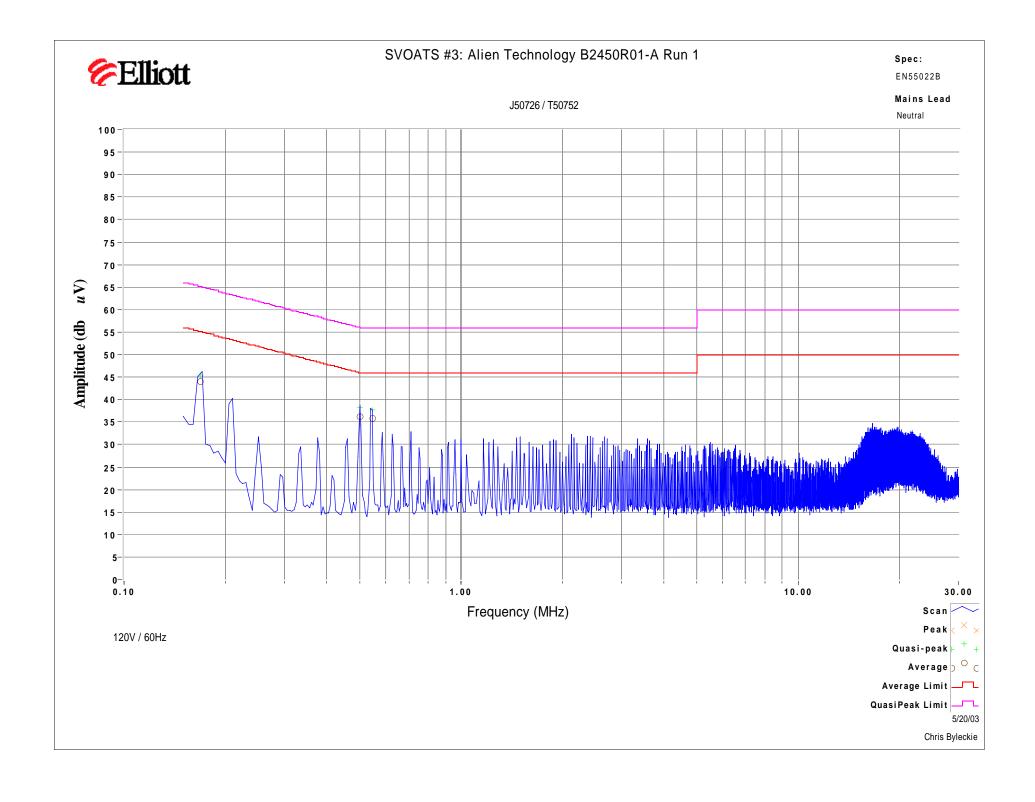
For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 68 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	EN55022 B	Pass	-8.9dB @ 0.544MHz


Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

T-Log Number: T50752 Account Manager: Robert Holt	Account Manager: Robert Holt	Account Manager: Robert Holt	Account Manager: Robert Holt	Account Manager: Robert Holt
Contact: Robert Martin Spec: FCC Class: A Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.504 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.503 37.3 Line 1 56.0<	Contact: Robert Martin Spec: FCC Class: A tun #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Heart (Figure 1) AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.504 38.9 Line 1 56.0 -17.1 QP 0.504 37.7 Neutral 56.0 -18.3 QP 0.544 37.7 Neutral 56.0 -18.7 QP 0.503 37.3 Line 1 56.0 -18	Contact: Robert Martin Spec: FCC Class: A Cun #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.504 38.9 Line 1 56.0 -17.1 QP 0.504 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutra	Contact: Robert Martin Spec: FCC Class: A colspan="3">Class: A Tequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.501 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.169 44.0 Neutral 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.503 37.3 Line 1 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.503 37.3 Line 1 56.0 -19.6 QP 0.169 45.4 Neutral 65.0 -19.6 QP 0.169 45.4 Neutral 65.0 -19.6 QP	Contact: Robert Martin Spec: FCC Class: A un #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -18.3 QP 0.544 37.7 Neutral 56.0 -18.7 QP 0.503 37.3 Line 1
Contact: Robert Martin Spec: FCC Class: A Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.504 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.503 37.3 Line 1 56.0<	Contact: Robert Martin Spec: FCC Class: A tun #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Heart (Figure 1) AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.504 38.9 Line 1 56.0 -17.1 QP 0.504 37.7 Neutral 56.0 -18.3 QP 0.544 37.7 Neutral 56.0 -18.7 QP 0.503 37.3 Line 1 56.0 -18	Contact: Robert Martin Spec: FCC Class: A Cun #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.504 38.9 Line 1 56.0 -17.1 QP 0.504 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutra	Contact: Robert Martin Spec: FCC Class: A colspan="3">Class: A Tequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.501 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.169 44.0 Neutral 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.503 37.3 Line 1 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.503 37.3 Line 1 56.0 -19.6 QP 0.169 45.4 Neutral 65.0 -19.6 QP 0.169 45.4 Neutral 65.0 -19.6 QP	Contact: Robert Martin Spec: FCC Class: A un #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -18.3 QP 0.544 37.7 Neutral 56.0 -18.7 QP 0.503 37.3 Line 1
Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral	Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Grequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.509 45.4 Neutral 65.0 -19.6 QP	requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.503 45.4 Neutral 65.0 -18.7 QP	un #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.544 38.9 Line 1 55.0 -13.5 AV 0.504 38.2 Neutral 56.0 -17.1 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.504 45.4 Neutral 65.0 -19.6 QP	un #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.544 38.9 Line 1 55.0 -13.5 AV 0.504 38.2 Neutral 56.0 -17.1 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral	Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Grequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.509 45.4 Neutral 65.0 -19.6 QP	requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.503 45.4 Neutral 65.0 -18.7 QP	un #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.544 38.9 Line 1 55.0 -13.5 AV 0.504 38.2 Neutral 56.0 -17.1 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.504 45.4 Neutral 65.0 -19.6 QP	un #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz requency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.544 38.9 Line 1 55.0 -13.5 AV 0.504 38.2 Neutral 56.0 -17.1 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	MHz dBμV Line Limit Margin QP/Ave 0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 37.1 Line 1 46.0 -8.9 AV 0.500 36.3 Neutral 46.0 -9.7 AV 0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 35.9 Neutral 46.0 -10.1 AV 0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.503 35.6 Line 1 46.0 -10.4 AV 0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.169 44.0 Neutral 55.0 -11.0 AV 0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.165 41.5 Line 1 55.0 -13.5 AV 0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 38.9 Line 1 56.0 -17.1 QP 0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.500 38.2 Neutral 56.0 -17.8 QP 0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.544 37.7 Neutral 56.0 -18.3 QP 0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP	0.503 37.3 Line 1 56.0 -18.7 QP 0.169 45.4 Neutral 65.0 -19.6 QP
0.169 45.4 Neutral 65.0 -19.6 QP	0.169 45.4 Neutral 65.0 -19.6 QP	0.169 45.4 Neutral 65.0 -19.6 QP	0.169 45.4 Neutral 65.0 -19.6 QP	0.169 45.4 Neutral 65.0 -19.6 QP
0.165 44.2 Line 1 65.0 -20.8 QP	0.165 44.2 Line 1 65.0 -20.8 QP	0.165 44.2 Line 1 65.0 -20.8 QP	0.165 44.2 Line 1 65.0 -20.8 QP	0.165 44.2 Line 1 65.0 -20.8 QP

Elliott	EM	IC Test Data
Client: Alien Technology	Job Number:	J50726
Model: B2450R01-A	T-Log Number:	T50752
	Account Manager:	Robert Holt
Contact: Robert Martin		
Spec: FCC	Class:	A

Conducted Emissions - Power Ports

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/4/2003 Config. Used: 1
Test Engineer: Rafael Config Change: None
Test Location: SVOATS #3 EUT Voltage: 120V/60Hz

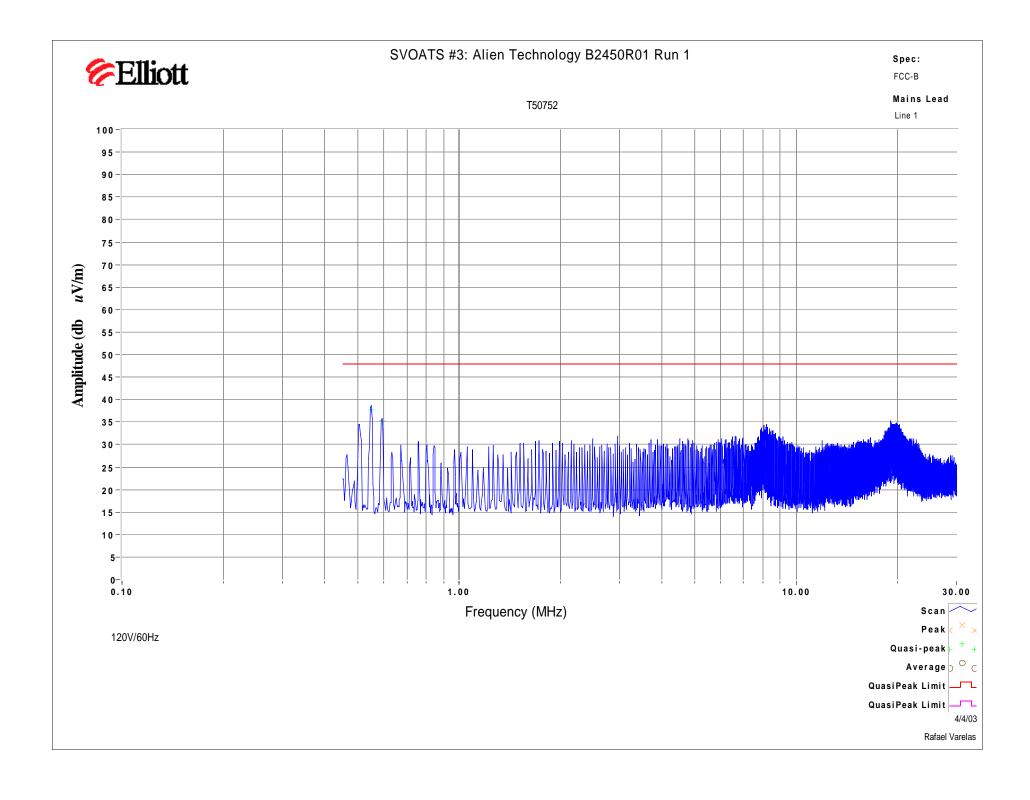
General Test Configuration

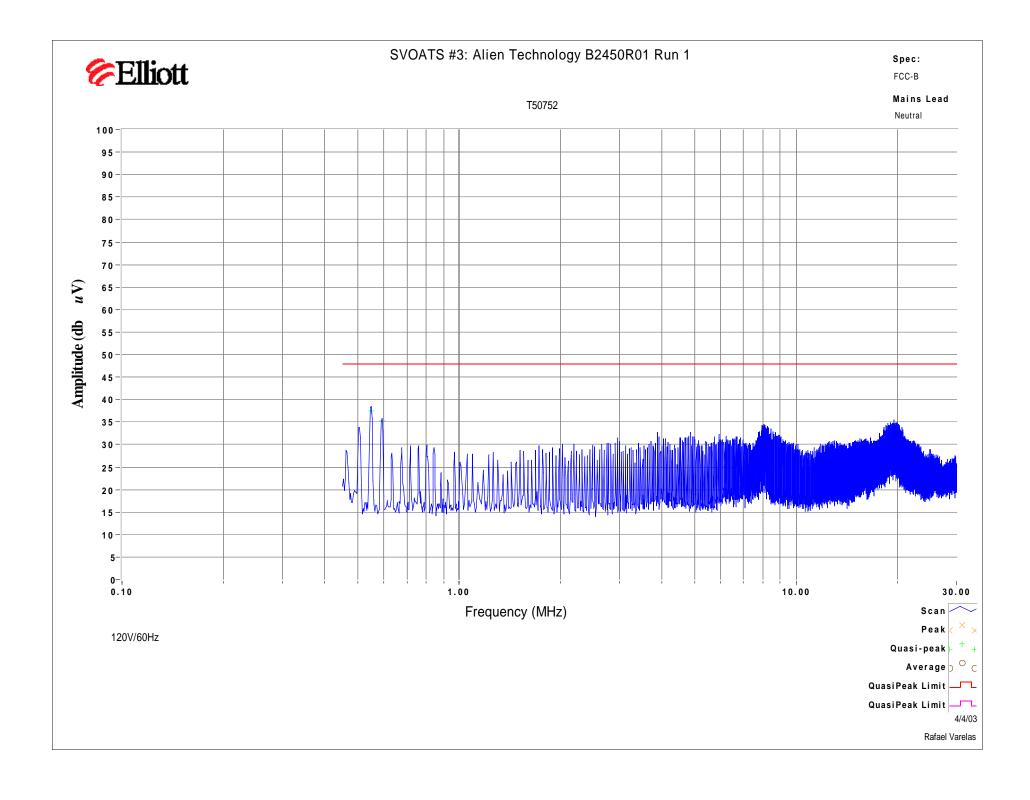
For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 9 °C

Rel. Humidity: 71 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	FCC B	Pass	-10.4dB @ 0.548MHz


Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

	Ellic							C Test D
	Alien Tec						Job Number:	
Model:	B2450R0	1-A					T-Log Number:	
							Account Manager:	Robert Holt
	Robert M	artin						
Spec:							Class:	Α
n #1: AC	Power F	ort Cond	ucted Emi	ssions, 0.4	5 - 30MHz,	120V/60Hz		
equency	Level	AC	FC	СВ	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.549	37.6	Line 1	48.0	-10.4	QP			
).548	37.5	Neutral	48.0	-10.5	QP			
).591	35.3	Line 1	48.0	-12.7	QP			
0.591	35.3	Neutral	48.0	-12.7	QP			
9.655	33.6	Neutral	48.0	-14.4	QP			
8.014	33.3	Neutral	48.0	-14.7	QP			
8.016	32.9	Line 1	48.0	-15.1	QP			
9.450	32.8	Line 1	48.0	-15.2	QP			

Elliott	EM	C Test Data
Client: Alien Technology	Job Number:	J50726
Model: B2450R01-A	T-Log Number:	T50752
	Account Manager:	Robert Holt
Contact: Robert Martin		
Spec: FCC	Class:	A

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/4/2003 Config. Used: 1
Test Engineer: Rafael Config Change: None
Test Location: SVOATS #3 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

On the OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 MHz. Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 9 °C

Rel. Humidity: 71 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 -1000 MHz, Preliminary	FCC A	Eval	Refer to individual runs
	Scan			
2	RE, 30 - 1000MHz, Maximized	FCC A	Pass	-4.1dB @ 300.010MHz
	Emissions			

All significant emissions below 1GHz were from the digital circuitry. None of the emissions observed were related to the Tx/Rx circuitry.

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

EMC Test Data

Client: Alien Technology	Job Number:	J50726
Model: B2450R01-A	T-Log Number:	T50752
	Account Manager:	Robert Holt
Contact: Robert Martin		
Spec: FCC	Class:	A

Run #1: Preliminary Radiated Emissions, 30-1000 MHz

Fraguenau	Lovol	Dal	F.C.	C A	Detector	Λ zimuth	Hoight	Comments
Frequency	Level	Pol		C A	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	
300.010	42.3	V	46.4	-4.1	QP	175	1.0	EUT
300.010	41.4	h	46.4	-5.0	QP	100	2.3	EUT
166.440	36.7	V	43.5	-6.8	QP	310	1.1	
166.440	36.5	Н	43.5	-7.0	QP	10	2.0	
199.960	36.1	V	43.5	-7.4	QP	0	1.0	Partial ambient
221.184	35.1	V	46.4	-11.3	QP	200	1.0	
294.914	34.9	Н	46.4	-11.5	QP	80	1.1	
300.000	34.1	Н	46.4	-12.3	QP	100	3.5	
213.812	29.7	V	43.5	-13.8	QP	350	1.0	
300.000	32.4	V	46.4	-14.0	QP	185	1.0	
331.776	31.4	V	46.4	-15.0	QP	20	1.0	
294.914	31.7	V	46.4	-14.7	QP	45	1.0	
199.960	27.7	Н	43.5	-15.8	QP	300	1.8	Signal Substitution
331.776	29.3	h	46.4	-17.1	QP	80	2.4	
221.184	28.5	Н	46.4	-17.9	QP	320	1.4	
213.812	25.4	Н	43.5	-18.1	QP	360	1.4	
228.557	27.8	V	46.4	-18.6	QP	15	1.0	
228.557	25.8	Н	46.4	-20.6	QP	295	1.5	
46.250	17.8	V	39.1	-21.3	QP	300	1.0	

Run #2: Maximized Readings From Run #1

ı	Frequency	Level	Pol	FC	CA	Detector	Azimuth	Height	Comments
ı	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
ı	300.010	42.3	٧	46.4	-4.1	QP	180	1.0	
ı	300.010	41.4	h	46.4	-5.0	QP	100	2.3	
ı	166.440	36.7	٧	43.5	-6.8	QP	300	1.1	
ı	166.440	36.5	h	43.5	-7.0	QP	20	2.0	
ı	199.960	36.1	٧	43.5	-7.4	QP	330	1.0	Partial ambient
ı	221.184	35.1	٧	46.4	-11.3	QP	210	1.0	

Elliott	EMC Test Data
Client: Alien Technology	Job Number: J50726
Model: B2450R01-A	T-Log Number: T50752
	Account Manager: Robert Holt
Contact: Robert Martin	
Spec: FCC	Class: N/A

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

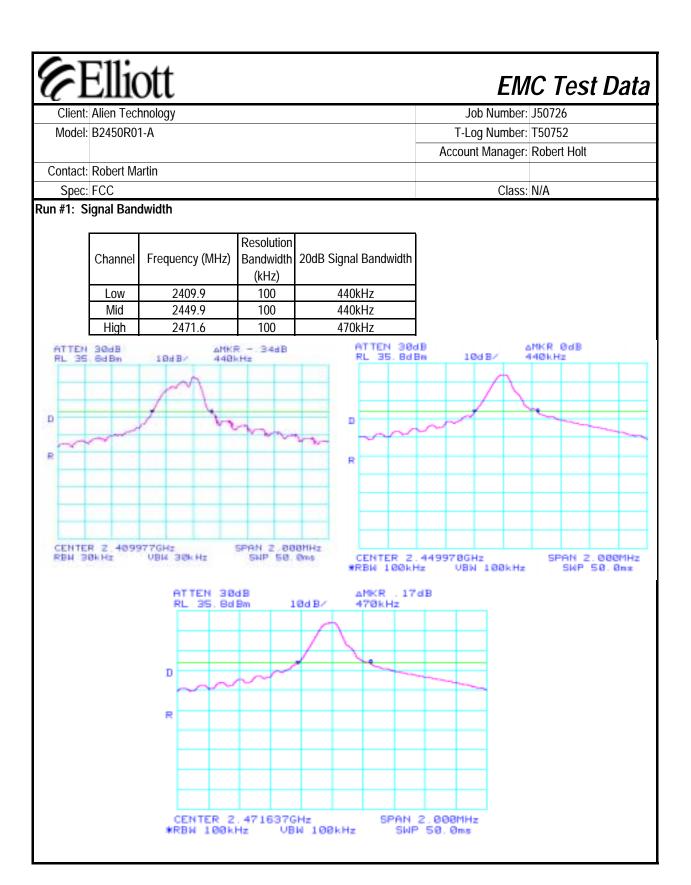
specification listed above.

Date of Test: 4/4/2003 Config. Used: N/A
Test Engineer: Mark Briggs Config Change: N/A
Test Location: Chamber #2 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.


Summary of Results

Run #	Test Performed	Limit	Result	Comments
1	20dB Bandwidth	15.247(a)	Pass	470kHz
2	Output Power	15.247(b)	Pass	29.97 dBm (0.99W)
2	Channel Occupancy	15.247(a)	Pass	0.387 seconds per 30
J				seconds
3	Channel Separation	15.247(a)	Pass	833 kHz
3	Number of Channels	15.247(a)	Pass	75
4	Out-of-Band Spurious	15.247(a)	Pass	All emisisons < -20dBc
4	Band Edge levels	15.247(a)	N/A	Refer to run

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

EMC Test Data

Client:	Alien Technology	Job Number:	J50726
Model:	B2450R01-A	T-Log Number:	T50752
		Account Manager:	Robert Holt
Contact:	Robert Martin		
Spec:	FCC	Class:	N/A

Run #2: Output Power

Channel	Frequency	Output	Power	Notes
Charmer	MHz	dBm	Watts	Motes
Low	2409.9	29.97	0.99	level = b9
Mid	2449.9	29.86	0.97	level = b9
High	2471.6	29.78	0.95	level = b9

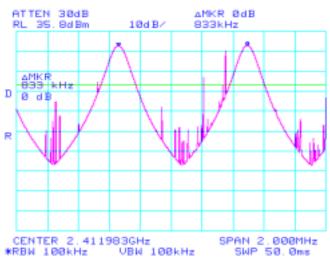
Note 1: Measured using a peak power meter. Maximum antenna gain is 6dBi. Maximum permitted output power fo a 75-channel; FHSS device is 1Watt.

Run #3: Channel Occupancy And Spacing

The channel occupancy was measured with the radio transmitting normally (i.e. In hopping mode)

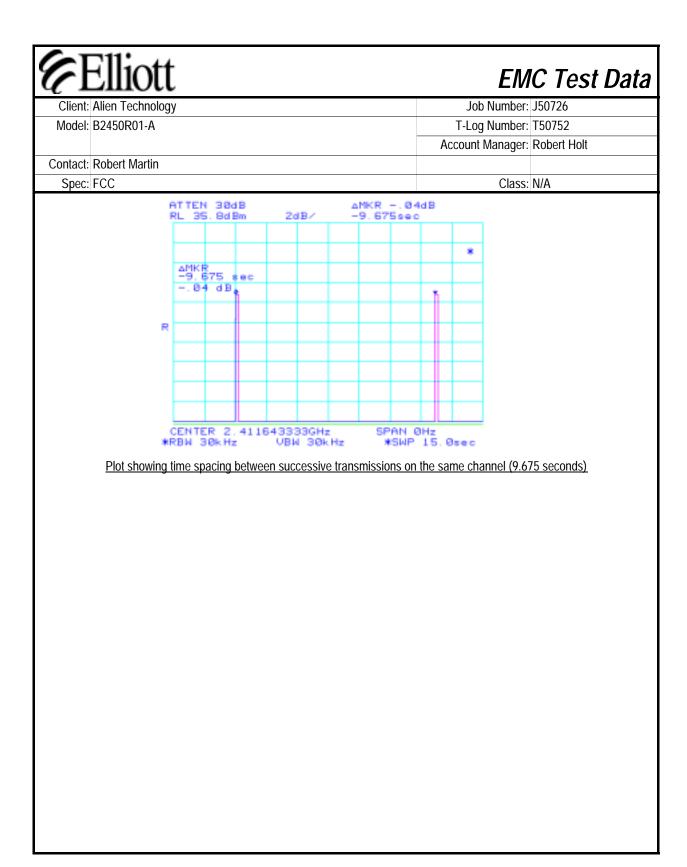
The channel spacing was: 833 kHz

Channel spacing was wider than the 20dB bandiwdth as per the requirements of FCC 15.247 / RSS 210


The transmit time on the channel was: 125 ms
The time between hops on the same channel was: 9.675 seconds
The number of channels was: 75

The number of channels was: 75

Number of times per 30 seconds a channel is used: 3.1008

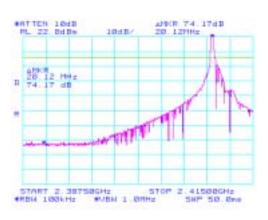

The transmit time per channel per 30 seconds is, therefore: 388 ms

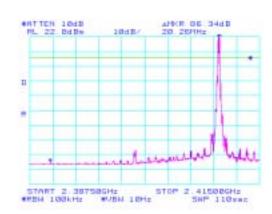
The channnel occupancy time meets the 0.4 seconds per 30 seconds (actual is 0.387 seconds transmitting per 30 seconds)

Plot showing 833kHz channel spacing

EMC Test Data Job Number: J50726 Client: Alien Technology T-Log Number: T50752 Model: B2450R01-A Account Manager: Robert Holt **Contact: Robert Martin** Spec: FCC Class: N/A ATTEN 38dB RL 35.8dBm MKR 28.64dBm 2.41013GHz 10dB/ START 2.40500GHz S *RBW 30kHz VBW 30kHz STOP 2.47500GHz z SWP 200ms Plot showing all 75 channels ΔMKR -12.80dB 125.0ms ATTEN 30dB 2dB/ RL 35.8dBm CENTER 2.411643333GHz *RBW 30kHz VBW 30kHz SPAN 0Hz *SWP 1.00sec Plot showing transmit time on a channel (125ms)

ent: Alien Technology	Job Number: J50726
del: B2450R01-A	T-Log Number: T50752
	Account Manager: Robert Ho
act: Robert Martin	,
pec: FCC	Class: N/A
: Out of Band Spurious Emissions a: Low Channel	
RT TEN 20dB 18dB 19dB 1.909GHz	NTTCH 38dB HKR 20 48dBs PL 32 8dBs 10dB/ 2.41019GHz
1	1
	The state of the s
The state of the s	
START 30MHz STOP Z 400GHz #MBH 100kHz #VBH 100kHz SHP 1 30sec TICH 20dB	579RT 2 38880GHz
*MBH 100kHz *VBH 100kHz SHP 1.30sec	*MBH 100kHz MBH 108kHz *SWP 1.80
**************************************	##BM 100kHz MBM 100kHz #BMP 1 00k #TTCH 20dB
##54 100kHz #VBH 100kHz SHP 1.30sec	##BH 100kHz 95H 100kHz #5HP 1 00k #TTEH 20dB
##54 100kHz #VBH 100kHz SHP 1.30sec	##BH 100kHz 95H 100kHz #5HP 1 00k #TTEH 20dB
##BM 100kHz #VBM 100kHz SMP 1.30sec	##BH 100kHz 95H 100kHz #5HP 1 00k #TTEH 20dB




EMC Test Data

-			
Client:	Alien Technology	Job Number:	J50726
Model:	B2450R01-A	T-Log Number:	T50752
		Account Manager:	Robert Holt
Contact:	Robert Martin		
Spec:	FCC	Class:	N/A

Band-Edge Measurements - Plots for use with radiated measurements of the fundamental

Level of fundamental: 28.8dBm (RBW=100kHz, VBW=1MHz); 28.5dBm (RBW=100kHz, VBW=10Hz)
Level at 2390MHz band edge: -52.2dBm (RBW=100kHz, VBW=1MHz); -63.5dBm (RBW=100kHz, VBW=10Hz)
Band edge level is -81dBc (peak), -92dBc (average)

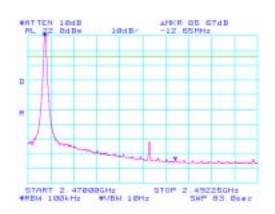
Plot of lower band edge relative to low channel signal - for reference only, the delta value in the plot does not allow for the peak of the transmit signal above the screen

EMC Test Data Job Number: J50726 Client: Alien Technology T-Log Number: T50752 Model: B2450R01-A Account Manager: Robert Holt **Contact: Robert Martin** Spec: FCC Class: N/A Run #4b: Middle Channel ML 32 8d Box MKR -41.03dDm 567PHz 10dB/ 1045/ п STOP 2 480GHz UBN 1886Hz SKP 1 38444 STWRT 2:39896Hz STOP 2:58896Hz #MBH 100kHz #MBH 100kHz SKP 81:8ms PRR -38.37dBv 7.658GHz FRR -35.53dBv 17.15GHz 10:18/ 10:18/ п п START 2.588GHz STOP 10.888GHz #PBH 100kHz 9VBH 100kHz SNP 4.28eec START 10.88GHz STOP 25.88GHz Plot showing out of band spurious - mid channel

EMC Test Data Job Number: J50726 Client: Alien Technology T-Log Number: T50752 Model: B2450R01-A Account Manager: Robert Holt **Contact: Robert Martin** Spec: FCC Class: N/A Run #4c: High Channel 1908 29.00dBn 2.47178GHz PHR -41.37dBv 1.638GHz 10dB/ 10:18/ 1.638 GHz 1.638 GHz 1.638 GHz П START 2.478886Hz STOP 2.588886Hz 570F Z. 480GHz #VBH 180kHz SHF 1.38sec FRIR -40.78dBw 20.18GHz RT TEN 2040 PL 32 048e PRR -38.78dBy 7.588GHz RT TEN 2048 PL 32 BdBs 10dB/ 1048/ 1 25.88 OHz п START 18.88GHz STOP 25.88GHz START 2 SEEGH2 STOP 10 BOOGH2 *MBH 100kHz #VBH 100kHz SNP 4 20cec Plot showing out of band spurious - high channel

EMC Test Data

-			
Client:	Alien Technology	Job Number:	J50726
Model:	B2450R01-A	T-Log Number:	T50752
		Account Manager:	Robert Holt
Contact:	Robert Martin		
Spec:	FCC	Class:	N/A


Band-Edge Measurements - Plots for use with radiated measurements of the fundamental

Level of fundamental: 29.6dBm (RBW=100kHz, VBW=1MHz); 28.3dBm (RBW=100kHz, VBW=10Hz)

Level at 2491.75MHz (highest signal in Restricted band): -47.4dBm (RBW=100kHz, VBW=1MHz); -61.2dBm (RBW=100kHz, VBW=10Hz)

Band edge level is -77dBc (peak), -89.5dBc (average)

Plot of lower band edge relative to low channel signal - for reference only, the delta value in the plot does not allow for the peak

of the transmit signal above the screen

E I	Elliott	EM	IC Test Data
Client:	Alien Technology	Job Number:	J50726
Model:	B2450R01-A	T-Log Number:	T50752
		Account Manager	Robert Holt
Contact:	Robert Martin		
Spec:	FCC	Class	N/A

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/8/2003 Config. Used: 1

Test Engineer: Jmartinez Config Change: See run notes
Test Location: SVOATS# 4 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions: Temperature: 11 °C

Rel. Humidity: 80 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
-	RE, 30 - 1000 MHz - Spurious	FCC Part 15.209 /	Pass	Refer to digital device
	Emissions	15.247(c)		emissions test
1	RE, 1000 - 25000 MHz -	FCC Part 15.209 /	Pass	-9.74dB @ 7230MHz
	Spurious Emissions In	15.247(c)		
	Restricted Bands, Brock 6dBi			

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Alien Tech						Job Number: J50726			
Model:	B2450R01	-A		T-L	og Number:	T50752				
						Robert Holt				
Contact:	Robert Ma	rtin								
Spec:								Class:	Ν/Δ	
		nurinus	Fmissions	1000 - 250	00 MHz I c	w Channel	@ 2410 MH		1471	
	tudiatou o	punous		, 1000 200	.00	on Gridinion	- L110 IIII	_		
					Н	V]			
Fundam	nental emiss	sion leve	el @ 3m in 1	MHz RBW:	130.5	133.2	Peak			
Fundam	nental emiss	sion leve	el @ 3m in 1	MHz RBW:	130.2	132.7	Average			
							_			
Frequency	Level	Pol		15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
7230.000		V	54.0	-9.7	Avg	261	1.0			
7230.000		<u>h</u>	54.0	-11.2	Avg	240				
12050.000	41.1	h	54.0	-12.9	Avg	280				
12050.000	40.9 40.7	V	54.0	-13.1	Avg	284 360		Noto 2		
2390.000 4820.000		V	54.0 54.0	-13.3 -16.0	Avg	239		Note 2		
4820.000		v h	54.0	-16.0	Avg Avg	239 242				
7230.000	53.5	V	74.0	-20.5	Pk	242 261	1.0			
12050.000	53.4	h	74.0	-20.6	Pk	280				
12050.000		V	74.0	-20.7	Pk	284				
7230.000	52.4	h	74.0	-21.6	Pk	240				
2390.000	52.2	٧	74.0	-21.8	Pk	360		Note 2		
4820.000	50.9	h	74.0	-23.1	Pk	242				
4820.000	50.1	V	74.0	-23.9	Pk	239	1.3			
9640.000		h	113.2	-51.5	Pk	286		Unrestricted		
9640.000	57.7	V	113.2	-55.5	Pk	277	1.4	Unrestricted	d Band	
Note 1:				nds, the limit	t of 15.209 w	as used. Fo	or all other er	nissions, the	e limit was set 20dB belo	
	the level o							6 11		
Note 2:				•	•				asurement showing the	
							-		e allocated band relative	
to the in-band signal. The peak level was -81dBc and the average level was -92dBc. These factors have applied to the field strength measurement of the fundamental signal to calculate the field strength in the re-										
			i strengtn me <u>s 2390MHz.</u>	easurement	of the funda	mentai signa	ii to caiculate	e tne fiela sti	rength in the restricted	

	Elliott
	Client: Alien Technology
ı	

EMC Test Data

ì			
Client:	Alien Technology	Job Number:	J50726
Model:	B2450R01-A	T-Log Number:	T50752
		Account Manager:	Robert Holt
Contact:	Robert Martin		
Spec:	FCC	Class:	N/A

Run #1b: Radiated Spurious Emissions, 1000 - 25000 MHz. Center Channel @ 2450 MHz

	Н	V
Fundamental emission level @ 3m in 100kHz RBW:	131	132
Limit for emissions outside of restricted bands:	112 dBµV/m	

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7350.000	43.1	٧	54.0	-10.9	Avg	251	1.0	
7350.000	43.0	h	54.0	-11.1	Avg	245	1.0	
4900.000	41.8	٧	54.0	-12.2	Avg	243	1.3	
4900.000	39.3	h	54.0	-14.7	Avg	267	1.0	
12250.000	38.9	٧	54.0	-15.2	Avg	46	1.0	
12250.000	38.7	h	54.0	-15.3	Avg	99	1.2	
7350.000	52.6	h	74.0	-21.4	PK	245	1.0	
12250.000	51.8	h	74.0	-22.2	PK	99	1.2	
12250.000	51.6	٧	74.0	-22.4	PK	46	1.0	
7350.000	51.5	٧	74.0	-22.5	PK	251	1.0	
4900.000	50.8	٧	74.0	-23.2	PK	243	1.3	
4900.000	50.3	h	74.0	-23.7	PK	267	1.0	
9800.000	57.8	h	112.0	-54.2	PK	163	1.0	Unrestricted
9800.000	56.1	V	112.0	-55.9	PK	311	1.9	Unrestricted

Client:	Alien Tech	nology		J	ob Number: J50726)			
Model:	B2450R01	-A		T-L	og Number: T50752	 2			
					nt Manager: Robert				
Contact:	Robert Ma	rtin					7.0004.	anagon rezert	
Spec:		1 (111						Class: N/A	
		nurious	Emissions	1000 250	OO MUz Uid	gh Channel	മ 2471 6 M		
Kull#IC. F	iauiaieu 5	purious	LIIISSIUIIS	, 1000 -250	oo wii iz. Tiiç	gii Ghaillich	₩ 247 1.0 IVI	112	
					Н	V	I		
Fundam	ental emiss	sion leve	el @ 3m in 1	MHz RBW:	131.7	131.7	Peak		
			el @ 3m in 1		131.4	130.9	Average		
							1		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	-
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7414.880	44.2	h	54.0	-9.8	Avg	251	1.0		
7414.880		V	54.0	-10.8	Avg	255	1.1		
2483.500	41.9	h	54.0	-12.1	Avg	-	-	Note 2	
12350.800	39.2	h	54.0	-14.8	Avg	230	1.0		
4943.280	39.1	h	54.0	-15.0	Avg	243			
12350.800	38.3	V	54.0	-15.7	Avg	232	1.2		
4943.280	37.0	V	54.0	-17.0	Avg	253	1.2		
2483.500	54.7	<u>h</u>	74.0	-19.3	Pk	-	-	Note 2	
7414.880	52.4	h	74.0	-21.6	Pk	251	1.0		
7414.880	52.1	<u>V</u>	74.0	-21.9	Pk	255	1.1		
12350.800	51.0	h	74.0	-23.0	Pk	230	1.0		
4943.280	50.4	<u>h</u>	74.0	-23.6	Pk	243	1.0		
12350.800 4943.280	50.4 47.9	V	74.0 74.0	-23.6 -26.1	Pk Pk	232 253	1.2 1.2		
9866.480	58.4	v h	111.7	-53.4	Pk Pk	264 264		Unrestricted Band	
9866.480	57.3	V	111.7	-53.4	Pk	240		Unrestricted Band	
	,								
Note 1:					of 15.209 w	as used. Fo	r all other er	nissions, the limit w	as set 20dB belo
			damental si			1		6 11	
Note 2:								s for the measurem	
								nd below the allocat	
								-89.5dBc. These fa	
					of the funda	mental signa	I to calculate	e the field strength i	n the restricted
	band that s	starts at	2483.5MHz						

E I	Elliott	EMC Test Data			
Client:	Alien Technology	Job Number:	J50726		
Model:	B2450R01-A	T-Log Number:	T50752		
		Account Manager:	Robert Holt		
Contact:	Robert Martin				
Spec:	FCC	Class:	N/A		

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/8/2003 Config. Used: 1

Test Engineer: Jmartinez Config Change: See run notes
Test Location: SVOATS# 4 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions: Temperature: 11 °C

Rel. Humidity: 80 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
-	RE, 30 - 1000 MHz - Spurious	FCC Part 15.209 /	Pass	Refer to digital device
	Emissions	15.247(c)		emissions test
1	RE, 1000 - 25000 MHz -	FCC Part 15.209 /	Pass	-7.21dB @ 4900MHz
	Spurious Emissions In	15.247(c)		
	Restricted Bands			

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Ellic								C Test Data
Client: Alien Technology								ob Number:	
Model: B2450R01-A								T-Log Number: T50752	
				Accou	nt Manager:	Robert Holt			
	Robert Ma	rtin							
Spec:								Class:	N/A
Run #1a: F	Radiated S _l	purious	Emissions	, 1000 - 250	000 MHz. Lo	w Channel	@ 2410 MH	Z	
							1		
Fundam	ontal omic	sion love	el @ 3m in 1	MII- DDW.	H 132.8	V 133.3	Dook		
			el @ 3m in 1		132.8	131.8	Peak Average		
runuan	ientai emis	SIUIT IEVE	31111111	IVINZ KDVV.	131.0	131.0	Average		
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7230.000	42.7	h	54.0	-11.3	Avg	327	1.4		
4820.000	41.3	V	54.0	-12.7	Avg	232	1.0		
7230.000	40.4	V	54.0	-13.6	Avg	279	1.0		
2390.000	39.8		54.0	-14.2	Avg	360		Note 2	
4820.000	39.7	h	54.0	-14.3	Avg	301	1.1		
2390.000	52.3		74.0	-21.7	Pk	360		Note 2	
7230.000	50.8	h	74.0	-23.2	Pk	327	1.4		
7230.000 4820.000	50.4 49.2	v h	74.0 74.0	-23.6 -24.8	Pk Pk	279 301	1.0 1.1		
4820.000	49.2	V	74.0	-24.8 -24.8	Pk Pk	232	1.1		
9640.000	62.5	h	113.3	-50.8	Pk	289		Unrestricte	d Rand
9640.000	58.2	V	113.3	-55.1	Pk	288		Unrestricte	
70 10.000	00.2	•	110.0	00.1	1 10	200	1.0	OTH COUNCIO	a Barra
lote 1:	For emissi	ons in re	estricted bar	nds, the limit	of 15.209 w	as used. Fo	r all other ei	missions, the	e limit was set 20dB belo
	the level o	f the fun	damental.						
ote 2:	•			•	•				asurement showing the
							•		e allocated band relative
									e factors have been
	annlied to		•	easurement	of the funda	mentai signa	I to calculate	e the field st	rength in the restricted
	band that								

Client:	Alien Tech	nology		Job Number: J50726					
Model:	B2450R01	-A		T-Log Number: T50752					
				Accou	nt Manager:	Robert Holt			
Contact:	Robert Ma	rtin							
Spec:	FCC			Class:	N/A				
Run #1b: F	Radiated S _l	ourious	Emissions	, 1000 - 250		enter Channe	el @ 2450 N	ЛНz	
Fundama	ntal amissis	n lovol	@ 2m in 10	JVI I~ DDW.	H 132	V 122			
			@ 3m in 100 side of restric			133 dBμV/m			
LIIIII	LIOI CIIII33II	nio Oulo	orac or result	nou parius.	113	υυμν/ΙΙΙ			
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4900.000	46.8	h	54.0	-7.2	Avg	196	1.2		
17150.000	45.5	h	54.0	-8.5	Avg	284	1.2		
7350.000	42.0	<u>V</u>	54.0	-12.0	Avg	212	1.0		
12250.000	41.1	h	54.0	-12.9	Avg	211	1.0		
4900.000	40.8 40.3	v h	54.0 54.0	-13.2	Avg	180	1.0 1.2		
7350.000 12250.000	38.8	V	54.0	-13.7 -15.2	Avg Avg	243 291	1.0		
17150.000	57.8	h	74.0	-16.3	PK	284	1.0		
4900.000	52.7	h	74.0	-21.3	PK	196	1.2		
12250.000	51.8	V	74.0	-22.2	PK	291	1.0		
12250.000	50.9	h	74.0	-23.1	PK	211	1.0		
7350.000	50.6	V	74.0	-23.4	PK	212	1.0		
7350.000	50.3	h	74.0	-23.7	PK	243	1.2		
4900.000	48.9	V .	74.0	-25.1	PK	180	1.0		
9800.000	61.3	<u>h</u>	113.0	-51.7	PK	257		Unrestricte	
9800.000	59.6	h	113.0	-53.4	PK	302	1.0	Unrestricte	d Band
	For omicci	one in re	etricted har	de the limi	t of 15,200 w	acused For	all other or	miccione the	e limit was set 20dB
Note 1:	the level of			ius, tric ilitii	(UI 13.207 W	as useu. Foi	all build el	1113310113, 1111	e IIIIII was set zoud

Model: B2450R01-A	Elient: Alier		nology					J	ob Number:	J50726
Account Manager Robert Holt										
Contact: Robert Martin Spec: FCC						•				
Specific FCC Class: N/A	ntact: Doh	ort Ma	rtin					7100041	it managon	Trobort Flori
H			1 (111						Classi	NI/A
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBuV/m v/h Limit Margin Pk/QP/Avg degrees meters 4943.280 44.3 h 54.0 -9.7 Avg 145 1.3 2483.500 42.5 h 54.0 -10.3 Avg Note 2 12358.000 42.1 v 54.0 -11.9 Avg 179 1.0 12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -15.4 Avg 223 1.4 12358.000 55.5 v 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk Note 2 12358.000 50.4 h 74.0 -22.7 Pk 179 1.0 12483.500 50.4 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 50.4 h 74.0 -25.4 Pk 223 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band 9866.480 62.0 v 113.0 -51.0 PK 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was so the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement so relative level of the highest signals in the restricted bands immediately above and below the allocated by relative level of the highest signals in the restricted bands immediately above and below the allocated by relative level of the highest signals in the restricted bands immediately above and below the allocated by relative level of the highest signals in the restricted bands immediately above and below the allocated by relative level of the highest signals in the restricted bands immediately above and below the allocated by relative level of the highest signals in the restricted bands immediately above and below the allocated by relative level of the highest signals in the restricted bands immediately above and below the allocated by relative level of the highest signals in the restricted bands immediately above and below the allocated by relative level of the fundam					1000 250	00 MH= H:a	h Chamal	● 2471 / M		IWA
Fundamental emission level @ 3m in 1MHz RBW: 132.5 133.5 133.5 Peak Average	ic: Raula	neu Sp	Julious	EIIII2210112	, 1000 -250	uu ivinz. nig	jn Channei (₩ 24 <i>1</i> 1.0 W	ПΖ	
Fundamental emission level @ 3m in 1MHz RBW: 132.5 133.5 Peak Fundamental emission level @ 3m in 1MHz RBW: 132.1 133.2 Peak Average Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4943.280 44.3 h 54.0 -9.7 Avg 145 1.3 2483.500 43.7 54.0 -10.3 Avg Note 2 12358.000 42.5 h 54.0 -11.9 Avg 245 1.2 7414.880 42.1 v 54.0 -11.9 Avg 179 1.0 12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Н</td> <td>V</td> <td>1</td> <td></td> <td></td>						Н	V	1		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 4943.280 44.3 h 54.0 -9.7 Avg 145 1.3 2483.500 43.7 54.0 -10.3 Avg Note 2 12358.000 42.5 h 54.0 -11.5 Avg 245 1.2 7414.880 42.1 v 54.0 -11.9 Avg 179 1.0 12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -15.4 Avq 223 1.4 4943.280 38.6 v 54.0 -15.4 Avq 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 55.5 v 74.0 </td <td>ındamenta</td> <td>l emiss</td> <td>ion leve</td> <td>al @ 3m in 1</td> <td>MHz RRW·</td> <td></td> <td></td> <td>Peak</td> <td></td> <td></td>	ındamenta	l emiss	ion leve	al @ 3m in 1	MHz RRW·			Peak		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments								4		
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 4943.280 44.3 h 54.0 -9.7 Avg 145 1.3 2483.500 43.7 54.0 -10.3 Avg Note 2 12358.000 42.5 h 54.0 -11.5 Avg 245 1.2 7414.880 42.1 v 54.0 -11.9 Avg 179 1.0 12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -14.6 Avg 162 1.4 4943.280 38.6 v 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk		. 0				.02	.00.2	, o. ago		
MHz dBµV/m v/h Limit Margin Pk/OP/Avg degrees meters 4943.280 44.3 h 54.0 -9.7 Avg 145 1.3 2483.500 43.7 54.0 -10.3 Avg Note 2 12358.000 42.5 h 54.0 -11.5 Avg 245 1.2 7414.880 42.1 v 54.0 -11.9 Avg 179 1.0 12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -14.6 Avg 162 1.4 4943.280 38.6 v 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk	iency Le	evel	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
4943.280 44.3 h 54.0 -9.7 Avg 145 1.3 2483.500 43.7 54.0 -10.3 Avg Note 2 12358.000 42.5 h 54.0 -11.5 Avg 245 1.2 7414.880 42.1 v 54.0 -11.9 Avg 179 1.0 12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -14.6 Avg 162 1.4 4943.280 38.6 v 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk 179 1.0 2483.500 56.5 74.0 -22.7 Pk 179 1.0 </td <td></td> <td>ιV/m</td> <td>v/h</td> <td>Limit</td> <td>Margin</td> <td>Pk/QP/Avg</td> <td>degrees</td> <td>meters</td> <td></td> <td></td>		ιV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
12358.000 42.5 h 54.0 -11.5 Avg 245 1.2 7414.880 42.1 v 54.0 -11.9 Avg 179 1.0 12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -14.6 Avg 162 1.4 4943.280 38.6 v 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk Note 2 Note 2 7414.880 51.3 v 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -25.4 <td></td> <td></td> <td>h</td> <td>54.0</td> <td></td> <td>Avg</td> <td>145</td> <td>1.3</td> <td></td> <td></td>			h	54.0		Avg	145	1.3		
7414.880 42.1 v 54.0 -11.9 Avg 179 1.0 12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -14.6 Avg 162 1.4 4943.280 38.6 v 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk Note 2 7414.880 51.3 v 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk	3.500	43.7		54.0	-10.3	Avg			Note 2	
12358.000 42.1 v 54.0 -11.9 Avg 265 1.0 7414.880 39.4 h 54.0 -14.6 Avg 162 1.4 4943.280 38.6 v 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk Note 2 7414.880 51.3 v 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk	8.000	42.5	h	54.0	-11.5	Avg				
7414.880 39.4 h 54.0 -14.6 Avg 162 1.4 4943.280 38.6 v 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk Note 2 7414.880 51.3 v 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.20			V		-11.9	Avg				
4943.280 38.6 v 54.0 -15.4 Avg 223 1.4 12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk Note 2 7414.880 51.3 v 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was substituted by the fundamental. Note 2: Refer to plots and data taken during t				54.0		Avg				
12358.000 58.2 h 74.0 -15.8 Pk 245 1.2 12358.000 57.5 v 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk Note 2 7414.880 51.3 v 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was sufficient the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement sufficient bands immediately above and below the allocated by above and below the allocated by above and below the allocated by above and below the al			h			Avg				
12358.000 57.5 V 74.0 -16.5 Pk 265 1.0 2483.500 56.5 74.0 -17.5 Pk Note 2 7414.880 51.3 V 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 V 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was sufficient the level of the fundamental. Refer to plots and data taken during the antenna port conducted measurements for the measurement sufficient bands immediately above and below the allocated by above and above and above and										
2483.500 56.5 74.0 -17.5 Pk Note 2 7414.880 51.3 v 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was sufficient the level of the fundamental. Refer to plots and data taken during the antenna port conducted measurements for the measurement sufficient bands immediately above and below the allocated bands immediately above and below the allocated bands immediately above and below the allocated bands.										
7414.880 51.3 v 74.0 -22.7 Pk 179 1.0 7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was sufficient to plots and data taken during the antenna port conducted measurements for the measurement sufficient to plots and data taken during the antenna port conducted measurements for the measurement sufficient to plots and below the allocated by above and abo			V				265	1.0		
7414.880 50.8 h 74.0 -23.3 Pk 162 1.4 4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band 9866.480 62.0 v 113.0 -51.0 PK 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was so the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement so relative level of the highest signals in the restricted bands immediately above and below the allocated by									Note 2	
4943.280 50.4 h 74.0 -23.6 Pk 145 1.3 4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band 9866.480 62.0 v 113.0 -51.0 PK 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was so the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement so relative level of the highest signals in the restricted bands immediately above and below the allocated by										
4943.280 48.6 v 74.0 -25.4 Pk 223 1.4 9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band 9866.480 62.0 v 113.0 -51.0 PK 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was so the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement so relative level of the highest signals in the restricted bands immediately above and below the allocated by										
9866.480 68.5 h 113.0 -44.5 Pk 256 1.0 Unrestricted Band 9866.480 62.0 v 113.0 -51.0 PK 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was so the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement so relative level of the highest signals in the restricted bands immediately above and below the allocated by										
9866.480 62.0 v 113.0 -51.0 PK 256 1.0 Unrestricted Band Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was so the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement so relative level of the highest signals in the restricted bands immediately above and below the allocated by									Lluro otrioto	d Dand
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was so the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement so relative level of the highest signals in the restricted bands immediately above and below the allocated by										
the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement s relative level of the highest signals in the restricted bands immediately above and below the allocated by	5.480	02.0	V	113.0	-31.0	PK	230	1.0	Onrestricted	u Ballu
the level of the fundamental. Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement s relative level of the highest signals in the restricted bands immediately above and below the allocated by	l· For	omicci	one in re	stricted har	nds tha limit	of 15 200 w	as usad En	r all other er	missions the	limit was sat 20dR ha
Note 2: Refer to plots and data taken during the antenna port conducted measurements for the measurement serial relative level of the highest signals in the restricted bands immediately above and below the allocated between the conducted bands immediately above and below the allocated bands immediately above.					ius, tric iiriit	. OI 13.207 W	as uscu. To	i dii otiloi ci	1113310113, 1110	c iiiiiit was set zoub be
relative level of the highest signals in the restricted bands immediately above and below the allocated b					during the ar	ntenna port d	onducted me	easurement	s for the mea	asurement showing the
y y		•			U	•				· ·
to the in-band signal. The peak level was -77.1dBc and the average level was -89.5dBc. These factors								•		
applied to the field strength measurement of the fundamental signal to calculate the field strength in the										
band that starts at 2483.5MHz.				•						
ุมสาน เกิสเ รเสาเร สเ 2483.จิพิทิน.	pano	u triat S	siaris at	∠483.5IVIHZ						