

Elliott Laboratories Inc. 684 West Maude Avenue www.elliottlabs.com Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Request for Class II Permissive Change pursuant to FCC Part 15, Subpart C Specifications for an Intentional Radiator on the Alien Technology Model: ALR-9780

- FCC ID: P65ALR9780
- GRANTEE: Alien Technology 18220 Butterfiled Blvd. Morgan Hill, CA. 95037
- TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086
- REPORT DATE: May 12, 2004
- FINAL TEST DATE:
- May 4 and May 10, 2004

AUTHORIZED SIGNATORY:

Juan mar

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

File: R55581 Page 1 of 14

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
SCOPE	3
OBJECTIVE	3
STATEMENT OF COMPLIANCE	3
SUMMARY OF RESULTS	4
MEASUREMENT UNCERTAINTIES	4
EQUIPMENT UNDER TEST (EUT) DETAILS	5
GENERAL	5
OTHER EUT DETAILS	
ENCLOSURE	5
MODIFICATIONS	5
SUPPORT EQUIPMENT	5
EXTERNAL I/O CABLING	
TEST SOFTWARE	6
TEST SITE	7
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	8
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	12
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207	
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Data Log Sheets	
EXHIBIT 3: Test Configuration Photographs	
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs of Alien Technology Model ALR-9780 Construction	

SCOPE

An electromagnetic emissions test has been performed on the Alien Technology model ALR-9780 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Alien Technology model ALR-9780 and therefore apply only to the tested sample. The sample was selected and prepared by Robert Martinof Alien Technology

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Alien Technology model ALR-9780 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Measured Value	Comments	Result
15.247 (b) (2)	6.2.2(o)(a)	Output Power,	29.9 dBm (0.977 Watts)	Maximum permitted is 1Watt, with EIRP limited to 4 Watts for a 50- channel system.	Complies
15.247(c) / 15.209		Radiated Spurious Emissions 30MHz – 9.28GHz	52.4 dBuV/m @ 4512.955 MHz (-1.6 dB)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.247 (b) (5)	RSS-212	RF Exposure Requirements	FCC /IC limits of power density not exceeded provided antenna is located a minimum of 23 cm from persons	Refer to MPE calculation for 23cm derivation. Refer to User's Guide for installation instructions requiring a 23cm separation	Complies
15.203		External Antenna	Circularly Polarized Patch	External antenna will be professionally installed	Complies

EIRP calculated using antenna gain of 6 dBi.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Alien Technology model ALR-9780 is a RF ID Reader, which is designed to identify RF tags placed on inventory. Normally, the EUT would be mounted on a wall during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz.

The sample was received on May 4, 2004 and tested on May 4 and May 10, 2004. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
Alien Technology ALR-9610-AC with LMR195 cable	-
Alien Technology ALR-9610-AC with Jyebao cable	-
Alien Technology ALR-9780 Tag Reader	-

OTHER EUT DETAILS

Cable utilized: 20 feet of Time Microwave LMR-195 coax cable or 20ft of Jyebao cable

ENCLOSURE

The Antenna enclosure is primarily constructed of molded plastic. It measures approximately 20 cm wide by 4 cm deep by 28 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Dell Latitude Laptop	TW-0791UH-12800-15T-B122	DoC
Dell ADP-70EB AC Adapter	TH-09364U-17971-0AE-N7U6	-

No remote support equipment was used during emissions testing.

EXTERNAL I/O CABLING

Port Connected To		Cable(s)			
TOIL	Port Connected 10		Shielded or Unshielded	Length (m)	
RF	Antenna	Coax	Shielded	6	
DC in	AC Adapter	2 wire	Unshielded	1	
RS-232	Laptop	Multiwire	Shielded	1.5	
RF (x3)	Note 1				
Ethernet	Note 1				
I/O	Note 1				

The I/O cabling configuration during emissions testing was as follows:

Note 1: Ports were not connected, as these were not required during transmitter testing.

TEST SOFTWARE

The EUT was transmitting continuously on the low (902MHz), middle (915MHz) or high (927MHZ) channel

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on May 4 and May 10, 2004 at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal standardized RF impedance, provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors, which are programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48
RADIATED E	MISSIONS SPECIFICATION LIMITS,	SECTION 15.209
Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500 54.0	

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level- Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

1 Page

Radiated Emissions, 1000 Engineer: Chris Byleckie	- 10,000 MHz, 04-May-04			
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	29-Oct-04
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz), Sunnyvale	84125C	1149	02-Jun-04
Hewlett Packard	High Pass filter, 1.5GHz	P/N 84300-80037	1154	20-Jun-04
Radiated Emissions, 1000 Engineer: Chris Byleckie	- 10,000 MHz, 10-May-04			
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	29-Oct-04
	Microwaya EMI tast system (SA40, 30Hz, 40CHz)			
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz), Sunnyvale	84125C	1149	02-Jun-04

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 55483 13 Pages

Elliott

EMC Test Data

Client:	Alien Technology	Job Number:	J55443
Model:	ALR-9780	T-Log Number:	T55483
		Account Manager:	Christine Vu
Contact:	Robert Martin		
Emissions Spec:	FCC 15.247	Class:	
Immunity Spec:	-	Environment:	

EMC Test Data

For The

Alien Technology

Model

ALR-9780

Date of Last Test: 5/10/2004

Elliott		EM	C Test Data
Client:	Alien Technology	Job Number:	J55443
Model:	ALR-9780	T-Log Number:	T55483
		Account Manager:	Christine Vu
Contact:	Robert Martin		
Emissions Spec:	FCC 15.247	Class:	

Immunity Spec:

EUT INFORMATION

Environment:

General Description

The EUT is a RF ID Reader which is designed to identify RF tags placed on inventory. Normally, the EUT would be mounted on a wall during operation. The EUT was, therefore, treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Alien Technology	ALR-9610-AC with	Antenna	N/A	-
	LMR195 cable			
Alien Technology	ALR-9610-AC with	Antenna	N/A	-
	Jyebao cable			
Alien Technology	ALR-9780	Tag Reader	N/A	P65ALR9780

Other EUT Details

cable utilized: 20 feet of Time Microwave LMR-195 coax cable or 20ft of Jyebao cable

EUT Enclosure

The Antenna enclosure is primarily constructed of molded plastic. It measures approximately 20 cm wide by 4 cm deep by 28 cm high.

Modification History

Mod. #	Test	Date	Modification
1			
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

	Alien Technology		Job Number: J	
Model:	ALR-9780		T-Log Number:	
			Account Manager: (Christine Vu
	Robert Martin		Class:	
Emissions Spec: Immunity Spec:	-		Environment:	
		t Configurati		
Manufacturer	Model	cal Support Equip Description	Serial Number	FCC ID
Dell	Latitude	Laptop	TW-0791UH-12800-15T-	DoC
Dell	Lanuuc	Сартор	B122	DUC
Dell	ADP-70EB	AC Adapter	TH-09364U-17971-0AE- N7U6	-
Manufacturer None	Model	Description	Serial Number	FCC ID
Port	Inte Connected To	rface Cabling and	Cable(s)	
		Description	Shielded or Unshielde	
RF DC in	Antenna AC Adaptor	Coax 2 wire	Shielded Unshielded	6
RS-232	AC Adapter Laptop	Multiwire	Shielded	1.5
	Note 1	Mailinnie	Shielded	1.5
KF (X.5)	Note 1			
RF (x3) Ethernet	Note 1			
Ethernet I/O				
Ethernet I/O	re not required to be conne	ected for transmitter tes	sting.	
Ethernet I/O	re not required to be conne	ected for transmitter tes	sting.	
Ethernet I/O te 1: These ports we	EUT O	peration During E	missions	
Ethernet I/O te 1: These ports we	EUT O	peration During E	-	27MHZ) channel
Ethernet I/O te 1: These ports we	EUT O	peration During E	missions	27MHZ) channel
Ethernet I/O te 1: These ports we	EUT O	peration During E	missions	27MHZ) channel
Ethernet I/O te 1: These ports we	EUT O	peration During E	missions	27MHZ) channel

Client: Alien Techr	ott		I	ob Number:	155443
	lology			og Number:	
Model: ALR-9780				•	Christine Vu
Contact: Robert Mar	tin		710000	in managon	
Spec: FCC 15.24				Class:	N/A
			1		
	Radi	ated Emissio	ns		
Test Specifics					
	he objective of this test session pecification listed above.	n is to perform final qualit	fication testi	ng of the EL	JT with respe
Date of Test: 5	/4/2004	Config. Used:	1		
Test Engineer: C		Config Change:			
Test Location: S	SVOATS #4	EUT Voltage:	120V/60Hz		
General Test Conf The EUT and all local s	iguration upport equipment were located	I on the turntable for radi	ated spuriou	us emissions	s testing.
For radiated emissions	testing the measurement anter	nna was located 3 meters	s from the E	UT.	
Unless stated otherwise	e the EUT was operating such t	hat it constantly hopped	on either the	e low, cente	er or high cha
Ambient Conditio	ns: Temperature:	21 °C			
	Rel. Humidity:	58 %			
Summary of Resu	lts				
Run #	Test Performed	Limit	Result	Ma	argin
	RE, 1000 - 10000 MHz -	FCC Part 15.209 /			
	Spurious Emissions In	15.247(c)	Pass	See indi	vidual runs
1a-1d	Destricted Dands				
1a-1d	Restricted Bands Output Power	FCC 15.247(b)(2)	Pass	20.4	9 dBm

Deviations From The Standard

No deviations were made from the requirements of the standard.

\mathcal{U}	Ellic)II						EM	IC Test Dat
	Alien Tech							Job Number:	J55443
							T-L	og Number:	T55483
Model:	ALR-9780						Accou	nt Manager:	Christine Vu
Contact:	Robert Ma	ntin							
Spec:	FCC 15.24	47						Class:	N/A
				s, 1000 - 10	0000 MHz. L	ow Channel	@ 902.6 N	IHz	
Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1805.238	35.0	Н	54.0	-19.0	AVG	24	1.0		
1805.238	45.6	Н	74.0	-28.4	PK	24	1.0		
2707.780	33.9	Н	54.0	-20.1	AVG	0	1.4	RB	
2707.780	42.6	Н	74.0	-31.4	PK	0	1.4	RB	
3600.405	33.6	Н	54.0	-20.4	AVG	31	1.0	RB	
3600.405	44.7	Н	74.0	-29.3	PK	31	1.0	RB	
4512.955	52.4	Н	54.0	-1.6	AVG	27	1.4		S-232 connector
4512.955	55.1	Н	74.0	-18.9	PK	27	1.4		S-232 connector
4512.135	33.6	Н	54.0	-20.4	AVG	27	1.1		copper tape to RS-232
4512.135	44.9	Н	74.0	-29.1	PK	27	1.1		copper tape to RS-232
5417.395	37.0	Н	54.0	-17.0	AVG	201	1.6	RB	
5417.395	45.8	Н	74.0	-28.2	PK	201	1.6	RB	
6318.315	34.3	Н	54.0	-19.7	AVG	207	1.0		
6318.315	46.0	Н	74.0	-28.0	PK	207	1.0		
7220.675	36.6	Н	54.0	-17.4	AVG	330	1.5		
7220.675	47.3	Н	74.0	-26.7	PK	330	1.5		
8123.435	37.8	Н	54.0	-16.2	AVG	206	1.2	RB	
8123.435	47.8	Н	74.0	-26.2	PK	206	1.2	RB	
9025.431	37.2	Н	54.0	-16.8	AVG	291	1.0	RB	
9025.431	47.5	Н	74.0	-26.5	PK	291	1.0	RB	
1804.290	31.3	V	54.0	-22.7	AVG	149	1.1		
1804.290	48.7	V	74.0	-25.3	PK	149	1.1		
2709.290	28.4	V	54.0	-25.6	AVG	303	1.0	RB	
2709.290	40.1	V	74.0	-33.9	PK	303	1.0	RB	
3601.780	33.0	V	54.0	-21.0	AVG	224	1.0	RB	
3601.780	45.5	V	74.0	-28.5	PK	224	1.0	RB	
4513.895	34.6	V	54.0	-19.4	AVG	28	1.4	RB	
4513.895	43.2	V	74.0	-30.8	PK	28	1.4	RB	
5415.670	34.1	V	54.0	-19.9	AVG	88	1.1	RB	
5415.670	44.9	V	74.0	-29.2	PK	88	1.1	RB	
6318.755	34.0	V	54.0	-20.0	AVG	359	1.3		
6318.755	45.8	V	74.0	-28.2	PK	359	1.3		
7220.795	34.9	V	54.0	-19.1	AVG	340	1.0		
7220.795	46.3	V	74.0	-27.7	PK	340	1.0		
8124.660	34.4	V	54.0	-19.6	AVG	22	2.0	RB	
	45.2	V	74.0	-28.9	PK	22	2.0	RB	

6E	Ellic	ott						EM	IC Test Data
Client:	Alien Tech	nology					,	lob Number:	J55443
Madal							T-L	og Number:	T55483
wodel:	ALR-9780						Accou	nt Manager:	Christine Vu
Contact	Robert Ma	rtin						5	
	FCC 15.24							Class:	N/A
Run #1a co		.,						010001	
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	oominionto	
9025.561	37.1	V	54.0	-16.9	AVG	332	1.3	RB	
9025.561	49.8	V	74.0	-24.2	PK	332	1.3	RB	
Note 2:	the level o RB - Restr Radiated S	icted Ba	nd	s, 1000 - 10	0000 MHz. C	Center Chan	nel @ 915 l	ИНz	
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1828.625	34.7	V	54.0	-19.3	AVG	333	1.0		
1828.625	49.6	V	74.0	-24.5	PK	333	1.0		
2744.885	29.8	V	54.0	-24.2	AVG	358	1.0	RB	
2744.885	50.0	V	74.0	-24.0	PK	358	1.0	RB	
3661.445	36.5	V	54.0	-17.5	AVG	41	1.0	RB	
3661.445	45.2	V	74.0	-28.8	PK	41	1.0	RB	
4574.045	32.6	V	54.0	-21.4	AVG	0	1.2	RB	
4574.045	47.3	V	74.0	-26.7	PK	0	1.2	RB	
5490.975	33.3	V	54.0	-20.7	AVG	124	1.0	RB	
5490.975	44.5	V	74.0	-29.6	PK	124	1.0	RB	
6405.370	32.9	V	54.0	-21.2	AVG	361	1.0		
6405.370	43.7	V	74.0	-30.3	PK	361	1.0		
7320.270	35.1	V	54.0	-18.9	AVG	219	1.4	RB	
7320.270	46.8	V	74.0	-27.2	PK	219	1.4	RB	
8236.400	35.7	V V	54.0	-18.3	AVG	247	1.0	RB	
8236.400 9149.660	46.6 37.2	V V	74.0 54.0	-27.4 -16.8	PK AVG	247 360	1.0 1.0	RB RB	
9149.000 9149.660	37.2 48.0	V	54.0 74.0	-16.8	PK	360	1.0	RB	
1828.615	30.5	H	54.0	-20.0	AVG	271	1.0		
1828.615	43.9	H	74.0	-23.5	PK	271	1.0		
2744.880	32.4	H	54.0	-21.7	AVG	78	1.0	RB	
2744.880	43.5	H	74.0	-30.5	PK	78	1.0	RB	
3661.195	33.4	H	54.0	-20.6	AVG	330	1.6	RB	
3661.195	45.1	H	74.0	-28.9	PK	330	1.6	RB	
4575.455	34.1	H	54.0	-19.9	AVG	326	1.0	RB	
4575.455	45.2	H	74.0	-28.8	PK	326	1.0	RB	
	I		-	-		ontinued on		·	

-	Ellic Alien Tech						_	Job Number:	J55443
		55						og Number:	
Model:	ALR-9780							•	Christine Vu
Contact:	Robert Ma	rtin						5	
	FCC 15.24							Class:	N/A
Run #1b co							I.		l
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5491.130	33.5	Н	54.0	-20.5	AVG	323	1.3	RB	
5491.130	45.2	Н	74.0	-28.8	PK	323	1.3	RB	
6404.950	31.6	Н	54.0	-22.4	AVG	340	1.0		
6404.950	43.3	H	74.0	-30.7	PK	340	1.0		
7320.415	37.9	<u>H</u>	54.0	-16.1	AVG	181	1.2	RB	
7320.415	49.4	<u>H</u>	74.0	-24.6	PK	181	1.2	RB	
8235.935	36.0	<u>H</u>	54.0	-18.0	AVG	334	1.0	RB	
8235.935 9150.445	46.9 37.4	<u>Н</u> Н	74.0 54.0	-27.1 -16.6	PK AVG	334 0	1.0 1.0	RB RB	
9150.445	49.3	<u>п</u> Н	54.0 74.0	-10.0	PK	0	1.0	RB	
lote 1:	For emissi the level o RB - Restr	f the fun	damental.	nds, the lim	it of 15.209 w	as used. Fo	r all other e	emissions, th	e limit was set 20dB
Note 1: Note 2:	the level o RB - Restr	f the fun icted Ba	damental. Ind						e limit was set 20dB
Note 1: Note 2: Run #1c: 1	the level o RB - Restr Radiated S	f the fun icted Ba	damental. Ind S Emission:	s, 1000 - 10	0000 MHz. H	igh Channe	l @ 927 Mł	łz	
Note 1: Note 2: Run #1c: I Frequency	the level o RB - Restr Radiated S	f the fun icted Ba Spurious Pol	damental. nd s Emission: 15.209	s, 1000 - 1(/ 15.247	DOOO MHz. H	igh Chann e Azimuth	I @ 927 MI Height		
Note 1: Note 2: Run #1c: I Frequency MHz	the level o RB - Restr Radiated S Level dBμV/m	f the fun icted Ba purious Pol v/h	damental. ind s Emissions 15.209 Limit	s, 1000 - 1(/ 15.247 Margin	DOOO MHz. H Detector Pk/QP/Avg	igh Channe Azimuth degrees	I @ 927 MH Height meters	łz	
Note 1: Note 2: Run #1c: I Frequency MHz 1855.095	the level o RB - Restr Radiated S Level dBµV/m 31.7	f the fun icted Ba Spurious Pol V/h H	damental. ind s Emissions 15.209 Limit 54.0	s, 1000 - 1(/ 15.247 Margin -22.3	DOOO MHz. H Detector Pk/QP/Avg AVG	igh Channe Azimuth degrees 0	I @ 927 MH Height meters 2.0	łz	
Note 1: Note 2: Run #1c: 1 Frequency MHz 1855.095 1855.095	the level o RB - Restr Radiated S Level dBµV/m 31.7 46.8	f the fun icted Ba Spurious Pol V/h H H	damental. ind s Emissions 15.209 Limit 54.0 74.0	s, 1000 - 1(/ 15.247 Margin -22.3 -27.3	Dooo MHz. H Detector Pk/QP/Avg AVG PK	igh Channe Azimuth degrees 0 0	I @ 927 MI Height meters 2.0 2.0	Iz Comments	
Note 1: Note 2: Run #1c: 1 Frequency MHz 1855.095 1855.095 2780.065	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5	f the fun icted Ba Spurious Pol V/h H H H	damental. ind 5 Emissions 15.209 Limit 54.0 74.0 54.0	s, 1000 - 1 (/ 15.247 Margin -22.3 -27.3 -21.5	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG	igh Channe Azimuth degrees 0 0 108	Height Height 2.0 2.0 2.0	Iz Comments	
Note 1: Note 2: Run #1c: 1 Frequency MHz 1855.095 1855.095 2780.065 2780.065	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6	f the fun icted Ba Spurious Pol V/h H H	damental. ind s Emissions 15.209 Limit 54.0 74.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4	Dooo MHz. H Detector Pk/QP/Avg AVG PK	igh Channe Azimuth degrees 0 0	I @ 927 MI Height meters 2.0 2.0	Iz Comments	
Note 1: Note 2: Run #1c: I Frequency MHz 1855.095 1855.095 2780.065 2780.065 3707.210	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5	f the fun icted Ba Spurious Pol V/h H H H H	damental. ind 5 Emissions 15.209 Limit 54.0 74.0 54.0 74.0	s, 1000 - 1 (/ 15.247 Margin -22.3 -27.3 -21.5	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG PK	igh Channe Azimuth degrees 0 0 108 108	Height Height meters 2.0 2.0 2.0 2.0 2.0	Iz Comments RB RB RB	
Note 1: Note 2: Run #1c: 1 Frequency MHz 1855.095 1855.095 2780.065 2780.065 3707.210 3707.210	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6 33.8	f the fun icted Ba Spurious Pol V/h H H H H H	damental. ind 5 Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 54.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG PK AVG AVG	igh Channe Azimuth degrees 0 0 108 108 23	Height Height 2.0 2.0 2.0 2.0 1.0	Iz Comments RB RB RB RB	
Note 1: Note 2: Run #1c: 1 Frequency MHz 1855.095 1855.095 2780.065 2780.065 3707.210 3707.210 4636.305	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6 33.8 44.7	f the fun icted Ba Spurious Pol V/h H H H H H H	damental. ind 5 Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 0 0 108 108 23 23	Height Height meters 2.0 2.0 2.0 1.0 1.0	Iz Comments RB RB RB RB RB RB RB	
Note 1: Note 2: Run #1c: 1 Frequency MHz 1855.095 2780.065 2780.065 3707.210 3707.210 4636.305 4636.305 5563.060	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6 33.8 44.7 31.6 43.3 33.3	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3 -22.4 -30.7 -20.7	Dotector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 0 0 108 108 23 23 23 124 124 0	Height Height meters 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0	Iz Comments RB RB RB RB RB RB RB RB RB	
Note 1: Note 2: Run #1c: I Frequency MHz 1855.095 1855.095 2780.065 2780.065 3707.210 3707.210 4636.305 4636.305 5563.060 5563.060	the level o RB - Restr Radiated S Level dBµV/m 31.7 46.8 32.5 40.6 33.8 44.7 31.6 43.3 33.3 44.3	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 74.0 54.0 74.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3 -22.4 -30.7 -20.7 -29.7	Dotector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 0 0 108 108 23 23 23 124 124 0 0 0	Height Height meters 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Iz Comments RB RB RB RB RB RB RB RB RB	
Note 1: Note 2: Run #1c: 1 Frequency MHz 1855.095 2780.065 2780.065 2780.065 2780.065 3707.210 3707.210 4636.305 4636.305 5563.060 5563.060 6889.925	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6 33.8 44.7 31.6 43.3 33.3 44.3 36.9	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3 -22.4 -30.7 -20.7 -20.7 -29.7 -29.7 -17.1	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 0 0 108 108 23 23 23 124 124 124 0 0 0 44	Height meters 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1	Iz Comments RB RB RB RB RB RB RB RB RB	
Jote 1: Jote 2: Run #1c: I Frequency MHz 1855.095 1855.095 2780.065 2780.065 2780.065 3707.210 4636.305 4636.305 5563.060 5563.060 6889.925 6889.925	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6 33.8 44.7 31.6 43.3 33.3 44.3 36.9 47.7	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3 -22.4 -30.7 -20.7 -29.7 -17.1 -26.3	Dotector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 0 0 108 108 23 23 23 23 124 124 124 0 0 0 44 44	Height Height meters 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1	Iz Comments RB RB RB RB RB RB RB RB RB RB RB	
Jote 1: Jote 2: Run #1c: I Frequency MHz 1855.095 1855.095 2780.065 2780.065 3707.210 3707.210 4636.305 4636.305 5563.060 5563.060 5563.060 6889.925 6889.925 7416.600	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6 33.8 44.7 31.6 43.3 33.3 44.3 36.9 47.7 38.0	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3 -22.4 -30.7 -20.7 -20.7 -20.7 -29.7 -17.1 -26.3 -16.0	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 0 0 108 108 23 23 124 124 124 0 0 0 44 44 360	Height meters 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1	Iz Comments RB RB RB RB RB RB RB RB RB RB RB RB RB	
Jote 1: Jote 2: Run #1c: I Frequency MHz 1855.095 1855.095 2780.065 2780.065 2780.065 3707.210	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6 33.8 44.7 31.6 43.3 33.3 44.3 33.3 44.3 36.9 47.7 38.0 49.6	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3 -22.4 -30.7 -20.7 -20.7 -29.7 -17.1 -26.3 -16.0 -24.4	Dotector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 0 0 108 108 23 23 23 124 124 0 0 0 44 44 44 360 360	Height meters 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1	Iz Comments RB RB RB RB RB RB RB RB RB RB RB RB RB	
lote 1: lote 2: Run #1c: I Frequency MHz 1855.095 1855.095 2780.065 2780.065 2780.065 3707.210 3707.210 3707.210 4636.305 5563.060 5563.060 5563.060 6889.925 6889.925 7416.600 7416.600 8344.285	the level o RB - Restr Radiated S Level dBµV/m 31.7 46.8 32.5 40.6 33.8 44.7 31.6 43.3 33.3 44.3 36.9 47.7 38.0 49.6 35.8	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 74.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3 -22.4 -30.7 -20.7 -29.7 -17.1 -26.3 -16.0 -24.4 -18.2	Dotector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 0 0 108 108 23 23 23 23 124 124 124 0 0 0 0 44 44 44 360 360 221	Height meters 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1	Iz Comments RB RB RB RB RB RB RB RB RB RB RB RB RB	
Note 1: Note 2: Run #1c: I Frequency	the level o RB - Restr Radiated S Level dBμV/m 31.7 46.8 32.5 40.6 33.8 44.7 31.6 43.3 33.3 44.3 33.3 44.3 36.9 47.7 38.0 49.6	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.3 -27.3 -21.5 -33.4 -20.2 -29.3 -22.4 -30.7 -20.7 -20.7 -29.7 -17.1 -26.3 -16.0 -24.4	Dotector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 0 0 108 108 23 23 23 124 124 0 0 0 44 44 44 360 360	Height meters 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1	Iz Comments RB RB RB RB RB RB RB RB RB RB RB RB RB	

MHz dBµ 1852.835 33 1852.835 48 2780.575 28 2780.575 42 3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 35 6889.845 35 7417.160 47 8343.285 35 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	ert Martin 15.247	15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	/ 15.247 Margin -20.3 -25.6 -25.8 -31.6 -22.7 -31.6	Detector Pk/QP/Avg AVG PK AVG PK AVG	Azimuth degrees 296 296 317 317	T-L	Class:	T55483 Christine Vu
Contact: Robe Spec: FCC Run #1c continu Frequency Le MHz dBµ 1852.835 33 1852.835 48 2780.575 28 2780.575 42 3707.775 31 3707.775 31 3707.775 31 3707.775 31 3707.775 31 3707.775 31 3707.775 31 3707.775 31 5561.080 31 5561.080 42 6889.845 35 6889.845 35 6889.845 35 8343.285 35 8343.285 35 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	ert Martin 2 15.247 aued avel Po av/m v/h 3.7 V 8.4 V 8.2 V 2.4 V 1.3 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V 1.4 V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -20.3 -25.6 -25.8 -31.6 -22.7 -31.6	Pk/QP/Avg AVG PK AVG PK	degrees 296 296 317	Accou Height neters 1.0 1.0	Class:	Christine Vu
Contact: Robe Spec: FCC Run #1c c>rtim Frequency Le MHz dBµ 1852.835 33 1852.835 28 2780.575 28 2780.575 42 3707.775 31 3707.775 31 3707.775 31 3707.775 31 3707.775 31 3707.775 31 3707.775 31 3707.775 31 5561.080 42 6889.845 35 6889.845 35 6889.845 35 6889.845 35 8343.285 35 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	ert Martin 2 15.247 aued avel Po av/m v/h 3.7 V 8.4 V 8.2 V 2.4 V 1.3 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V 1.4 V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -20.3 -25.6 -25.8 -31.6 -22.7 -31.6	Pk/QP/Avg AVG PK AVG PK	degrees 296 296 317	Accou Height neters 1.0 1.0	Class:	Christine Vu
Spec: FCC Run #1c contin Image: Contine Frequency Le MHz dBµ 1852.835 33 1852.835 48 2780.575 28 2780.575 42 3707.775 31 3707.775 31 3707.775 42 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 35 6889.845 35 7417.160 37 9271.340 37 9271.340 47 Note 1: For e	15.247 uued evel Po a.V/m v/h 3.7 V 8.4 V 8.2 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -20.3 -25.6 -25.8 -31.6 -22.7 -31.6	Pk/QP/Avg AVG PK AVG PK	degrees 296 296 317	meters 1.0 1.0	Comments	N/A
Run #1c continue Frequency Le MHz dBµ 1852.835 33 1852.835 33 1852.835 48 2780.575 28 2780.575 42 3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 35 6889.845 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	Poe evel Po LV/m v/h 3.7 V 8.4 V 8.2 V 2.4 V 1.3 V 2.4 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -20.3 -25.6 -25.8 -31.6 -22.7 -31.6	Pk/QP/Avg AVG PK AVG PK	degrees 296 296 317	meters 1.0 1.0	Comments	N/A
Frequency Le MHz dBµ 1852.835 33 1852.835 48 2780.575 28 2780.575 42 3707.775 31 3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 42 6889.845 47 7417.160 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	evel Po uV/m v/h 3.7 V 8.4 V 8.2 V 2.4 V 1.3 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -20.3 -25.6 -25.8 -31.6 -22.7 -31.6	Pk/QP/Avg AVG PK AVG PK	degrees 296 296 317	meters 1.0 1.0		
MHz dBµ 1852.835 33 1852.835 48 2780.575 28 2780.575 28 2780.575 42 3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 35 6889.845 35 6889.845 35 8343.285 35 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	IV/m v/h 3.7 V 8.4 V 8.2 V 2.4 V 1.3 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V 1.4 V 2.1 V	Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	Margin -20.3 -25.6 -25.8 -31.6 -22.7 -31.6	Pk/QP/Avg AVG PK AVG PK	degrees 296 296 317	meters 1.0 1.0		
1852.835 33 1852.835 48 2780.575 28 2780.575 42 3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 35 6889.845 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	3.7 V 8.4 V 8.2 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V 1.4 V 2.4 V	54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	-20.3 -25.6 -25.8 -31.6 -22.7 -31.6	AVG PK AVG PK	296 296 317	1.0 1.0		
1852.835 48 2780.575 28 2780.575 28 2780.575 42 3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 47 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	8.4 V 8.2 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V 1.4 V 2.4 V	74.0 54.0 74.0 54.0 74.0 54.0 74.0 74.0	-25.6 -25.8 -31.6 -22.7 -31.6	PK AVG PK	296 317	1.0		
2780.575 28 2780.575 42 3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 47 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	8.2 V 2.4 V 1.3 V 2.4 V 1.4 V 2.4 V 1.4 V 2.4 V	54.0 74.0 54.0 74.0 54.0 74.0 74.0	-25.8 -31.6 -22.7 -31.6	AVG PK	317			
2780.575 42 3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 47 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	2.4 V 1.3 V 2.4 V 1.4 V 2.4 V 1.4 V 2.4 V 2.4 V 1.4 V 2.4 V 1.4 V 2.1 V	74.0 54.0 74.0 54.0 74.0 74.0	-31.6 -22.7 -31.6	PK		1.0	חח	
3707.775 31 3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 31 5561.080 42 6889.845 35 6889.845 47 7417.160 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	1.3 V 2.4 V 1.4 V 2.4 V 1.4 V 2.4 V 2.4 V 2.4 V 2.4 V 2.4 V 1.4 V 2.1 V	54.0 74.0 54.0 74.0	-22.7 -31.6		317		RB	
3707.775 42 4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 35 6889.845 35 7417.160 35 7417.160 47 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	2.4 V 1.4 V 2.4 V 1.4 V 2.1 V	74.0 54.0 74.0	-31.6	AV/C		1.0	RB	
4635.930 31 4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 47 7417.160 35 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	1.4 V 2.4 V 1.4 V 2.1 V	54.0 74.0			50	1.0	RB	
4635.930 42 5561.080 31 5561.080 42 6889.845 35 6889.845 47 7417.160 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	2.4 V 1.4 V 2.1 V	74.0		PK	50	1.0	RB	
5561.080 31 5561.080 42 6889.845 35 6889.845 47 7417.160 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e	1.4 V 2.1 V		-22.6	AVG	14	1.2	RB	
5561.080 42 6889.845 35 6889.845 47 7417.160 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1:	2.1 V		-31.6	PK	14	1.2	RB	
6889.845 35 6889.845 47 7417.160 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e		54.0	-22.6	AVG	247	1.8		
6889.845 47 7417.160 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1:	5.1 V	74.0	-31.9	PK	247	1.8		
7417.160 35 7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1:		54.0	-18.9	AVG	361	1.0		
7417.160 47 8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e the let	7.3 V	74.0	-26.7	PK	361	1.0		
8343.285 35 8343.285 46 9271.340 37 9271.340 47 Note 1: For e the let	5.2 V	54.0	-18.8	AVG	235	1.0	RB	
8343.285 46 9271.340 37 9271.340 47 9271.340 For ethe lethe	7.1 V	74.0	-26.9	PK	235	1.0	RB	
9271.340 37 9271.340 47 9271.340 For e Note 1:	5.1 V	54.0	-18.9	AVG	238	1.0	RB	
9271.340 47 Note 1: For e the le	6.3 V	74.0	-27.7	PK	238	1.0	RB	
Note 1: For e	7.3 V	54.0	-16.7	AVG	279	1.0		
Note 1: the le	7.9 V	74.0	-26.1	PK	279	1.0		
Note 2: RB -	evel of the	undamental.	nds, the limi	t of 15.209 w	vas used. Fo	r all other e	missions, the	e limit was set 20dB belov
	 Restricted 	Band						
Run #1d: Radia	<u>6/3/2004,</u>	SVOATS #2	-		-			
	evel Po		/ 15.247 Margin	Detector	Azimuth	Height	Comments	
	uV/m v/h	Limit 54.0	Margin	Pk/QP/Avg QP	degrees	meters	Eundomon	126 2dDu///m Dk
	3.8 v 0.0 h	54.0 54.0	-20.2 -24.0	QP QP	161 178	1.0 1.8		tal = 126.2dBuV/m Pk tal = 112.5dBuV/m Pk
Run# 2: Output					170	1.0	Tranadiielii	ai – 112.3uDUV/III M
Frequency Pov	wer Pow	er						
MHz dE	Bm W							
902.600 29	9.9 0.97	'2						
915.000 29	9.9 0.97	'2						
927.000 29	9.9 0.97	'2						
Power measured		ectrum analyz	zer with RB	N = VBW=3N	/Hz			

Elli	ott			EM	IC Test D
Client: Alien Te	chnology		J	ob Number:	: J55443
Model: ALR-978	0			og Number:	
			Accou	nt Manager:	Christine Vu
Contact: Robert N				Class	NI/A
Spec: FCC 15.	247			Class:	. IN/A
	Rad	iated Emissio	ns		
Test Specifics					
Objective	The objective of this test sessio specification listed above.	n is to perform final qualif	ication testi	ng of the EU	JT with respect to t
Date of Test		Config. Used:			
•	Chris Byleckie	Config Change:			
Test Location	: SVOATS #4	EUT Voltage:	120V/60HZ	-	
upport equipment v	al support equipment were located vas located approximately 30 met	ers from the EUT with all			0
support equipment v proundplane or rout		ers from the EUT with all st configuration.	I/O connect	tions running	0
support equipment v groundplane or rout For radiated emissic	vas located approximately 30 met ed in overhead in the GR-1089 te	ters from the EUT with all st configuration. nna was located 3 meters	I/O connect	tions running UT.	g on top of the
support equipment v groundplane or rout For radiated emissic Jnless stated otherv	vas located approximately 30 met ed in overhead in the GR-1089 test ns testing the measurement ante vise the EUT was operating such	ters from the EUT with all st configuration. nna was located 3 meters that it constantly hopped	I/O connect	tions running UT.	g on top of the
upport equipment v roundplane or rout for radiated emission Jnless stated otherv	vas located approximately 30 met ed in overhead in the GR-1089 tes ins testing the measurement ante vise the EUT was operating such ions: Temperature:	ters from the EUT with all st configuration. nna was located 3 meters that it constantly hopped 19 °C	I/O connect	tions running UT.	g on top of the
upport equipment v roundplane or route or radiated emissic Inless stated otherv Ambient Condit	vas located approximately 30 met ed in overhead in the GR-1089 test ns testing the measurement ante vise the EUT was operating such ions: Temperature: Rel. Humidity:	ters from the EUT with all st configuration. nna was located 3 meters that it constantly hopped 19 °C	I/O connect	tions running UT.	g on top of the
support equipment v groundplane or rout For radiated emissic Jnless stated otherv Ambient Condit	vas located approximately 30 met ed in overhead in the GR-1089 te: ns testing the measurement ante vise the EUT was operating such ions: Temperature: Rel. Humidity: sults Test Performed	ters from the EUT with all st configuration. nna was located 3 meters that it constantly hopped 19 °C 40 % Limit	I/O connect	tions runninç UT. e low, cente	g on top of the
support equipment v groundplane or route For radiated emissic Jnless stated otherv Ambient Condit Summary of Re	vas located approximately 30 met ed in overhead in the GR-1089 te: ns testing the measurement ante vise the EUT was operating such ions: Temperature: Rel. Humidity: sults	ters from the EUT with all st configuration. nna was located 3 meters that it constantly hopped 19 °C 40 %	I/O connect	tions running UT. e low, cente	g on top of the

Client	Alien Tech	nology					-	lob Number:	J55443
Madal							T-l	og Number:	T55483
woder	ALR-9780						Accou	nt Manager:	Christine Vu
Contact	Robert Ma	irtin							
Speca	FCC 15.24	17						Class:	N/A
				s, 1000 - 10	0000 MHz. L	ow Channel	@ 902.6 N	lHz	
requency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
803.200	30.8	H	54.0	-23.2	AVG	0	2.5		
803.200	47.3	<u>H</u>	74.0	-26.8	PK	0	2.5	ļ	
706.470	28.8	H	54.0	-25.2	AVG	281	1.3		
706.470	39.9	<u>H</u>	74.0	-34.1	PK	281	1.3		
600.415	30.5	<u>H</u>	54.0	-23.5	AVG	89	1.2		
600.415	42.5	<u>H</u>	74.0	-31.5	PK	89	1.2		
512.933	39.8	<u>H</u>	54.0	-14.2	AVG	13	1.0		
512.933	47.0	H	74.0	-27.0	PK	13	1.0		
416.334	33.4	H	54.0	-20.6	AVG	59 50	1.0		
416.334	43.9	H	74.0	-30.1	PK	59	1.0		
317.550	32.5	<u>Н</u> Н	54.0	-21.5	AVG	62 62	1.1 1.1		
317.550	44.2		74.0	-29.8	PK				
220.265 220.265	33.2	H H	54.0 74.0	-20.8 -27.6	AVG PK	145	1.0 1.0		
123.380	46.4 33.8	<u>н</u> Н	74.0 54.0	-27.6	AVG	145 217	1.0	ł	
123.380	33.8 44.4	<u>н</u> Н	54.0 74.0	-20.2 -29.6	PK	217	1.0	+	
024.425	44.4 37.1	<u>н</u> Н	74.0 54.0	-29.6 -17.0	AVG	123	1.0		
024.425	47.4	<u>н</u> Н	54.0 74.0	-17.0	PK	123	1.0		
803.585	47.4 34.9	<u>н</u> V	74.0 54.0	-20.0 -19.1	AVG	203	2.5		
803.585	34.9 56.8	V V	54.0 74.0	-19.1	PK	203	2.5		
707.955	46.9	V	54.0	-17.3	AVG	3	1.0		
707.955	54.3	V	74.0	-19.7	PK	3	1.0		
599.090	31.3	V	54.0	-22.7	AVG	143	1.0	1	
599.090	44.0	V	74.0	-30.0	PK	143	1.0		
512.965	32.7	V	54.0	-21.4	AVG	49	1.0		
512.965	41.6	V	74.0	-32.4	PK	49	1.0		
417.100	32.9	V	54.0	-21.2	AVG	130	1.2		
417.100	44.9	V	74.0	-29.1	PK	130	1.2		
319.385	31.6	V	54.0	-22.4	AVG	104	1.0		
319.385	42.7	V	74.0	-31.3	PK	104	1.0		
220.630	31.9	V	54.0	-22.1	AVG	79	1.9		
220.630	43.7	V	74.0	-30.3	PK	79	1.9		
122.810	33.4	V	54.0	-20.7	AVG	359	1.0	1	
3122.810	44.5	V	74.0	-29.5	PK	359	1.0		

Æ	Ellic	ott							IC Test Data
Client:	Alien Tech	nology					~	Job Number:	J55443
							T-L	og Number:	T55483
Model:	ALR-9780						Accou	nt Manager:	Christine Vu
Contact:	Robert Ma	rtin						0	
Spec:	FCC 15.24	17						Class:	N/A
Run #1a co	ontinued								
requency	Level	Pol	15.209/	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
9023.820	36.5	V	54.0	-17.5	AVG	127	1.0		
9023.820	47.9	V	74.0	-26.1	PK	127	1.0		
lote 2:	the level o RB - Restr Radiated S	icted Ba	nd	s, 1000 - 10	0000 MHz. C	Center Chan	nel @ 915	MHz	
requency	Level	Pol	15.209/	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1829.670	35.3	V	54.0	-18.7	AVG	216	1.1		
1829.670	47.1	V	74.0	-26.9	PK	216	1.1		
2745.195	42.8	V	54.0	-11.2	AVG	7	1.0		
2745.195	50.4	V	74.0	-23.6	PK	7	1.0		
3659.210	31.2	V	54.0	-22.8	AVG	228	1.0		
3659.210	42.0	V	74.0	-32.0	PK	228	1.0		
4575.965	31.3	V	54.0	-22.7	AVG	140	1.0		
4575.965	42.5	V	74.0	-31.6	PK	140	1.0		
5489.520	32.0	V	54.0	-22.0	AVG	79	1.1		
5489.520	43.9	V	74.0	-30.1	PK	79	1.1		
6406.145	31.8	V	54.0	-22.2	AVG	0	1.0		
6406.145	42.9	V	74.0	-31.1	PK	0	1.0		
7318.735	34.2	V	54.0	-19.8	AVG	83	1.3		
7318.735	45.9 34.7	V V	74.0	-28.1	PK	83	1.3		
8234.250 8234.250	34.7 45.8	V	54.0 74.0	-19.3 -28.2	AVG PK	206 206	1.0 1.0	ł	
9150.680	45.8 35.4	V	74.0 54.0	-28.2	AVG	208	1.0		
9150.680	48.2	V	74.0	-18.0	PK	263	1.0		
1830.135	31.6	H	54.0	-23.0	AVG	82	1.0		
1830.135	42.1	H	74.0	-31.9	PK	82	1.0	1	
2745.020	48.0	H	54.0	-6.0	AVG	306	1.0		
2745.020	50.9	H	74.0	-23.1	PK	306	1.0		
3660.945	33.3	H	54.0	-20.8	AVG	33	1.0		
3660.945	43.3	H	74.0	-30.7	PK	33	1.0		
4573.870	31.7	H	54.0	-22.3	AVG	87	1.0		
4573.870	41.6	H	74.0	-32.4	PK	87	1.0	1	
					Run #1b co	ontinued on	next page		

6	Ellic	Dtt						EM	
	Alien Tech						J	Job Number:	J55443
Madalı							T-L	og Number:	T55483
	ALR-9780						Accou	nt Manager:	Christine Vu
	Robert Ma								
Spec:	FCC 15.24	17						Class:	N/A
Run #1b co	ontinued		-				-	-	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5488.790	32.8	H	54.0	-21.2	AVG	307	1.0		
5488.790	42.7	<u>H</u>	74.0	-31.3	PK	307	1.0		
6406.160	32.5	H	54.0	-21.5	AVG	350	1.0		
6406.160	42.4	<u>H</u>	74.0	-31.7	PK	350	1.0	ł	
7318.700	34.7	<u>H</u>	54.0	-19.3	AVG	97	1.0		
7318.700	46.1	<u>H</u>	74.0	-27.9	PK	97	1.0		
8236.045	35.6	H	54.0	-18.4	AVG	48	1.0		
8236.045 9150.170	47.0 36.3	H H	74.0 54.0	-27.0 -17.8	PK AVG	48 229	1.0 1.0		
9150.170	30.3 47.2	<u>н</u> Н	54.0 74.0	-17.8	PK	229	1.0		
								-	
Note 1: Note 2:	the level o RB - Restr	f the fun icted Ba	damental. Ind						e limit was set 20dB b
Note 1: Note 2: Run #1c: 1	the level o RB - Restr Radiated S	f the fun icted Ba	damental. Ind S Emission:	s, 1000 - 10	it of 15.209 w	igh Channe	I @ 927 M⊦	łz	e limit was set 20dB b
lote 1: lote 2: Run #1c: I	the level o RB - Restr Radiated S	f the fun icted Ba Spurious Pol	damental. ind s Emission: 15.209	s, 1000 - 10 / 15.247	0000 MHz. H	igh Channe Azimuth			e limit was set 20dB b
Note 1: Note 2: Run #1c: 1 Frequency MHz	the level o RB - Restr Radiated S Level dBμV/m	f the fun icted Ba purious Pol v/h	damental. ind s Emissions 15.209 Limit	s, 1000 - 10 / 15.247 Margin	DOOO MHz. H Detector Pk/QP/Avg	igh Channe Azimuth degrees	I @ 927 MH Height meters	łz	e limit was set 20dB b
Note 1: Note 2: Run #1c: I Frequency MHz 1853.190	the level o RB - Restr Radiated S Level dBμV/m 31.4	f the fun icted Ba Spurious Pol V/h H	damental. ind s Emissions 15.209 Limit 54.0	s, 1000 - 10 / 15.247 Margin -22.6	DOOO MHz. H Detector Pk/QP/Avg AVG	igh Channe Azimuth degrees 156	I @ 927 MI Height meters 1.6	łz	e limit was set 20dB b
Note 1: Note 2: Run #1c: I Frequency MHz 1853.190 1853.190	the level o RB - Restr Radiated S Level dBµV/m 31.4 46.5	f the fun icted Ba Spurious Pol V/h H H	damental. ind s Emissions 15.209 Limit 54.0 74.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5	Dotector Detector Pk/QP/Avg AVG PK	igh Channe Azimuth degrees 156 156	I @ 927 MH Height meters 1.6 1.6	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0	f the fun icted Ba Spurious Pol V/h H H H	damental. ind 5 Emissions 15.209 / Limit 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0	Dotector Detector Pk/QP/Avg AVG PK AVG	igh Channe Azimuth degrees 156 156 282	l @ 927 MH Height meters 1.6 1.6 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8	f the fun icted Ba Spurious Pol V/h H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 74.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG PK	igh Channe Azimuth degrees 156 156 282 282	I @ 927 MH Height meters 1.6 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I requency MHz 1853.190 1853.190 2780.990 2780.990 3709.190	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8 32.8	f the fun icted Ba Spurious Pol V/h H H H H H	damental. ind 5 Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2	Dotector Pk/QP/Avg AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 120	I @ 927 MH Height meters 1.6 1.6 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 3709.190 3709.190	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8 32.8 43.9	f the fun icted Ba Spurious Pol V/h H H H H H H H	damental. ind 5 Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 156 156 282 282 120 120	Height Height neters 1.6 1.6 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 2780.990 3709.190 3709.190 4634.140	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6	f the fun icted Ba Spurious Pol V/h H H H H H H H H	damental. ind 5 Emissions 15.209 Limit 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4	Dooo MHz. H Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 282 120 120 234	Height Height 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 2780.990 2780.990 2780.990 3709.190 3709.190 4634.140	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 / Limit 54.0 74.0 74.0 74.	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 156 156 282 282 282 120 120 234 234	Height Height meters 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 2780.990 3709.190 3709.190 3709.190 3634.140 4634.140 5562.425	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 282 120 120 234 234 234 283	I @ 927 MH Height meters 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 3709.190 3709.190 3709.190 4634.140 4634.140 5562.425 5562.425	the level o RB - Restr Radiated S Level dBµV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3 44.0	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H	damental. ind 5 Emissions 15.209 Limit 54.0 74.0 74.0 54.0 74.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7 -30.0	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 156 156 282 282 120 120 234 234 234 283 283	Height Height meters 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 2780.990 2780.990 2780.990 3709.190 3709.190 4634.140 4634.140 4634.140 5562.425 5562.425 5562.425	the level o RB - Restr Radiated S Level dBµV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3 44.0 32.8	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7 -30.0 -21.2	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 120 120 234 234 234 234 283 283 32	Height Height meters 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 2780.990 2780.990 2780.990 3709.190 4634.140 4634.140 5562.425 5562.425 5562.425 5562.425 5562.425	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.8	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7 -30.0 -21.2 -30.2	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 120 120 234 234 234 234 283 283 32 32	Height Height Meters 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 2780.990 3709.190 3709.190 3709.190 3709.190 3709.190 3709.190 3709.190 3562.425 5562.425 5562.425 5562.425 5562.425	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.8 34.5	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7 -30.0 -21.2 -30.2 -30.2 -19.5	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 282 120 120 234 234 234 283 283 283 32 32 32 50	Height Height meters 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 2780.990 3709.190 4634.140 4634.140 4634.140 5562.425 5562.425 5562.425 5562.425 5562.425 5490.440 7414.995 7414.995	the level o RB - Restr Radiated S Level dBμV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.8 34.5 45.5	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 54.0 74.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7 -30.0 -21.2 -30.2 -19.5 -28.5	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	igh Channe Azimuth degrees 156 156 282 282 120 120 234 234 234 234 283 283 32 32 32 50 50	Height meters 1.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 2780.990 2780.990 3709.190 4634.140 4634.140 4634.140 5562.425 5562.425 5562.425 5562.425 5562.425 5490.440 6490.440 7414.995 8344.400	the level o RB - Restr Radiated S Level dBµV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.8 34.5 45.5 33.6	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 74.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7 -30.0 -21.2 -30.0 -21.2 -30.2 -19.5 -28.5 -20.4	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 120 120 234 234 234 234 233 283 283 32 32 32 50 50 125	Height meters 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Note 1: Note 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 2780.990 2780.990 3709.190 4634.140 4634.140 4634.140 4634.140 5562.425 5562.425 5562.425 5562.425 6490.440 6490.440 7414.995 8344.400 8344.400	the level o RB - Restr Radiated S Level dBµV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.9 32.6 44.5 33.6 44.5	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 74.0 54.0 54.0 74.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7 -30.0 -21.2 -30.2 -19.5 -28.5 -20.4 -29.5	Dotector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 120 120 234 234 234 234 233 283 283 32 32 32 50 50 125	Height meters 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b
Iote 1: Iote 2: Run #1c: I Frequency MHz 1853.190 1853.190 2780.990 2780.990 2780.990 3709.190 4634.140 4634.140 4634.140 5562.425 5562.425 5562.425 5562.425 5490.440 6490.440 7414.995 8344.400	the level o RB - Restr Radiated S Level dBµV/m 31.4 46.5 43.0 51.8 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.9 32.6 42.1 34.3 44.0 32.8 43.8 34.5 45.5 33.6	f the fun icted Ba Spurious Pol V/h H H H H H H H H H H H H H H H H H H H	damental. nd 5 Emissions 15.209 Limit 54.0 74.0 54.0 54.0 74.0 74.0	s, 1000 - 10 / 15.247 Margin -22.6 -27.5 -11.0 -22.2 -21.2 -30.1 -21.4 -31.9 -19.7 -30.0 -21.2 -30.0 -21.2 -30.2 -19.5 -28.5 -20.4	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	igh Channe Azimuth degrees 156 156 282 282 120 120 234 234 234 234 233 283 283 32 32 32 50 50 125	Height meters 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	łz	e limit was set 20dB b

		ott						EM	C Test Data
Model: A	Alien Tech	nology						lob Number:	J55443
Model· A		0,					T-L	og Number:	T55483
wouch.	ALR-9780							•	Christine Vu
Contact: F	Robert Ma	rtin						5	
Spec: F	CC 15.24	7						Class:	N/A
Run #1c cor	ntinued								
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz (dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1854.650	39.2	V	54.0	-14.8	AVG	269	1.0		
1854.650	53.2	V	74.0	-20.8	PK	269	1.0		
2780.975	46.1	V	54.0	-7.9	AVG	0	1.0		
2780.975	59.1	V	74.0	-15.0	PK	0	1.0		
3708.355	29.8	V	54.0	-24.2	AVG	267	1.0		
3708.355	41.4	V	74.0	-32.6	PK	267	1.0		
4634.455	31.2	V	54.0	-22.8	AVG	14	1.0		
4634.455	44.3	V	74.0	-29.7	PK	14	1.0		
5562.015	31.7	V	54.0	-22.3	AVG	334	1.0		
5562.015	43.0	V	74.0	-31.0	PK	334	1.0		
6489.945	31.7	V	54.0	-22.3	AVG	270	1.0		
6489.945	42.2	V	74.0	-31.9	PK	270	1.0		
7417.230	34.7	V	54.0	-19.3	AVG	290	1.5		
7417.230	45.5	V	74.0	-28.5	PK	290	1.5		
8343.295	32.7	V	54.0	-21.3	AVG	315	1.0		
8343.295	46.8	V	74.0	-27.2	PK	315	1.0		
9270.895	35.9	V	54.0	-18.1	AVG	258	2.0		
9270.895	47.5	V	74.0	-26.5	PK	258	2.0		
lote 1:	For emissi he level o RB - Restr	f the fund	damental.	nds, the limi	it of 15.209 w	vas used. Fo	r all other e	missions, th	e limit was set 20dB belo

EXHIBIT 3: Test Configuration Photographs

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Alien Technology Model ALR-9780 Construction

Pages