

Project No.: Report No.:

TM-2405000397P TMWK2405001769KR FCC ID: P4Q-N702 IC: 2420C-N702 Page: 1 / 34 Rev.: 04

RADIO TEST REPORT

FCC 47 CFR PART 15 SUBPART C (CLASS II PERMISSIVE CHANGE) **INDUSTRY CANADA RSS-247** (CLASS I PERMISSIVE CHANGE)

Test Standard

FCC Part 15.407

RSS-247 issue 3 and RSS-GEN issue 5

Product name

Connected Digital Recorder

Brand Name

MITAC, Mio, MAGELLAN, Navman, SMARTER AI,

Webfleet, Azuga

Model No.

N702, N702B, CAMPro US, SafetyCam Pro

Test Result

Pass

Statements of

Conformity

Determination of compliance is based on the results of the

compliance measurement, not taking into account

measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

sehni. Hu

Sehni Hu Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 34 Rev.: 04

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	July 31, 2024	Initial Issue	ALL	Peggy Tsai
01	August 14, 2024	See the following Note Rev. (01)	P. 1, 4, 7, 8, 11, 13, 23, 25, 28, 29, 32, 33, A-2	Peggy Tsai
02	August 26, 2024	See the following Note Rev. (02)	P.5	Peggy Tsai
03	August 27, 2024	See the following Note Rev. (03)	P.4, 5, 13	Peggy Tsai
04	August 28, 2024	See the following Note Rev. (04)	P.1, 6	Peggy Tsai

Note:

Rev. (01)

- 1. Modify Project No.
- 2. Modify date of test in section 1.1.
- 3. Modify measurement uncertainty in section 1.4.
- 4. Modify facilities and test location in section 1.5.
- 5. Modify instrument calibration in section 1.6.
- 6. Modify note in section 2.
- 7. Modify the worst mode of measurement in section 3.2.
- 8. Modify radiation bandedge and spurious emission in section 4.2.
- 9. Modify appendix-A test photo.

Rev. (02)

1. Add Class IV Permissive Change in section 1.1.

Rev. (03)

- 1. Modify PMN and Class II Permissive Change in section 1.1.
- 2. Modify Remark in section 3.2.

Rev. (04)

1. Add Class I Permissive Change in section 1.1.

Page: 3 / 34 Rev.: 04

Table of contents

1.	GENERAL INFORMATION	4
1.1	EUT INFORMATION	4
1.2	EUT CHANNEL INFORMATION	7
1.3	ANTENNA INFORMATION	7
1.4	MEASUREMENT UNCERTAINTY	8
1.5	FACILITIES AND TEST LOCATION	8
1.6	INSTRUMENT CALIBRATION	g
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	10
1.8	TEST SETUP DIAGRAM	11
1.9	TEST PROGRAM	11
1.10	TEST METHODOLOGY AND APPLIED STANDARDS	11
2.	TEST SUMMARY	12
3.	DESCRIPTION OF TEST MODES	13
3.1	THE EUT CHANNEL NUMBER OF OPERATING CONDITION	13
3.2	THE WORST MODE OF MEASUREMENT	14
4.	TEST RESULT	15
4.1	OUTPUT POWER MEASUREMENT	15
4.2	RADIATION BANDEDGE AND SPURIOUS EMISSION	21
ΔΡΡΕ	ENDIX A - PHOTOGRAPHS OF FUT	

Page: 4 / 34 Rev.: 04

1. GENERAL INFORMATION

1.1 EUT INFORMATION

FCC Applicant	Mitac Digital Technology Corporation 4F., No. 1, R&D Road 2, Hsinchu Science Park, Hsinchu 30076 Taiwan			
	MITAC COMPUTER (KUNSHAN) CO., LTD.			
FCC Manufacturer	No. 269, 2nd Avenue, District A, Comprehensive Free Trade Zone,			
	Kunshan, Jiangsu, P.R. China			
10 4	MiTAC Digital Technology Corporation			
IC Applicant	4F., No. 1, R&D Road 2, Hsinchu Science Park, Hsinchu 30076 Taiwan			
	MITAC COMPUTER (KUNSHAN) CO., LTD.			
IC Manufacturer	No. 269, 2nd Rd, Export Processing Zone Changjiang South Road			
	Kushan, Jiangsu China (Peoples Republic Of)			
Equipment	Connected Digital Recorder			
Lquipinent	Connected Digital Necolder			
Model Name	N702, N702B, CAMPro US, SafetyCam Pro			
WOUCH Name	11702, 11702B, CAIVIF10 03, SaletyCalli F10			
Model	Difference of the those model number / trademarks (list on this report)			
Discrepancy	are just for marketing purpose only.			
Brand Name	MiTAC, Mio, MAGELLAN, Navman, SMARTER AI,			
brand Name	Webfleet, Azuga			
Bassiyad Data	May 24, 2024			
Received Date	May 31, 2024			
Date of Test	July 3 ~ August 13, 2024			
Date of Test	July 3 ~ August 13, 2024			
Power Supply	Power from power supply. (DC 12~24V)			
1 Ower Supply	1 ower from power supply. (DC 12~24V)			
PMN	Connected Digital Recorder			
1 10114	Commoded Digital Nocorder			
EUT Serial #	HDR2CE00			
= 01 001 iai #				
HW Version	R03			
SW Version	R01			

Page: 5 / 34 Rev.: 04

This is to request for a Re-Assessment (Modification) of the Model Name: N702, FCC ID: P4Q-N702.

1. The intention of this application is due to volume of speaker is not loud enough, therefore MiTAC modify speaker to large dimension to increase better experience.

MiTAC also add new model and trade mark list as below

Brand Name	MiTAC, Mio, MAGELLAN, Navman, SMARTER AI, Webfleet, Azuga
Added Models	N702, N702B, CAMPro US, SafetyCam Pro

All models are electrically identical (Include: circuitry, components, layout, antenna type and gain, enclosure), different model names are for marketing purpose only.

Class II Permissive Change

2. Adding the following accessories and cables.

- (1) A60 Camera
- (2) Panic button
- (3) AE-CM30HB (TVI camera)
- (4) AE-CH11A (TVI camera)
- (5) ODB Transfer Cable
- (6) Open wire power cable
- (7) 12V TVI cable
- (8) OBDII power cable for 12V TVI cable
- (9) Hardwire power cable for 12V TVI cable
- (10) Clean installation V.2 cable
- (11) A60 Power cable
- (12) Mini USB Relay
- 3. Update HW version to R03.

Page: 6 / 34 Rev.: 04

This is to request for a Re-Assessment (Modification) of the Model Name: N702, IC Certification No: 2420C-N702.

1. The intention of this application is due to volume of speaker is not loud enough, therefore MiTAC modify speaker to large dimension to increase better experience.

MiTAC also add new model and trade mark list as below

Brand Name	MiTAC, Mio, MAGELLAN, Navman, SMARTER AI, Webfleet, Azuga
Added Models	N702, N702B, CAMPro US, SafetyCam Pro

All models are electrically identical (Include: circuitry, components, layout, antenna type and gain, enclosure), different model names are for marketing purpose only.

Class I Permissive Change

2. Adding the following accessories and cables.

(1) A60 Camera

(2) Panic button

(3) AE-CM30HB (TVI camera)

(4) AE-CH11A (TVI camera)

(5) ODB Transfer Cable

(6) Open wire power cable

(7) 12V TVI cable

(8) OBDII power cable for 12V TVI cable

(9) Hardwire power cable for 12V TVI cable

(10) Clean installation V.2 cable

(11) A60 Power cable

(12) Mini USB Relay

3. Update HW version to R03.

Remark:

- 1. For more details, please refer to the User's manual of the EUT.
- 2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.
- 3. Disclaimer: Variant information between/among model numbers / trademarks is provided by the applicant, test results of this report are applicable to the sample EUT received of main test model name.

Page: 7 / 34

Report No.: TMWK2405001769KR Rev.: 04

1.2 EUT CHANNEL INFORMATION

	UNII-1		
	IEEE 802.11a	5180 ~ 5240 MHz	
	IEEE 802.11n HT 20	5180 ~ 5240 MHz	
	IEEE 802.11n HT 40	5190 ~ 5230 MHz	
	IEEE 802.11ac VHT 80	5210 MHz	
Frequency Range	UNII-3		
	IEEE 802.11a	5745 ~ 5825 MHz	
	IEEE 802.11n HT 20	5745 ~ 5825 MHz	
	IEEE 802.11n HT 40	5755 ~ 5795 MHz	
	IEEE 802.11ac VHT 80	5775 MHz	
		_	
	4 1555 000 44		
	1. IEEE 802.11a mode: OFDM		
Modulation Type	2. IEEE 802.11n HT 20 mode: OFDM		
Modulation Type	3. IEEE 802.11n HT 40 mode: OFDM		
	4. IEEE 802.11ac VHT 80 mode: OFDM		
		. 3. 2	

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 and RSS-GEN Table 1 for test channels

Number of frequencies to be tested						
Frequency range in Number of Location in frequency which device operates frequencies range of operation						
☐ 1 MHz or less	1	Middle				
☐ 1 MHz to 10 MHz	2	1 near top and 1 near bottom				
	3	1 near top, 1 near middle, and 1 near bottom				

1.3 ANTENNA INFORMATION

Antenna Specification	☐ PIFA ☐ PCB ☒ Dipole ☐ Coils		
Antenna Gain	5150~5250MHz: Gain: 2.8 dBi 5725~5850MHz: Gain: 3.3 dBi		
Antenna connector	I-PEX		

Notes:

^{1.}The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 and RSS-Gen 6.8.

Page: 8 / 34

Report No.: TMWK2405001769KR Rev.: 04

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
RF output power (Spectrum)	± 2.440 dB
Radiated Emission_9kHz-30MHz	± 3.761 dB
Radiated Emission_30MHz-200MHz	± 3.473 dB
Radiated Emission_200MHz-1GHz	± 3.946 dB
Radiated Emission_1GHz-6GHz	± 4.797 dB

Remark:

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

CAB identifier: TW1309

Test site	Test Engineer	Remark
Radiation	Ray Li, Tony Chao	-
RF Conducted	Jerry Chang	-

Remark: The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No.:444940, the FCC Designation No.:TW1309.

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 9 / 34 Rev.: 04

1.6 INSTRUMENT CALIBRATION

	Conducted_FCC/IC/NCC (AII)					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Power Supply	GWINSTEK	SPS-3610	GPE880163	2023-11-16	2024-11-15	
Power Sensor	Anritsu	MA2411B	1726104	2024-04-16	2025-04-15	
Power Sensor	Anritsu	MA2411B	1726107	2024-04-16	2025-04-15	
Power Meter	Anritsu	ML2496A	1804001	2024-04-16	2025-04-15	
Signal Analyzer	KEYSIGHT	N9030B	MY62291089	2023-10-13	2024-10-12	
Attenuator	Marvelous Microwave Ine	MVE2213-10	08	2023-11-07	2024-11-06	
Software	Radio Test Software Ver. 21					

	966A_Radiated					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Signal Analyzer	KEYSIGHT	N9010A	MY52220817	2024-03-15	2025-03-14	
Thermo-Hygro Meter	WISEWIND	1206	D07	2023-12-07	2024-12-06	
Active Loop Antenna	SCHWARZBEC K	FMZB 1513-60	1513-60-028	2023-12-13	2024-12-12	
Bi-Log Antenna	Sunol Sciences	JB1	A052609	2024-02-02	2025-02-01	
Preamplifier	EMEC	EM330	060609	2024-02-21	2025-02-20	
Cable	Huber+Suhner	104PEA	20995+21000+ 182330	2024-02-21	2025-02-20	
Horn Antenna	ETC	MCTD 1209	DRH13M02003	2023-12-28	2024-12-27	
Preamplifier	HP	8449B	3008A00965	2023-12-22	2024-12-21	
Cable	EMCI	EMC101G	221213+221011 +221012	2023-10-17	2024-10-16	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Software e3 V9-210616c						

Remark:

- 1. Each piece of equipment is scheduled for calibration once a year.
- 2. N.C.R. = No Calibration Required.

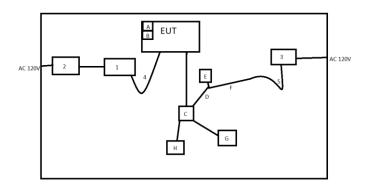
Page: 10 / 34 Rev.: 04

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment						
No. Equipment Brand Model Series No. Fe					FCC ID	IC	
	N/A						

	Support Equipment (Conducted)						
No.	Equipment	Brand	Model	Series No.	FCC ID	IC	
1	NB(I)	Lenovo	X260	N/A	N/A	N/A	
2	Mini USB	RS Pro	2369084	N/A	N/A	N/A	
3	DC Power Cable	MISUMI	MCR3S-RE	N/A	N/A	N/A	
Α	Main entry cable	N/A	N/A	N/A	N/A	N/A	

		Support Equ	ipment (RSE)			
No.	Equipment	Brand	Model	Series No.	FCC ID	IC
1	NB(D)	Lenovo	ThinkPad X260	N/A	N/A	N/A
2	Adapter	Lenovo	ADLX45DLC3A	N/A	N/A	N/A
3	Power Supply	ABM	9603D	D011314	N/A	N/A
4	Cable TypeA to TypeC	Silicon-Power	SP BOOST LINK LK10AC	N/A	N/A	N/A
5	DC Cable	MISUMI	MCR3S-RE	N/A	N/A	N/A
Α	Micro SD Card	SP	N/A	N/A	N/A	N/A
В	Micro SD Card	SP	N/A	N/A	N/A	N/A
С	12V TVI cable	N/A	N/A	N/A	N/A	N/A
D	OBDII power cable for 12V TVI cable	N/A	N/A	N/A	N/A	N/A
Е	Panic button	N/A	Panic button	N/A	N/A	N/A
F	ODB Transfer Cable	N/A	ODB Transfer Cable	N/A	N/A	N/A
G	AE-CH11A (TVI camera)	N/A	AE-CH11A	N/A	N/A	N/A
Н	AE-CM30HB (TVI camera)	N/A	AE-CM30HB	N/A	N/A	N/A



Page: 11 / 34

Rev.: 04

1.8 TEST SETUP DIAGRAM

RSE:

1.9 TEST PROGRAM

The EUT connection corresponds to the surrounding fixture control board. This EUT uses "QRCT4" software to set the frequency, modulation, and power to allow the sample to continuously transmit (including frequency hopping mode).

1.10 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.407, KDB 789033 D02, RSS-247 Issue 3 and RSS-GEN Issue 5.

Page: 12 / 34 Rev.: 04

2. TEST SUMMARY

FCC Standard Sec.	IC Standard Sec.	Chapt er	Test Item	Resul t
15.203	RSS-Gen (6.8)	1.3	Antenna Requirement	Pass
15.407(a)	RSS-247(6)	4.1	Output Power Measurement	Verify
15.407(b) 15.209 15.205	RSS-247 (6) RSS-Gen (8.9/8.10)	4.2	Radiation Spurious Emission	Pass

Verify: Verify RF power and confirm it does not exceed Tune power.

Note: For new changes, adding accessories and replacing speakers do not modify the RF part, so the original RF performance and characteristics are not affected. Therefore, the maximum power mode is selected for verification power. In this mode, the radiation is evaluated30MHz to 6GHz. For other projects, refer to the original ID. Bring products into compliance.

Page: 13 / 34

Report No.: TMWK2405001769KR Rev.: 04

3. DESCRIPTION OF TEST MODES

3.1 THE EUT CHANNEL NUMBER OF OPERATING CONDITION

1. IEEE 802.11a mode: 6Mbps 2. IEEE 802.11n HT 20 mode: MCS0 Operation mode 3. IEEE 802.11n HT 40 mode: MCS0 4. IEEE 802.11ac VHT 80 mode: MCS0 Frequency Range Mode (MHz) IEEE 802.11a 5180, 5220, 5240 5180, 5220, 5240 IEEE 802.11n HT 20 U-NII-1 IEEE 802.11n HT 40 5190, 5230 Operating Frequency IEEE 802.11ac VHT 80 5210

IEEE 802.11a

IEEE 802.11n HT 20

IEEE 802.11n HT 40

IEEE 802.11ac VHT 80

5745, 5785, 5825

5745, 5785, 5825

5755, 5795

5775

Remark:

U-NII-3

^{1.} EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

^{2.} he worst-case data rates are determined to be as follows for each mode based upon investigations by evaluation judgment the average power and PSD across all date rates, bandwidths, and modulations.

Page: 14 / 34 Rev.: 04

3.2 THE WORST MODE OF MEASUREMENT

	Radiated Emission Measurement Below 1G
Test Condition	Radiated Emission Below 1G
Power supply Mode	Mode 1: EUT power by Power supply (SD+12V TVI cable+OBDII power cable for 12V TVI cable+ Panic button +ODB Transfer Cable+AE-CH11A (TVI camera)+ AE-CM30HB (TVI camera)) Mode2: EUT power by Power supply (SD+12V TVI cable+ Hardwire power cable for 12V TVI cable+ Panic button +ODB Transfer Cable+AE-CH11A (TVI camera)+ AE-CM30HB (TVI camera)) Mode 3: EUT power by Power supply (SD+Mini USB Relay+A60 Camera+ A60 power cable+ Open wire power cable+ Panic button) Mode 4: EUT power by Power supply (SD+Mini USB Relay+A60 Camera+ A60 power cable+ Clean installation V.2 cable + ODB Transfer Cable + Panic button)
Worst Mode	

Radiated Emission Measurement Above 1G				
Test Condition	Radiated Emission Above 1G			
Danier annulu Mada	Mode 1: EUT power by Power supply (SD+12V TVI cable+OBDII power cable for 12V TVI cable+ Panic button +ODB Transfer Cable+AE-CH11A (TVI camera)+ AE-CM30HB (TVI camera))			
Worst Mode				

Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Y-Plane) were recorded in this report
- 3. The device supports 12V or 24V. The original ID has been fully evaluated as 12V as the worst mode. In this accessory combination, 12V is used as the worst mode evaluation.
- 4. Variations between models/brands are evaluated by laboratories and the test results reported here apply to the worst model: N702B.

Page: 15 / 34 Rev.: 04

4. TEST RESULT

4.1 OUTPUT POWER MEASUREMENT

4.1.1 Test Limit

FCC according to §15.407 (a)(1) and 15.407(a)(3),

UNII-1:

The maximum conducted output power over the frequency band of operation shall not For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

UNII-3:

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

UNII-1 Limit	✓ Antenna not exceed 6 dBi : 30dBm✓ Antenna with DG greater than 6 dBi : [Limit = 24 – (DG – 6)]
UNII-3 Limit	✓ Antenna not exceed 6 dBi : 30dBm✓ Antenna with DG greater than 6 dBi :[Limit = 30 - (DG - 6)]

Page: 16 / 34

Rev.: 04

IC according to RSS-247 section 6.2.1.1 and section 6.2.4.2,

<u>UNII-1</u>:

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW.

For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

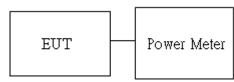
UNII-3:

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

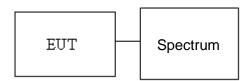
UNII-1 Limit	 ≥ 200mW or 10 + 10 log10B for IC □ Antenna with DG greater than 6 dBi : [Limit = 30 - (DG - 6)]
UNII-3 Limit	☐ Antenna not exceed 6 dBi : 30dBm ☐ Antenna with DG greater than 6 dBi : [Limit = 30 - (DG - 6)]

Page: 17 / 34

Rev.: 04


4.1.2 Test Procedure

Test method Refer as KDB 789033 D02, Section E.3.b for BW 20MHz and 40MHz, E.2.b for BW 80MHz.


- 1. The EUT RF output connected to the power meter or spectrum by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Average output power. in the test report.

4.1.3 Test Setup

For BW 20MHz and 40MHz

For BW 80MHz

Page: 18 / 34

Rev.: 04

4.1.4 Test Result

Temperature: $21.8 \sim 23.8^{\circ}$ **Test date:** July $3 \sim 12$, 2024

Humidity: 53 ~ 58% RH **Tested by:** Jerry Chang

Conducted output power:

FCC:

802.11a_Ch0

СН	Frequency (MHz)	Data Rate	TOTAL POWER (mW)	TOTAL POWER (dBm)	REQUIRED LIMIT (dBm)	RESULT
36	5180	6	31.256	14.95	23.98	PASS
44	5220	6	39.988	16.02	23.98	PASS
48	5240	6	39.168	15.93	23.98	PASS
149	5745	6	170.189	22.31	30	PASS
157	5785	6	163.280	22.13	30	PASS
165	5825	6	141.557	21.51	30	PASS

802.11n_HT20_Ch0

СН	Frequency (MHz)	Data Rate	TOTAL POWER (mW)	TOTAL POWER (dBm)	REQUIRED LIMIT (dBm)	RESULT
36	5180	MCS0	39.090	15.92	23.98	PASS
44	5220	MCS0	37.937	15.79	23.98	PASS
48	5240	MCS0	37.589	15.75	23.98	PASS
149	5745	MCS0	168.293	22.26	30	PASS
157	5785	MCS0	156.338	21.94	30	PASS
165	5825	MCS0	133.065	21.24	30	PASS

802.11n_HT40_Ch0

002						
СН	Frequency (MHz)	Data Rate	TOTAL POWER (mW)	TOTAL POWER (dBm)	REQUIRED LIMIT (dBm)	RESULT
38	5190	MCS0	38.124	15.81	23.98	PASS
46	5230	MCS0	73.315	18.65	23.98	PASS
151	5755	MCS0	162.253	22.10	30	PASS
159	5795	MCS0	156.745	21.95	30	PASS

802.11ac VHT80 Ch0

002						
СН	Frequency (MHz)	Data Rate	TOTAL POWER (mW)	TOTAL POWER (dBm)	REQUIRED LIMIT (dBm)	RESULT
42	5210	MCS0	24.914	13.96	23.98	PASS
155	5775	MCS0	125.445	20.98	30	PASS

Page: 19 / 34

Rev.: 04

IC:

802.11a Ch0

СН	Frequency (MHz)	TOTAL POWER (mW)	TOTAL POWER (dBm)	REQUIRED LIMIT (dBm)	RESULT
149	5745	170.189	22.31	30	PASS
157	5785	163.280	22.13	30	PASS
165	5825	141.557	21.51	30	PASS

802.11n_HT20_Ch0

СН	Frequency (MHz)	TOTAL POWER (mW)	TOTAL POWER (dBm)	REQUIRED LIMIT (dBm)	RESULT
149	5745	168.293	22.26	30	PASS
157	5785	156.338	21.94	30	PASS
165	5825	133.065	21.24	30	PASS

802.11n_HT40_Ch0

	_				
151	5755	162.253	22.10	30	PASS
159	5795	156.745	21.95	30	PASS

802.11ac_VHT80_Ch0

СН	Frequency (MHz)	TOTAL POWER (mW)	TOTAL POWER (dBm)	REQUIRED LIMIT (dBm)	RESULT
155	5775	125.445	20.98	30	PASS

Page: 20 / 34

Rev.: 04

EIRP:

802.11a_Ch0

СН	Frequency (MHz)	TOTAL POWER (dBm)	Antenna Gain (dBi)	EIRP (mW)	EIRP (dBm)	REQUIRED LIMIT (dBm)	RESULT
36	5180	14.95	2.80	59.566	17.75	23.01	PASS
44	5220	16.02	2.80	76.208	18.82	23.01	PASS
48	5240	15.93	2.80	74.645	18.73	23.01	PASS

802.11n_HT20_Ch0

СН	Frequency (MHz)	TOTAL POWER (dBm)	Antenna Gain (dBi)	EIRP (mW)	EIRP (dBm)	REQUIRED LIMIT (dBm)	RESULT
36	5180	15.92	2.80	74.473	18.72	23.01	PASS
44	5220	15.79	2.80	72.277	18.59	23.01	PASS
48	5240	15.75	2.80	71.614	18.55	23.01	PASS

802.11n_HT40_Ch0

СН	Frequency (MHz)	TOTAL POWER (dBm)	Antenna Gain (dBi)	EIRP (mW)	EIRP (dBm)	REQUIRED LIMIT (dBm)	RESULT
38	5190	15.81	2.80	72.611	18.61	23.01	PASS
46	5230	18.65	2.80	139.637	21.45	23.01	PASS

802.11ac_VHT80_Ch0

СН	Frequency (MHz)	TOTAL POWER (dBm)	Antenna Gain (dBi)	EIRP (mW)	EIRP (dBm)	REQUIRED LIMIT (dBm)	RESULT
42	5210	13.96	2.80	47.424	16.76	23.01	PASS

Page: 21 / 34

Report No.: TMWK2405001769KR Rev.: 04

4.2 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.2.1 Test Limit

FCC according to §15.407, §15.209 and §15.205,

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

UNII-1:

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

UNII-3:

All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Page: 22 / 34 Rev.: 04

IC according to RSS-247 section 6.2.1.2 and 6.2.4.3,

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and Receivers at Frequencies Above 30 MHz (Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Note: Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6.

Page: 23 / 34

Rev.: 04

RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies

Below 30 MHz (Transmit)

Frequency	Magnetic field strength (H-Field) (μΑ/m)	Measurement Distance (m)
9-490 kHz ^{Note}	6.37/F (F in kHz)	300
490-1,705 kHz	63.7/F (F in kHz)	30
1.705-30 MHz	0.08	30

Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector..

UNII-1:

For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, any unwanted emissions that fall into the band 5250-5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz. Otherwise, the transmission is considered as intentional and the devices shall implement dynamic frequency selection (DFS) and transmitter power control (TPC) as per the requirements for the band 5250-5350 MHz

UNII-3:

For the band 5725-5850 MHz, emissions at frequencies from the band edges to 10 MHz above or below the band edges shall not exceed -17 dBm/MHz e.i.r.p. For emissions at frequencies more than 10 MHz above or below the band edges, the emissions power shall not exceed -27 dBm/MHz

Page: 24 / 34

Report No.: TMWK2405001769KR Rev.: 04

4.2.2 Test Procedure

Test method Refer as KDB 789033 D02.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
- 3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 1GHz set to the max power channels with the EUT transmit.
- 4. No emission found between lowest internal used/generated frequency to 30MHz (9KHz~30MHz)

Radiated emission below 30MHz is measured in a 9m*6m*6m semi-ane choic chamber, the measurements correspond to those obtained at an open-field test site. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

- 5. The SA setting following:
 - (1) Below 30MHz:
 - (1.1) 9KHz-490KHz: RBW=200Hz / VBW=1kHz / Sweep=AUTO
 - (1.2) 490KHz-30MHz: RBW=10kHz/VBW=30kHz/Sweep=AUTO
 - (2) 30MHz to 1GHz: RBW = 100kHz, VBW ≥ 3*RBW, Sweep = Auto,

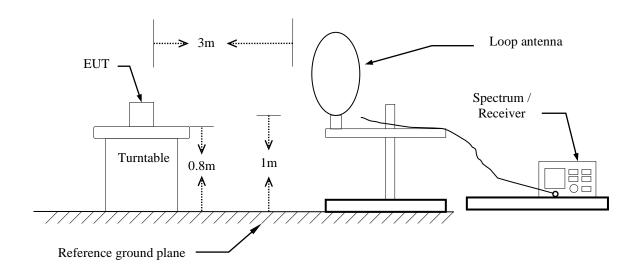
Detector = Peak. Trace = Max hold.

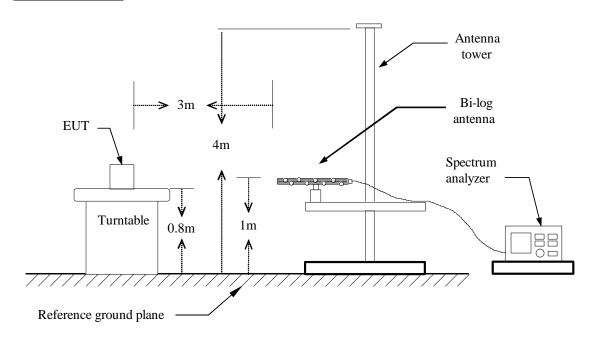
- (3) Above 1G:
 - (2.1) For Peak measurement: RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

'If Duty Cycle ≥ 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW≥1/T.

6. Data result:

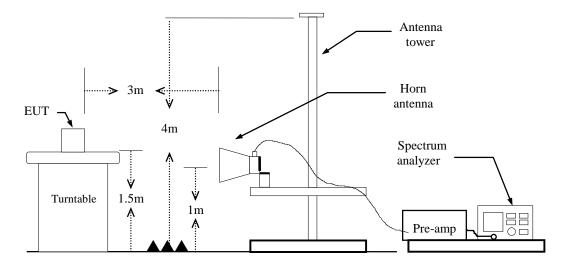

Actual FS=Spectrum Reading Level + Factor Margin=Actual FS- Limit


Page: 25 / 34 Rev.: 04

4.2.3 Test Setup

9kHz ~ 30MHz

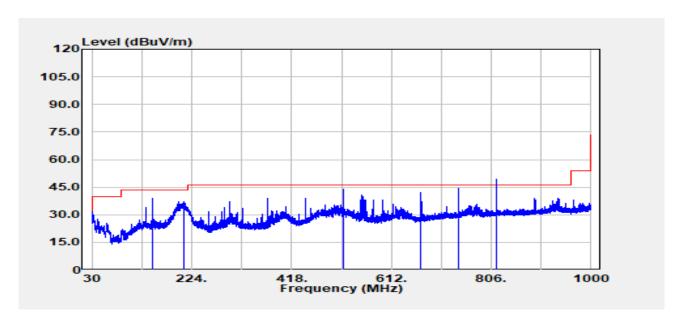
30MHz ~ 1GHz



Page: 26 / 34

Rev.: 04

Above 1 GHz


Page: 27 / 34

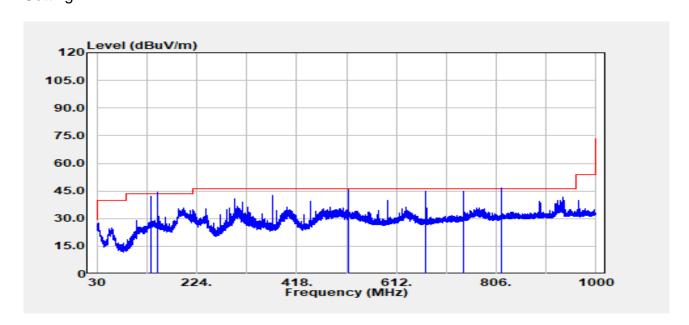
Report No.: TMWK2405001769KR Rev.: 04

4.2.4 Test Result

Project No :TM-2405000397P **Test Date** :2024-07-12 Operation Band Temp./Humi. :802.11n40/Band1 :23.9/55 Antenna Pol. Frequency :5190 MHz :VERTICAL Operation Mode :TX Engineer :Ray Li **EUT Pol** :E1 **Test Chamber** : 966A

Setting :

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dΒμV	dB	dBµV/m	dBµV/m	dB
148.50	Peak	49.51	-10.43	39.07	43.50	-4.43
209.00	Peak	49.12	-11.86	37.26	43.50	-6.24
519.80	Peak	46.84	-2.75	44.10	46.00	-1.90
668.30	Peak	42.51	-0.32	42.19	46.00	-3.81
742.50	Peak	43.38	1.17	44.55	46.00	-1.45
816.80	QP	43.26	2.54	45.80	46.00	-0.20

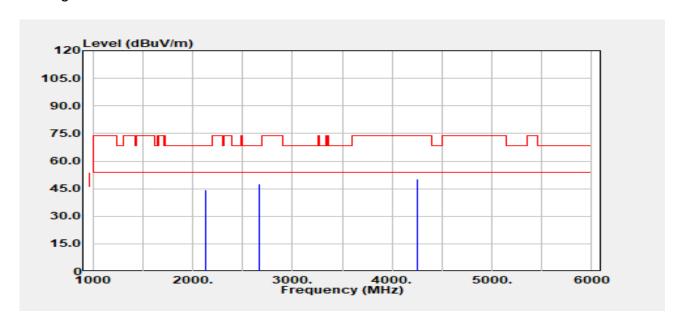

Page: 28 / 34 Rev.: 04

 Project No
 :TM-2405000397P
 Test Date
 :2024-07-12

 Operation Band
 :802.11n40/Band1
 Temp./Humi.
 :23.9/55

Frequency :5190 MHz Antenna Pol. :HORIZONTAL

Operation Mode :TX Engineer :Ray Li
EUT Pol :E1 Test Chamber : 966A
Setting :

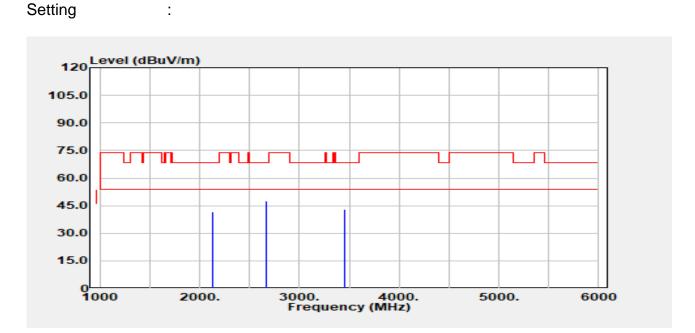

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dΒμV	dB	dBµV/m	dBµV/m	dB
135.00	Peak	51.35	-9.14	42.21	43.50	-1.29
148.50	QP	52.79	-10.43	42.35	43.50	-1.15
519.80	QP	46.43	-2.75	43.68	46.00	-2.32
668.30	Peak	45.08	-0.32	44.76	46.00	-1.24
742.50	Peak	43.68	1.17	44.85	46.00	-1.15
816.80	QP	41.99	2.54	44.53	46.00	-1.47

Page: 29 / 34 Rev.: 04

Project No :TM-2405000397P **Test Date** :2024-08-13 Operation Band :802.11n40/Band1 Temp./Humi. :24.6/57 Frequency :5190 MHz Antenna Pol. :VERTICAL Operation Mode :TX Engineer :Tony Chao **EUT Pol** :E1 Test Chamber : 966A

Setting :

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dΒμV	dB	dBµV/m	dBµV/m	dB
2130.29	Peak	47.10	-2.57	44.54	68.20	-23.66
2663.82	Peak	49.84	-2.12	47.72	68.20	-20.48
4249.41	Peak	48.99	1.24	50.23	74.00	-23.77

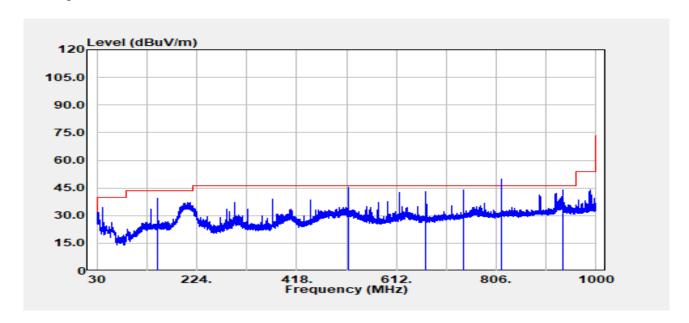


Page: 30 / 34 Rev.: 04

Project No :TM-2405000397P Test Date :2024-08-13
Operation Band :802.11n40/Band1 Temp./Humi. :24.6/57

Frequency :5190 MHz Antenna Pol. :HORIZONTAL
Operation Mode :TX Engineer :Tony Chao

EUT Pol :E1 Test Chamber : 966A

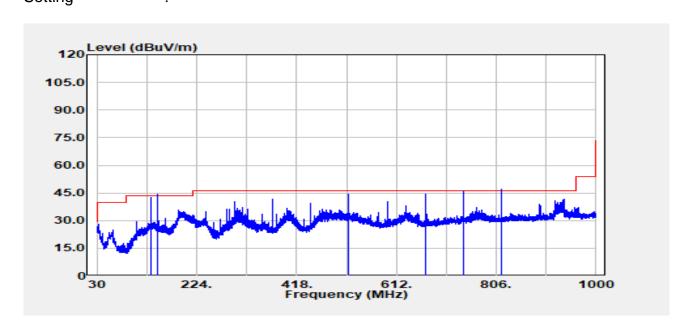


Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dΒμV	dB	dBµV/m	dBµV/m	dB
2132.35	Peak	44.43	-2.59	41.84	68.20	-26.36
2666.47	Peak	49.50	-2.12	47.38	68.20	-20.82
3460.59	Peak	43.76	-0.65	43.10	68.20	-25.10

Page: 31 / 34 Rev.: 04

Project No :TM-2405000397P **Test Date** :2024-07-12 Operation Band :802.11ac80/Band4 Temp./Humi. :23.9/55 Frequency :5775 MHz Antenna Pol. :VERTICAL Operation Mode Engineer :TX :Ray Li **EUT Pol** :E1 Test Chamber : 966A Setting

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dΒμV	dB	dBµV/m	dBµV/m	dB
148.50	Peak	49.67	-10.43	39.23	43.50	-4.27
519.80	Peak	47.90	-2.75	45.15	46.00	-0.85
668.30	Peak	43.51	-0.32	43.19	46.00	-2.81
742.50	Peak	42.56	1.17	43.73	46.00	-2.27
816.80	QP	43.31	2.54	45.84	46.00	-0.16
936.30	Peak	39.86	4.24	44.11	46.00	-1.89

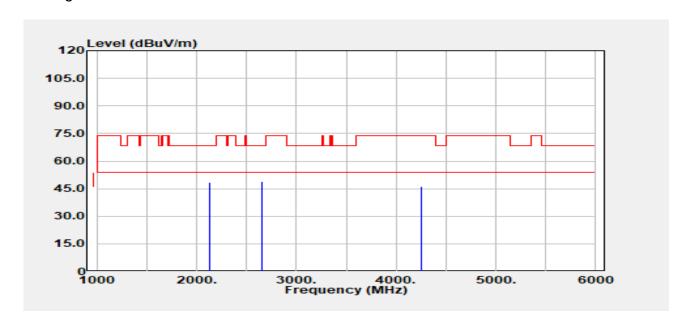

Page: 32 / 34 Rev.: 04

 Project No
 :TM-2405000397P
 Test Date
 :2024-07-12

 Operation Band
 :802.11ac80/Band4
 Temp./Humi.
 :23.9/55

Frequency :5775 MHz Antenna Pol. :HORIZONTAL

Operation Mode :TX Engineer :Ray Li EUT Pol :E1 Test Chamber : 966A Setting :

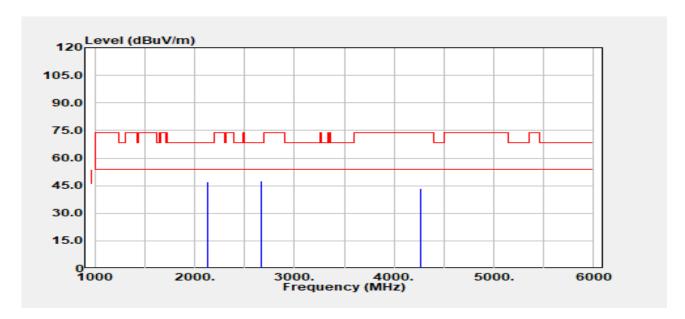


Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dΒμV	dB	dBµV/m	dBµV/m	dB
135.00	QP	49.78	-9.14	40.64	43.50	-2.86
148.50	QP	52.94	-10.43	42.51	43.50	-0.99
519.80	Peak	46.91	-2.75	44.16	46.00	-1.84
668.30	Peak	44.68	-0.32	44.36	46.00	-1.64
742.50	QP	43.00	1.17	44.17	46.00	-1.83
816.80	QP	42.63	2.54	45.17	46.00	-0.83

Page: 33 / 34 Rev.: 04

:TM-2405000397P Project No **Test Date** :2024-08-13 Operation Band :802.11ac80/Band4 Temp./Humi. :24.6/57 Frequency :5775 MHz Antenna Pol. :VERTICAL Operation Mode :TX Engineer :Tony Chao **EUT Pol** :E1 Test Chamber : 966A Setting

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dΒμV	dB	dBµV/m	dBμV/m	dB
2129.41	Peak	50.97	-2.56	48.41	68.20	-19.79
2659.12	Peak	51.12	-2.13	48.99	68.20	-19.21
4252.65	Peak	44.74	1.25	45.99	74.00	-28.01


Page: 34 / 34 Rev.: 04

 Project No
 :TM-2405000397P
 Test Date
 :2024-08-13

 Operation Band
 :802.11ac80/Band4
 Temp./Humi.
 :24.6/57

Frequency :5775 MHz Antenna Pol. :HORIZONTAL
Operation Mode :TX Engineer :Tony Chao
EUT Pol :E1 Test Chamber : 966A

Setting :

Freq.	Detector Mode	Spectrum Read Level	Factor	Actual FS	Limit	Margin
MHz	PK/QP/AV	dΒμV	dB	dBµV/m	dBµV/m	dB
2127.35	Peak	49.45	-2.53	46.92	68.20	-21.28
2665.88	Peak	49.60	-2.12	47.48	68.20	-20.72
4260.29	Peak	42.07	1.29	43.36	74.00	-30.64

- End of Test Report -