

FCC RADIO TEST REPORT

FCC ID	:	P4Q-N672B
Equipment	:	LTE Module
Brand Name	:	MITAC, MIO, NAVMAN,MAGELLAN
Model Name	:	SC600T-NA
Applicant	:	MiTAC Digital Technology Corporation 4F., NO. 1, R&D ROAD 2, HSINCHU SCIENCE PARK, HSINCHU 30076, TAIWAN, R.O.C.
Manufacturer	:	MITAC Computer (Kunshan) Co,. Ltd. No. 269, 2nd Avenue, District A, Conprehensive Free Trade Zone, 300 Kunshan, China
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Dec. 09, 2020 and testing was started from Dec. 30, 2020 and completed on Feb. 11, 2021. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Reviewed by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory c	of this test report	3
Su	nmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	6
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Output Power Measurement	10
	3.2	Radiated Band Edges and Spurious Emission Measurement	11
	3.3	AC Conducted Emission Measurement	16
	3.4	Antenna Requirements	
4	List	of Measuring Equipment	19
5	Unce	ertainty of Evaluation	21
Ap	pendi	x A. Conducted Test Results	
Ap	pendi	x B. AC Conducted Emission Test Result	
Ap	pendi	x C. Radiated Spurious Emission	
Ap	pendi	x D. Radiated Spurious Emission Plots	
Ap	pendi	x E. Duty Cycle Plots	

Appendix F. Setup Photographs

TEL : 886-3-327-3456	Page Number	: 2 of 21
FAX : 886-3-328-4978	Issued Date	: Feb. 28, 2021
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

History of this test report

Report No.	Version	rsion Description		
FR0D1806A 01		Initial issue of report	Feb. 28, 2021	

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	-	See Note
-	15.247(a)(1)	Hopping Channel Separation	-	See Note
-	15.247(a)(1)	Dwell Time of Each Channel	-	See Note
-	15.247(a)(1)	20dB Bandwidth	-	See Note
-	2.1049	99% Occupied Bandwidth	-	See Note
3.1	15.247(b)(1)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	-	See Note
-	15.247(d)	Conducted Spurious Emission	-	See Note
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 3.16 dB at 40.670 MHz
3.3	15.207	AC Conducted Emission	Pass	Under limit 13.76 dB at 0.502 MHz
3.4	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note: The module (Model: SC600T-NA) makes no difference after verifying output power, this report

reuses test data from the module report.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Dara Chiu

General Description 1

2400 MHz ~ 2483.5 MHz

1.1 Product Feature of Equipment Under Test

WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, and GNSS.

Product Specification subjective to this standard			
Sample 1 EUT with Host 1			
Sample 2 EUT with Host 2			
	WWAN: PIFA Antenna		
Antonna Tyrno	WLAN: PIFA Antenna		
Antenna Type	Bluetooth: PIFA Antenna		
	GPS / Glonass : Patch Antenna		
Antenna information			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

Peak Gain (dBi) 0.9 dBi

The product was installed into Tablet (Brand Name: MiTAC, Mio, NAVMAN, MAGELLAN, Model Name: N672B) during test, and the host information was recorded in the following table.

Host Information		
Host 1	Host with SKU A	
Host 2	Host with SKU B	

Sample Information				
Functions	SKU A	SKU B		
Screen	5" 720x1280 (HD), IPS, 350nits (w/ touch) 5" 720x1280 (HD), IPS, 350nits (w/ to			
CPU	SD625 octa core 2.0GHz SD625 octa core 2.0GHz			
Battery	4110mAh (hard pack)	4110mAh (hard pack)		
RAM	3GB	3GB		
Storage	32GB	32GB		
External storage	Support	Support		
WWAN + WLAN Module	Support (SC600T-NA)	Support (SC600T-NA)		
NFC/RFID(HF)	Support	Support		
GPS	Support	Support		
Barcode	Support(N6603)	Support(N3601)		
Functions	SKUC	SKU D		
Functions Screen	SKU C 5" 720x1280 (HD), JPS, 350nits (w/ touch)	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch)		
Functions Screen CPU	SKU C 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz		
Functions Screen CPU Battery	SKU C 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack)	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack)		
Functions Screen CPU Battery RAM	SKU C 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB		
Functions Screen CPU Battery RAM Storage	SKU C 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB		
Functions Screen CPU Battery RAM Storage External storage	SKU C 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB Support	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB Support		
Functions Screen CPU Battery RAM Storage External storage WWAN + WLAN Module	SKU C 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB Support Support (SC600T-NA)	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB Support Support (SC600T-NA)		
Functions Screen CPU Battery RAM Storage External storage WWAN + WLAN Module NFC/RFID(HF)	SKU C 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB Support Support Support (SC600T-NA) Support	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB Support Support Support (SC600T-NA) Support		
Functions Screen CPU Battery RAM Storage External storage WWAN + WLAN Module NFC/RFID(HF) GPS	SKU C 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB Support Support Support (SC600T-NA) Support Support	SKU D 5" 720x1280 (HD), IPS, 350nits (w/ touch) SD625 octa core 2.0GHz 4110mAh (hard pack) 2GB 16GB Support Support Support (SC600T-NA) Support Support		

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 EAX: +886-3-328-4978		
Test Site No.	Sporton Site No. TH05-HY, CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH15-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases	
Test Item	Data Rate / Modulation	
	Bluetooth EDR 3Mbps 8-DPSK	
Radiated	Mode 1: CH00_2402 MHz	
Test Cases	Mode 2: CH39_2441 MHz	
	Mode 3: CH78_2480 MHz	
AC Conducted	Mode 1: WLAN (2.4GHz) Link + Bluetooth Link + H-Pattern + Earphone + Battery	
Emission	+ USB Cable (Charging with Adapter) for Sample 2	
Remark: For radiated test cases, the worst mode data rate 3Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 3Mbps, and no other significantly frequencies found in conducted spurious emission.		

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
2.	WLAN AP ASUS		RT-AC66U	MSQ-RTAC66U	Shielded, 1.6 m	Unshielded, 1.8 m
3.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
4.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 3.0.303.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 – 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 - 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.2.4 Test Setup

For radiated test below 30MHz

For radiated test from 30MHz to 1GHz

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.2.7 Duty Cycle

Please refer to Appendix E.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.3.4 Test Setup

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.4 Antenna Requirements

3.4.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.4.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2020	Dec. 30, 2020	Mar. 01, 2021	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1207363	300MHz~ 40GHz	Oct. 18, 2020	Dec. 30, 2020	Oct. 17, 2021	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1218006	N/A	Oct. 18, 2020	Dec. 30, 2020	Oct. 17, 2021	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSQ26	200578/026	20Hz~ 26.5GHzz	Jul. 17, 2020	Dec. 30, 2020	Jul. 16, 2021	Conducted (TH05-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17, 2020	Dec. 30, 2020	Mar. 16, 2021	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jul. 14, 2020	Jan. 14, 2021~ Feb. 11, 2021	Jul. 13, 2021	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	41912 & 05	30MHz~1GHz	Feb. 09, 2020	Jan. 14, 2021~ Feb. 07, 2021	Feb. 08, 2021	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	41912 & 05	30MHz~1GHz	Feb. 08, 2021	Feb. 08, 2021~ Feb. 11, 2021	Feb. 07, 2022	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 28, 2020	Jan. 14, 2021~ Feb. 11, 2021	Dec. 27, 2021	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Nov. 03, 2020	Jan. 14, 2021~ Feb. 11, 2021	Nov. 02, 2021	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917025 1	18GHz~40GHz	Dec. 02, 2020	Jan. 14, 2021~ Feb. 11, 2021	Dec. 01, 2021	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55006	1GHz~18GHz	May 07, 2020	Jan. 14, 2021~ Feb. 11, 2021	May 06, 2021	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY53270195	1GHz~26.5GHz	Aug. 21, 2020	Jan. 14, 2021~ Feb. 11, 2021	Aug. 20, 2021	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Oct. 27, 2020	Jan. 14, 2021~ Feb. 11, 2021	Oct. 26, 2021	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130085	20MHz~8.4GHz	Nov. 02, 2020	Jan. 14, 2021~ Feb. 11, 2021	Nov. 01, 2021	Radiation (03CH15-HY
Spectrum Analyzer	Agilent	E4446A	MY50180136	3Hz~44GHz	May 04, 2020	Jan. 14, 2021~ Feb. 11, 2021	May 03, 2021	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jan. 14, 2021~ Feb. 11, 2021	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jan. 14, 2021~ Feb. 11, 2021	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24 (k5)	RK-000451	N/A	N/A	Jan. 14, 2021~ Feb. 11, 2021	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104, 102E	MY36980/4, MY9838/4PE, 508405/2E	30MHz~18G	Nov. 16, 2020	Jan. 14, 2021~ Feb. 11, 2021	Nov. 15, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz-40GHz	Feb. 25, 2020	Jan. 14, 2021~ Feb. 11, 2021	Feb. 24, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz-40GHz	Feb. 25, 2020	Jan. 14, 2021~ Feb. 11, 2021	Feb. 24, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 12, 2020	Jan. 14, 2021~ Feb. 11, 2021	Mar. 11, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WLJ4-1000-15 30-6000-40ST	SN4	1.53GHz Low Pass Filter	Jul. 03, 2020	Jan. 14, 2021~ Feb. 11, 2021	Jul. 02, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN4	3GHz High Pass Filter	Sep. 16, 2020	Jan. 14, 2021~ Feb. 11, 2021	Sep. 15, 2021	Radiation (03CH15-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jan. 06, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 11, 2020	Jan. 06, 2021	Sep. 10, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 18, 2020	Jan. 06, 2021	Nov. 17, 2021	Conduction (CO05-HY)
ISN	TESEQ	ISN T8-Cat6	41537	N/A	Feb. 03, 2020	Jan. 06, 2021	Feb. 02, 2021	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2020	Jan. 06, 2021	Nov. 15, 2021	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Jan. 06, 2021	N/A	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	Jan. 06, 2021	Dec. 30, 2021	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	ESHVTSD 9561-F N3-Z2	109561-F N003730851	9kHz-200MHz	Nov. 02, 2020	Jan. 06, 2021	Nov. 01, 2021	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	47
of 95% (U = 2Uc(y))	4.7

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Macouring Uppertainty for a Loval of Confidence	
measuring Uncertainty for a Level of Confidence of 0.5% (11 – 211 $c(y)$)	5.3
01.95%(0 = 200(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.0
of 95% (U = 2Uc(y))	4.9

Report Number : FR0D1806A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Rebecca Li	Temperature:	20~21	°C
Test Date:	2020/12/30	Relative Humidity:	55~56	%

				<u>TES</u> P	<u>T RESUL</u> eak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	8.41	20.97	Pass
DH1	39	1	6.85	20.97	Pass
	78	1	7.69	20.97	Pass
	0	1	8.49	20.97	Pass
2DH1	39	1	6.92	20.97	Pass
	78	1	7.76	20.97	Pass
	0	1	8.78	20.97	Pass
3DH1	39	1	7.16	20.97	Pass
	78	1	8.04	20.97	Pass

				<u>TES</u> <u>Ave</u> (<u>ST RESULTS DATA</u> erage Power Table Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	8.29	5.15	
DH1	39	1	6.71	5.15	
	78	1	7.60	5.15	
	0	1	6.09	5.09	
2DH1	39	1	4.70	5.09	
	78	1	5.47	5.09	
	0	1	6.13	5.08	
3DH1	39	1	4.74	5.08	
	78	1	5.51	5.08	

Appendix B. AC Conducted Emission Test Results

Toot Engineer	Howard Huong	Temperature :	23~26 ℃
rest Engineer .	Howard Huang	Relative Humidity :	40~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 0D1806 Mode 1 120Vac/60Hz Line

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		31.97	56.00	24.03	L1	OFF	19.7
0.150000	45.39		66.00	20.61	L1	OFF	19.7
0.260250		25.85	51.42	25.57	L1	OFF	19.7
0.260250	35.82		61.42	25.60	L1	OFF	19.7
0.501900		31.99	46.00	14.01	L1	OFF	19.9
0.501900	37.22		56.00	18.78	L1	OFF	19.9
0.570030		30.76	46.00	15.24	L1	OFF	19.9
0.570030	38.14		56.00	17.86	L1	OFF	19.9
2.301000		25.44	46.00	20.56	L1	OFF	20.2
2.301000	32.59		56.00	23.41	L1	OFF	20.2
12.898500		25.62	50.00	24.38	L1	OFF	20.3
12.898500	29.01		60.00	30.99	L1	OFF	20.3
27.031380		25.93	50.00	24.07	L1	OFF	20.7
27.031380	28.30		60.00	31.70	L1	OFF	20.7

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 0D1806 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.163500		28.52	55.28	26.76	Ν	OFF	19.7
0.163500	35.92		65.28	29.36	Ν	OFF	19.7
0.502440		32.24	46.00	13.76	Ν	OFF	19.9
0.502440	37.20		56.00	18.80	Ν	OFF	19.9
0.564000		30.33	46.00	15.67	Ν	OFF	20.0
0.564000	38.00		56.00	18.00	Ν	OFF	20.0
1.196250		24.94	46.00	21.06	Ν	OFF	20.3
1.196250	31.09		56.00	24.91	Ν	OFF	20.3
3.490170		25.20	46.00	20.80	Ν	OFF	20.1
3.490170	29.63		56.00	26.37	Ν	OFF	20.1
24.861750		27.12	50.00	22.88	Ν	OFF	20.8
24.861750	33.30		60.00	26.70	Ν	OFF	20.8

Appendix C. Radiated Spurious Emission

Toot Engineer	Loo Loo Maney Chey, and Bigshow Wang	Temperature :	22.1 ~ 23.1°C
rest Engineer .	Leo Lee, Maricy Chou, and Bigshow Wang	Relative Humidity :	55 ~ 60%

<Sample 1>

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
	*	2480	97.42	-	-	94.08	27.44	6.78	30.88	350	18	Р	Н
	*	2480	72.66	-	-	-	-	-	-	-	-	А	Н
		2483.56	45.25	-28.75	74	41.91	27.43	6.79	30.88	350	18	Р	Н
		2483.56	20.49	-33.51	54	-	-	-	-	-	-	А	Н
BT CH 78 2480MHz													Н
													Н
	*	2480	94.67	-	-	91.33	27.44	6.78	30.88	196	332	Р	V
	*	2480	69.91	-	-	-	-	-	-	-	-	А	V
		2483.64	44.87	-29.13	74	41.53	27.43	6.79	30.88	196	332	Р	V
		2483.64	20.11	-33.89	54	-	-	-	-	-	-	А	V
													V
													V
Remark	1. No	o other spurious	s found.										
Nemark	2. All	results are PA	.SS against F	Peak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz BT (Band Edge @ 3m)

	BT (Harmonic @ 3m)BTNoteFrequencyLevelOverLimitReadAntennaPathPreampAntTablePeakPol.Image: Colspan="6">Image: Colspan="6" Image: Colspan												
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4960	40.26	-33.74	74	58.05	31.22	10.17	59.18	100	0	Ρ	Н
		4960	15.5	-38.5	54	-	-	-	-	-	-	А	Н
		7440	46.99	-27.01	74	56.68	36.3	12.39	58.38	100	0	Ρ	Н
		7440	22.23	-31.77	54	-	-	-	-	-	-	А	Н
57		18000	60.05	-13.95	74	50.06	49	18.89	57.9	100	0	Ρ	Н
BT CH 78 2480MHz		18000	35.29	-18.71	54	-	-	-	-	-	-	А	Н
		4960	40.91	-33.09	74	58.7	31.22	10.17	59.18	100	0	Ρ	V
240010112		4960	16.15	-37.85	54	-	-	-	-	-	-	А	V
		7440	46.89	-27.11	74	56.58	36.3	12.39	58.38	100	0	Ρ	V
		7440	22.13	-31.87	54	-	-	-	-	-	-	А	V
		18000	60.98	-13.02	74	50.99	49	18.89	57.9	100	0	Ρ	V
		18000	36.22	-17.78	54	-	-	-	-	-	-	А	V
Remark	1. No 2. All	o other spurious results are PA	s found. SS against P	eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

Emission above 18GHz

					2.4GHz	BT (SHF	-)						
ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		22000	39.45	-34.55	74	43.59	38.4	12.16	54.7	150	0	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHZ													Н
SHE		22160	39.66	-34.34	74	43.47	38.62	12.21	54.64	150	0	Ρ	V
SHE													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
Domorto	1. No	o other spuriou	s found.	1									
Remark	2. Al	l results are PA	SS against li	mit line.									

Emission below 1GHz

					-	/							
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		67.83	31.15	-8.85	40	50.02	12.54	1.13	32.54	-	-	Р	Н
		94.99	35.36	-8.14	43.5	50.94	15.52	1.38	32.48	-	-	Р	Н
		203.63	39.1	-4.4	43.5	54.52	14.95	2.07	32.44	160	256	Q	Н
		339.43	40.03	-5.97	46	50.08	19.96	2.52	32.53	100	20	Q	Н
		433.52	39	-7	46	45.92	22.68	2.81	32.41	200	10	Q	Н
		528.58	33.71	-12.29	46	39.4	23.76	3.16	32.61	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BT		40.67	36.84	-3.16	40	49.47	19.11	0.82	32.56	100	299	Q	V
LF		94.99	34.49	-9.01	43.5	50.07	15.52	1.38	32.48	-	-	Р	V
		203.63	32.49	-11.01	43.5	47.91	14.95	2.07	32.44	-	-	Р	V
		325.85	33.51	-12.49	46	44	19.55	2.48	32.52	-	-	Р	V
		433.52	33.59	-12.41	46	40.51	22.68	2.81	32.41	-	-	Р	V
		528.58	31.41	-14.59	46	37.1	23.76	3.16	32.61	-	-	Р	V
													V
													V
													V
													V
													V
													V
Remark	1. No 2. All	o other spuriou	s found. \SS against li	mit line.									

2.4GHz BT (LF)

<Sample 2>

2.4GHz 2400~2483.5MHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	96.11	-	-	92.77	27.44	6.78	30.88	160	22	Ρ	Н
	*	2480	71.35	-	-	-	-	-	-	-	-	А	Н
		2489.76	44.96	-29.04	74	41.61	27.42	6.8	30.87	160	22	Ρ	Н
		2489.76	20.2	-33.8	54	-	-	-	-	-	-	А	Н
													Н
B1													Н
	*	2480	95.12	-	-	91.78	27.44	6.78	30.88	196	346	Ρ	V
2400101712	*	2480	70.36	-	-	-	-	-	-	-	-	А	V
		2487.28	45.46	-28.54	74	42.11	27.43	6.8	30.88	196	346	Ρ	V
		2487.28	20.7	-33.3	54	-	-	-	-	-	-	А	V
													V
													V
Remark	1. Nc	other spurious	s found.										
	2. All	results are PA	SS against F	eak and	Average lim	it line.							

BT (Band Edge @ 3m)

				I	BT (Harmo	onic @ 3	Sm)						
вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4960	39.51	-34.49	74	57.3	31.22	10.17	59.18	100	0	Ρ	Н
		4960	14.75	-39.25	54	-	-	-	-	-	-	А	Н
		7440	46.33	-27.67	74	56.02	36.3	12.39	58.38	100	0	Ρ	Н
		7440	21.57	-32.43	54	-	-	-	-	-	-	А	Н
		18000	59	-15	74	49.01	49	18.24	57.9	100	0	Ρ	Н
BT		18000	34.24	-19.76	54	-	-	-	-	-	-	А	Н
		4960	39.36	-34.64	74	57.15	31.22	10.17	59.18	100	0	Ρ	V
2400101112		4960	14.6	-39.4	54	-	-	-	-	-	-	А	V
		7440	45.87	-28.13	74	55.56	36.3	12.39	58.38	100	0	Ρ	V
		7440	21.11	-32.89	54	-	-	-	-	-	-	А	V
		18000	59.1	-14.9	74	49.11	49	18.89	57.9	100	0	Ρ	V
		18000	34.34	-19.66	54	-	-	-	-	-	-	А	V
Remark	1. No 2. All	o other spurious results are PA	s found. .SS against F	eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

Emission above 18GHz

					2.4GHz	BI (SHE	•)						
ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		21856	39.48	-34.52	74	43.79	38.37	12.02	54.7	150	0	P	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz	-												Н
BT													Н
SHF		20624	38.07	-35.93	74	42.97	38.73	11.22	54.85	150	0	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
Remark	1. No	o other spurious	s found.										
A containt	2. Al	l results are PA	SS against li	mit line.									

2.4GHz BT (SHF)

Emission below 1GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		67.83	34.74	-5.26	40	53.61	12.54	1.13	32.54	348	24	Q	Н
		94.99	36.02	-7.48	43.5	51.6	15.52	1.38	32.48	100	168	Q	Н
		176.47	37.08	-6.42	43.5	52.25	15.39	1.92	32.48	135	211	Q	Н
		285.11	40.11	-5.89	46	51.5	18.71	2.36	32.46	100	154	Q	Н
		704.15	39.3	-6.7	46	41.87	26.28	3.6	32.45	-	-	Р	Н
		894.27	38.9	-7.1	46	37.84	28.57	4.15	31.66	-	-	Р	Н
													Н
													Н
													Н
													Н
2 4 6 4 7													Н
2.40112 DT													Н
IF		40.67	32.16	-7.84	40	44.79	19.11	0.82	32.56	100	298	Q	V
		94.99	35.12	-8.38	43.5	50.7	15.52	1.38	32.48	100	255	Q	V
		176.47	35.83	-7.67	43.5	51	15.39	1.92	32.48	100	10	Q	V
		285.11	34.5	-11.5	46	45.89	18.71	2.36	32.46	-	-	Р	V
		741.98	38.36	-7.64	46	39.49	27.62	3.7	32.45	-	-	Р	V
		895.24	38.71	-7.29	46	37.63	28.58	4.15	31.65	-	-	Р	V
													V
													V
													V
													V
													V
													V
Remark	1. No	o other spurious	s found.										
	2. All	results are PA	SS against li	mit line.									

2.4GHz BT (LF)

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Note symbol

A calculation example for radiated spurious emission is shown as below:

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

Test Engineer	Leo Lee, Mancy Chou, and Bigshow Wang	Temperature :	22.1 ~ 23.1°C	
rest Engineer .		Relative Humidity :	55 ~ 60%	

<Sample 1>

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BT CH78 2480MHz					
	Horizontal	Fundamental				
Peak	(weightightightightightightightightightight	<pre>tem: tem: tem: tem: tem: tem: tem: tem:</pre>				

2.4GHz 2400~2483.5MHz

Emission above 18GHz

Emission below 1GHz

<Sample 2>

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

2.4GHz 2400~2483.5MHz

Emission above 18GHz

Emission below 1GHz

Appendix E. Duty Cycle Plots

<Sample 1>

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

<Sample 2>

3DH5 on time (One Pulse) Plot on Chanr	on time (Count Pulses) Plot on Channel 78	
If together Spectrum Analyzer Spectrum Ana	Marker Select Marker 3	If to prove Analysis Section Analy
	Normal	Coldware
	Delta	σ1 σ2
27.0	Fixed⊳	37.0 esch leftertals.depteration.als.bitischer information.als.als.edu.org/die.util.etu die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.org/die.util.etu.o
Center 2.480000000 GHz Span 0 Hz Span 0 Hz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001 pts) ws Mote ms sci_ x Y Function Function Function water	orr	Center 2.480000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts) W MOR frie SQL x Y Function Function worth Function worth
1 Δ2 1 Δ1 2.890 ms (Δ) 0.49 dB 2 F 1 1.690 ms 9161 dBuV 3 Δ4 1 1 (Δ) 3.750 ms (Δ) 0.00 dB 4 F 1 1.690 ms 91.61 dBuV 5	Properties►	1 N 1 t \$4.00 ms 92.39 dB/W 2 3 4 5 5 5 4 5 5 5 5 5
	More 1 of 2	7 8 9 10 11 11
Suffix not allowed	red	Suffix not allowed Status Calign Now, All required

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times \log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$$