

1 / 22

01

FCC ID: P4Q-N653 IC: 2420C-N653 Page: Report No.: T200407W01-RP16 Rev.:

FCC 47 CFR PART 90 **INDUSTRY CANADA RSS-140**

TEST REPORT

For

PRO 8475

Trade Name: MiTAC, Webfleet Solutions

Model: N653

Issued to

FCC:	Mitac Digital Technology Corporation No.200, Wen Hwa 2nd Rd.,Kuei Shan Dist. Taoyuan, 33383 Taiwan		
IC:	MiTAC Digital Technology Corporation No.200, Wenhua 2nd Rd., Guishan Dist. Taoyuan City 333 Taiwan		

Issued by

Compliance Certification Services Inc. Wugu Laboratory

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.) Issued Date: June 9, 2020

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page: 2 / 22 Rev.: 01

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	May 21, 2020	Initial Issue	ALL	Allison Chen
01	June 9, 2020	See the following note Rev.(01)	ALL	Allison Chen

Rev.(01)

1. Added test data for power table and radiated emission.

2. Revised product name: PRO 8475, and model name: N653.

Page: 3 / 22 Rev.: 01

TABLE OF CONTENTS

1. TES	ST RESULT CERTIFICATION	4
2. EU1	DESCRIPTION	5
3. TES	ST METHODOLOGY	6
3.1	EUT CONFIGURATION	
3.2	DESCRIPTION OF TEST MODES	6
3.3	THE WORST MODE OF MEASUREMENT	7
4. TES	ST SUMMERY	8
5. INS	TRUMENT CALIBRATION	g
5.1	MEASURING INSTRUMENT CALIBRATION	g
5.2 5.3	MEASUREMENT EQUIPMENT USED MEASUREMENT UNCERTAINTY	
5.5	WEASUREMENT UNCERTAINTY	1 1
6. FAC	CILITIES AND ACCREDITATIONS	12
6.1	FACILITIES	
6.2 6.3	EQUIPMENTLABORATORY ACCREDITATIONS AND LISTING	
7. SET	UP OF EQUIPMENT UNDER TEST	13
7.1	SETUP CONFIGURATION OF EUT	
7.2	SUPPORT EQUIPMENT	13
8. FCC	PART 90 REQUIREMENTS& INDUSTRY CANADA RSS-140	14
8.1	ERP MEASUREMENT	
8.2	SPURIOUS RADIATION MEASUREMENT	
8.3	TEST DATA RE-USE SUMMARY	
9. APF	PENDIX A PHOTOGRAPHS OF TEST SETUP	A-1
A DDEN	DIX 1 - PHOTOGRAPHS OF FUT	

Page: 4 / 22 Report No.: T200407W01-RP16 Rev.: 01

1. TEST RESULT CERTIFICATION

FCC Applicant: Mitac Digital Technology Corporation

No.200, Wen Hwa 2nd Rd., Kuei Shan Dist. Taoyuan, 33383

Taiwan

IC Applicant: MiTAC Digital Technology Corporation

No.200, Wenhua 2nd Rd., Guishan Dist. Taoyuan City 333

Taiwan

Manufacturer: MITAC COMPUTER (KUNSHAN) CO., LTD.

No. 269, 2nd Avenue, District A, Comprehensive Free Trade

Zone, Kunshan, Jiangsu, P.R. China

Equipment Under Test: PRO 8475

Trade Name: MiTAC, Webfleet Solutions

Model: N653

Date of Test: June 1 ~ 6, 2020

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR PART 90				
+	No non-compliance noted			
INDUSTRY CANADA RSS-140 Issue 1				
Statements of Conformity				
Determination of compliance is based on the results of the compliance measurement,				
not taking into account measurement instrumentation uncertainty.				

We hereby certify that:

The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Kevin Tsai

Deputy Manager

Compliance Certification Services Inc.

Komil Tani

Page: 5 / 22 Report No.: T200407W01-RP16 Rev.: 01

2. EUT DESCRIPTION

Product	PRO 8475		
Model	N653		
Model Discrepancy	Difference of the those trade names (list on this report) are just for marketing purpose only.		
Trade	MiTAC, Webfleet Solutions		
Received Date	April 7, 2020		
Power Supply	1. Powered from Rechargeable Li-ion Polymer Battery. Rating: 3.7VDC, 4000mAh, 14.8Wh 2. Powered from Cradle Fleet cable 12/24V (Pogo power pin) USB Type-C 5V		
Frequency Range	LTE Band 14 Channel Bandwidth: 5MHz	790.5MHz ~ 795.5MHz	
	LTE Band 14 Channel Bandwidth: 10MHz 793MHz		
Modulation Technique	e LTE Band 14 QPSK, 16QAM		
Antenna Specification	Antenna type: Integral Band 14: 0.03 dBi		

Remark: The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

Page: 6 / 22 Report No.: T200407W01-RP16 Rev.: 01

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of TIA-603-E and FCC CFR 47, Part 2 and Part 90, KDB 971168 D01 Power Meas License Digital Systems.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 DESCRIPTION OF TEST MODES

The EUT (Model: N653) had been tested under operating condition. The EUT be set in maximum power transmission via call box during testing.

LTE Band 14: 790.5 MHz ~ 795.5 MHz

Three channels had been tested for each channel bandwidth.

Channel	5	MHz	10MHz		
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
Low channel (L)	23305	790.5	-	-	
Middle channel (M)	23330	793.0	23330	793.0	
High channel (H)	23355	795.5	-		

Page: 7 / 22 Rev.: 01

3.3 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G						
Test Condition	Radiated Emission Above 1G					
PAWAR SHINNIV WAAA	Mode 1: EUT power by Battery Mode 2: EUT+Cradle					
Worst Mode						
Worst Position	 □ Placed in fixed position. □ Placed in fixed position at X-Plane (E2-Plane) □ Placed in fixed position at Y-Plane (E1-Plane) ☑ Placed in fixed position at Z-Plane (H-Plane) 					

Radiated Emission Measurement Below 1G				
Test Condition Radiated Emission Below 1G				
Power supply Mode	Mode 1: EUT power by Battery Mode 2: EUT+Cradle			
Worst Mode				

Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Z-Plane) were recorded in this report

Page: 8 / 22 Rev.: 01

4. TEST SUMMERY

FCC Standard Sec.	IC Standard Sec.	Report Section	· I I I I I I I I I I I I I I I I I I I	
-	-	2	Antenna Requirement	Pass
2.1046, 90.635(b), 90.542 (a)(7)	RSS-140 §4.3	8.1	ERP Measurement	Pass
2.1053, 90.691	RSS-GEN §6.13, RSS-140 §4.4	8.2	Spurious Radiation Measurement	Pass

Page: 9 / 22 Report No.: T200407W01-RP16 Rev.: 01

5. INSTRUMENT CALIBRATION

5.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

	RF Conducted Test Site					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
Coaxial Cable	Woken	WC12	CC003	06/28/2019	06/27/2020	
Wideband Radio Communication Tester	R&S	CMW 500	116875	07/29/2019	07/28/2020	
Software	N/A					

Page: 10 / 22 Rev.: 01

3M 966 Chamber Test Site					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
Band Reject Filters	MICRO TRONICS	BRM 50702	120	02/25/2020	02/24/2021
Bilog Antenna	Sunol Sciences	JB3	A030105	07/26/2019	07/25/2020
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/25/2020	02/24/2021
Coaxial Cable	EMCI	EMC105	190914+25111	09/20/2019	09/19/2020
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/15/2020	01/14/2021
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	10/04/2019	10/03/2020
High Pass Filter	SOLVANG TECHNOLOGY INC.	STI15	9923	02/25/2020	02/24/2021
High Pass Filters	MICRO TRONICS	HPM13195	003	02/25/2020	02/24/2021
Horn Antenna	ETS LINDGREN	3116	00026370	12/18/2019	12/17/2020
Horn Antenna / Harmonic Mixer	A-INFOMW / ROHDE&SCHWA RZ	LB-19-20-A / FS-Z60	J202020872 / 100142	12/09/2019	12/08/2021
Horn Antenna / Harmonic Mixer	ROHDE&SCHWA RZ	FH-PP-110 / FS-Z110	10003 / 100096	12/09/2019	12/08/2021
Horn Antenna / Harmonic Mixer	ROHDE&SCHWA RZ	FH-PP-75 / FS-Z75	10001 / 100162	12/09/2019	12/08/2021
Horn Antenna / Spectrum Analyzer Mixer	Radiometer Physics GmbH	FH-PP-170 / SAM-170	10003 / 20011	12/09/2019	12/08/2021
Horn Antenna / Spectrum Analyzer Mixer	Radiometer Physics GmbH	FH-PP-220 / SAM-220	10003 / 20013	12/09/2019	12/08/2021
Horn Antenna / Spectrum Analyzer Mixer	Radiometer Physics GmbH	FH-PP-325 / SAM-325	10007 / 20048	12/09/2019	12/08/2021
Loop Ant	COM-POWER	AL-130	121051	03/27/2020	03/26/2021
Pre-Amplifier	EMEC	EM330	060609	02/25/2020	02/24/2021
Pre-Amplifier	HP	8449B	3008A00965	02/25/2020	02/24/2021
Pre-Amplifier	MITEQ	AMF-6F-180040 00-37-8P	985646	06/18/2019	06/17/2020
Signal Analyzer	Agilent	N9010A	MY52220817	03/19/2020	03/18/2021
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R
Controller	ccs	CC-C-1F	N/A	N.C.R	N.C.R
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R
Software	e3 6.11-20180413				

Page: 11 / 22

Rev.: 01

5.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page: 12 / 22 Report No.: T200407W01-RP16 Rev.: 01

6. FACILITIES AND ACCREDITATIONS

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
 Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.)
Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10: 2013 and CISPR Publication 22.

6.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 0824-01 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324G-1 for 3M Semi Anechoic Chamber A, 2324G-2 for 3M Semi Anechoic Chamber B.

Page: 13 / 22 Report No.: T200407W01-RP16 Rev.: 01

7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

7.2 SUPPORT EQUIPMENT

	Support Equipment									
No.	Equipment Brand Model Series No. FCC ID IC ID									
1	NB(L)	Toshiba	PORTEGE R30-A	N/A	PD97260H	N/A				
2	DC Power Source	Agilent	E3640A	N/A	N/A	N/A				

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page: 14 / 22 Report No.: T200407W01-RP16 Rev.: 01

8. FCC PART 90 REQUIREMENTS& INDUSTRY CANADA RSS-140

8.1 ERP MEASUREMENT

LIMIT

According to FCC §2.1046

FCC 90.542 (a)(7): Portable stations (hand-held devices) transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 3 watts ERP.

RSS-140 §4.3:

The equivalent radiated power (e.r.p.) for control and mobile equipment shall not exceed 30 W. The e.r.p. for portable equipment including handheld devices shall not exceed 3 W.

TEST PROCEDURES

CONDUCTED POWER MEASUREMENT:

- 1. The transmitter output power was connected to the call box.
- 2. Set EUT at maximum output power via call box.
- 3. Set Call box at lowest, middle and highest channels for each band and modulation.

TEST RESULTS

No non-compliance noted.

Page: 15 / 22 Report No.: T200407W01-RP16 Rev.: 01

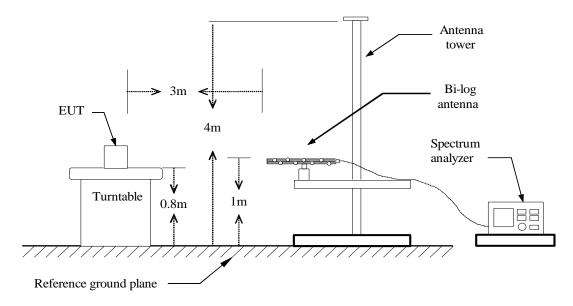
LTE Band 14

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB Start	MPR	Average power (dBm)	ERP Power
					1	0	0	22.18	20.06
					1	12	0	22.53	20.41
					1	24	0	22.48	20.36
				QPSK	12	0	1	21.60	19.48
					12	6	1	21.59	19.47
					12	11	1	21.59	19.47
		00005	700 5		25	0	1	21.52	19.40
		23305	790.5		1	0	1	21.93	19.81
					1	12	1	21.62	19.50
					1	24	1	21.54	19.42
				16QAM	12	0	2	20.71	18.59
					12	6	2	20.76	18.64
					12	11	2	20.74	18.62
					25	0	2	20.71	18.59
				QPSK	1	0	0	22.51	20.39
					1	12	0	22.16	20.04
					1	24	0	22.46	20.34
	5M	23330			12	0	1	21.58	19.46
					12	6	1	21.57	19.45
					12	11	1	21.57	19.45
Band 14			700.0		25	0	1	21.50	19.38
Danu 14			793.0		1	0	1	21.91	19.79
				16QAM	1	12	1	21.60	19.48
					1	24	1	21.52	19.40
					12	0	2	20.69	18.57
					12	6	2	20.74	18.62
					12	11	2	20.72	18.60
					25	0	2	20.69	18.57
					1	0	0	22.22	20.10
					1	12	0	22.57	20.45
					1	24	0	22.52	20.40
				QPSK	12	0	1	21.64	19.52
					12	6	1	21.63	19.51
					12	11	1	21.63	19.51
		23355	795.5		25	0	1	21.56	19.44
		20000	7 55.5		1	0	1	21.97	19.85
					1	12	1	21.66	19.54
					1	24	1	21.58	19.46
				16QAM	12	0	2	20.75	18.63
					12	6	2	20.80	18.68
					12	11	2	20.78	18.66
					25	0	2	20.75	18.63

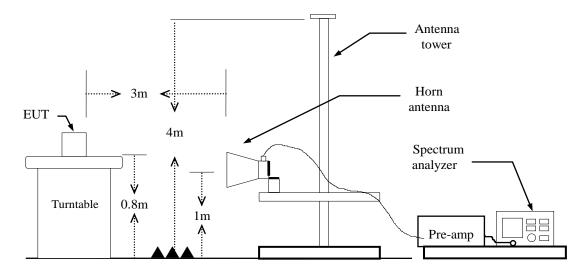
Page: 16 / 22 Rev.: 01

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB Start	MPR	Average power (dBm)	ERP Power
					1	0	0	22.24	20.12
					1	24	0	22.59	20.47
			793.0		1	49	0	22.54	20.42
	10M	23330		QPSK	25	0	1	21.66	19.54
					25	12	1	21.65	19.53
					25	24	1	21.65	19.53
Dand 14					50	0	1	21.58	19.46
Band 14					1	0	1	21.99	19.87
					1	24	1	21.68	19.56
					1	49	1	21.60	19.48
				16QAM	25	0	2	20.77	18.65
					25	12	2	20.82	18.70
					25	24	2	20.80	18.68
					50	0	2	20.77	18.65

Page: 17 / 22 Report No.: T200407W01-RP16 Rev.: 01

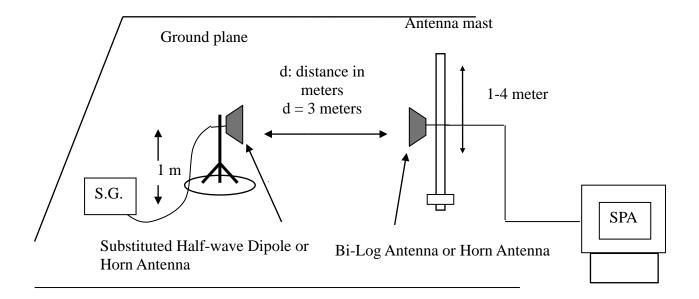

8.2 SPURIOUS RADIATION MEASUREMENT

LIMIT


The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log10(P) dB. The limit of emission equal to -13dBm

Test Configuration

Below 1 GHz


Above 1 GHz

Page: 18 / 22 Rev.: 01

Substituted Method Test Set-up

TEST PROCEDURE

- 1. According to KDB 971168 D01 Power Meas License Digital Systems and TIA-603-E Section 2.2.12.
- 2. The EUT was placed on a turntable
 - (1) Below 1G: 0.8m
 - (2) Above 1G: 0.8m
 - (3) EUT set 3m from the receiving antenna
 - (4) The table was rotated 360 degrees of the highest spurious emission to determine the position.
- 3. Set the spectrum analyzer, RBW=1MHz, VBW=3MHz.
- 4. A horn antenna was driven by a signal generator.
- 5. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission

ERP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)-2.15

EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

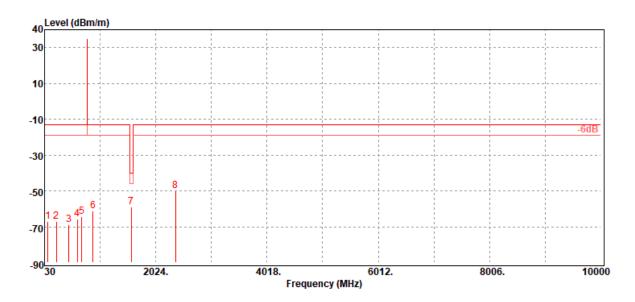
TEST RESULTS

Refer to the attached tabular data sheets.

Remark: Above 1GHz

Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page: 19 / 22 Report No.: T200407W01-RP16 Rev.: 01


Test Results

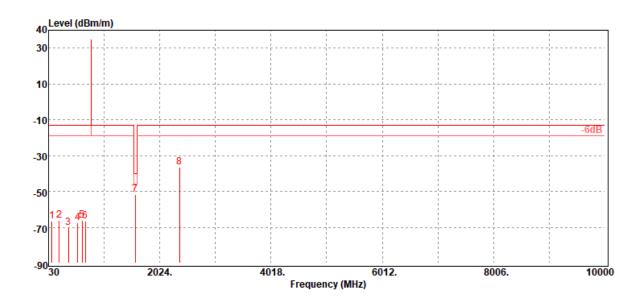
LTE Band 14 / BW: 10MHz / QPSK / RB =1, RB Offset = 0

Operation Mode: Tx / Low CH **Test Date:** June 6, 2020

Temperature: 24.9°C **Tested by:** Jerry Chang

Humidity: 51% RH **Polarity:** Ver.

Freq.	ERP/EIRP	SG	Antenna	Cable	Limit	Margin	Antenna
		Output Level	Gain	Loss			Polarization
(MHz)	(dBm)	(dBm)	(dBd/dBi)	(dB)	(dBm)	(dB)	(V/H)
88.20	-66.91	-58.98	-7.16	-0.77	-13.00	-53.91	V
246.31	-67.05	-63.89	-1.87	-1.29	-13.00	-54.05	V
463.59	-69.08	-65.05	-2.24	-1.79	-13.00	-56.08	V
619.76	-65.57	-62.07	-1.40	-2.10	-13.00	-52.57	V
694.45	-64.37	-60.75	-1.40	-2.22	-13.00	-51.37	V
900.09	-61.27	-57.53	-1.20	-2.54	-13.00	-48.27	V
1586.00	-59.09	-65.14	9.52	-3.47	-40.00	-19.09	V
2379.00	-50.09	-55.79	10.13	-4.43	-13.00	-37.09	V



Page: 20 / 22 Rev.: 01

Operation Mode: Tx / Low CH **Test Date:** June 6, 2020

Temperature: 24.9°C **Tested by:** Jerry Chang

Humidity: 51% RH **Polarity:** Hor.

Freq.	ERP/EIRP	SG Output Level	Antenna Gain	Cable Loss	Limit	Margin	Antenna Polarization
(MHz)	(dBm)	(dBm)	(dBd/dBi)	(dB)	(dBm)	(dB)	(V/H)
91.11	-66.71	-59.02	-6.91	-0.78	-13.00	-53.71	Н
219.15	-66.08	-62.84	-2.02	-1.22	-13.00	-53.08	Н
386.96	-70.01	-66.98	-1.40	-1.63	-13.00	-57.01	Н
550.89	-67.33	-64.16	-1.22	-1.95	-13.00	-54.33	Н
631.40	-66.15	-62.47	-1.56	-2.12	-13.00	-53.15	Н
687.66	-66.72	-63.16	-1.35	-2.21	-13.00	-53.72	Н
1586.00	-51.62	-57.67	9.52	-3.47	-40.00	-11.62	Н
2379.00	-36.39	-42.09	10.13	-4.43	-13.00	-23.39	Н

Page: 21 / 22 Rev.: 01

8.3 TEST DATA RE-USE SUMMARY

Introduction Section:

The application re-uses data collected on a similar device. The subject device of this application (Model: N653, FCC ID: P4Q-N653, IC: 2420C-N653) is electrically identical to the reference device (Model: N635, FCC ID: P4Q-N635A, IC: 2420C-N635A) for the portions of the circuitry corresponding to the data being re-used, as treated by KDB Publication 484596 D01.

Differences Brief Description:

The WLAN, WWAN, BT and RFID hardware of this device are identical to the implementation in

FCC ID: P4Q-N653.

IC: 2420C-N653

The Product Equality Declaration document includes detailed information about the changes between the devices. The data from that application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the summary table below.

Page: 22 / 22 Rev.: 01

Spot Check Verification Result Summary

Equipment Class	Reference FCC ID	Folder Test	Report Title/ Section
Part 22H	P4Q-N635A	T191105W01-RP15	All Section (Except for ERP Measurement, Spurious Radiation Measurement)

Equipment Class	Reference IC No.	Folder Test	Report Title/ Section
RSS-140	2420C-N635A	ER/2020/10107	All Section (Except for ERP Measurement, Spurious Radiation Measurement)

Summery of the spot check for Unlicensed bands and Licensed bands

In order to confirm hardware similarity of the subject device with the reference device, we used same setting power to spot check measurement were performed on the subject device for the Band edge and Harmonic, the test result were similar with FCC ID: P4Q-N635A / IC: 2420C-N635A.

WWAN: LTE

		Frequency	Channel	P4Q-N635A / 2420C-N635A		P4Q-N653 /	Gap	
Report	Test Item	(MHz)		Measured Frequency (MHz)	EIRP/ERP	Measured Frequency (MHz)	EIRP/ERP	(dB)
Band 14	RSE	793	23330	2379	-37.88	2379	-36.39	-1.49

- End of Test Report -