

FCC RADIO TEST REPORT

FCC ID	: P4Q-N650RN
Equipment	: Tablet
Brand Name	: MITAC, MIO, NAVMAN, MAGELLAN
Model Name	: N650
Applicant	: MiTAC Digital Technology Corporation
	4F., No. 1, R&D Road 2, Hsinchu Science Park, Hsinchu 30076, Taiwan (R.O.C.)
Manufacturer	: MITAC Computer (Kunshan) Co,. Ltd.
	No. 269, 2nd Avenue, District A, Conprehensive Free Trade Zone, 300 Kunshan, China
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Jul. 09, 2021 and testing was started from Jul. 23, 2021 and completed on Aug. 02, 2021. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	5
2	Test	Configuration of Equipment Under Test	6
	2.1	Carrier Frequency Channel	6
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	8
3	Test	Result	9
	3.1	Output Power Measurement	9
	3.2	Radiated Band Edges and Spurious Emission Measurement	10
	3.3	Antenna Requirements	15
4	List c	of Measuring Equipment	16
5	Unce	rtainty of Evaluation	17
Арр	oendix	A. Conducted Test Results	
Арр	pendix	B. Radiated Spurious Emission	
Арр	oendix	C. Radiated Spurious Emission Plots	
Арр	oendix	CD. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR970921-08A	01	Initial issue of report	Aug. 13, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	Not Required	-
-	15.247(a)(1)	Hopping Channel Separation	Not Required	-
-	15.247(a)(1)	Dwell Time of Each Channel	Not Required	-
-	15.247(a)(1)	20dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth Not Required		-
3.1	15.247(b)(1)	Peak Output Power Pass		-
-	15.247(d)	Conducted Band Edges Not Required		-
-	15.247(d)	Conducted Spurious Emission	Not Required	-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 9.88 dB at 50.370 MHz
-	15.207	AC Conducted Emission Not Required		-
3.3	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Note:

1. Not required means after assessing, test items are not necessary to carry out.

2. This is a variant report by disable NFC function via hardware. All the test cases were performed on original report which can be referred to Sporton Report Number FR970921-04A. Based on the original report, the test cases were verified.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Yun Huang Report Producer: Cindy Liu

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n, and GNSS.

Product Specification subjective to this standard					
Antenna Type	WLAN: PIFA Antenna Bluetooth: PIFA Antenna GPS / Glonass: PATCH Antenna				
Antenna information					
2400 MHz ~ 2483.5 MHz Peak Gain (dBi) 1.54					

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory				
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855				
Test Site No.	Sporton Site No. TH05-HY, 03CH16-HY				

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL : 886-3-327-0868	Page Number	: 5 of 17
FAX : 886-3-327-0855	Issued Date	: Aug. 13, 2021
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 01

Test Configuration of Equipment Under Test 2

2.1 Carrier Frequency Channel

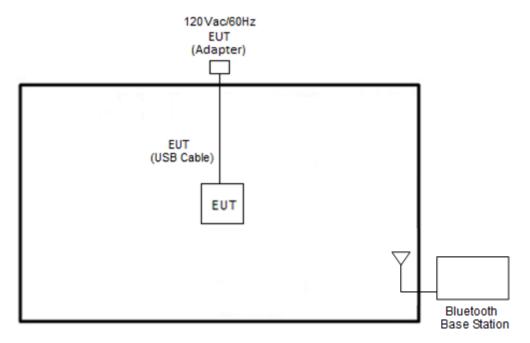
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

2.2 Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). The measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X plane as worst plane., and the worst mode of radiated spurious emissions is Bluetooth 2Mbps mode, and recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
	Bluetooth EDR 2Mbps n/4-DQPSK					
Radiated	Mode 1: CH00_2402 MHz					
Test Cases	Mode 2: CH39_2441 MHz					
	Mode 3: CH78_2480 MHz					
Remark:						
RF output pov						


band edge measurement for other data rates were not worse than 2Mbps, and no other significantly frequencies found in conducted spurious emission.

2. For Radiated Test Cases, the tests were performed with Battery 2.

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

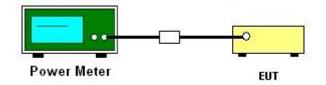
The RF test items, utility "QRCT3.0.303.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Measure the conducted output power with cable loss and record the results in the test report.
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

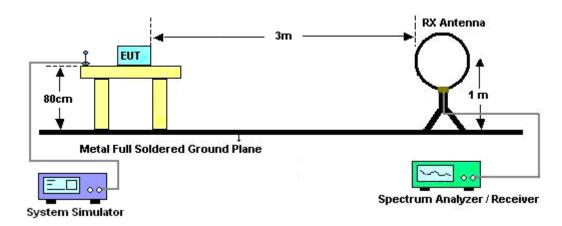
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 - 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

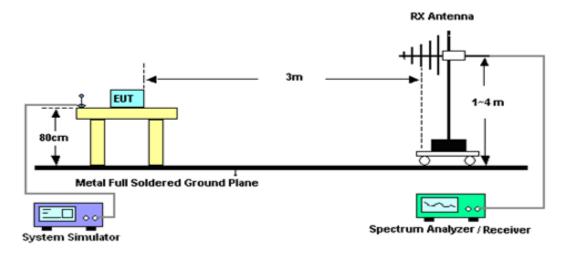
3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

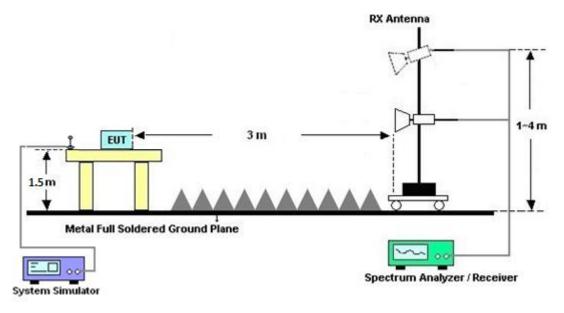
3.2.3 Test Procedures

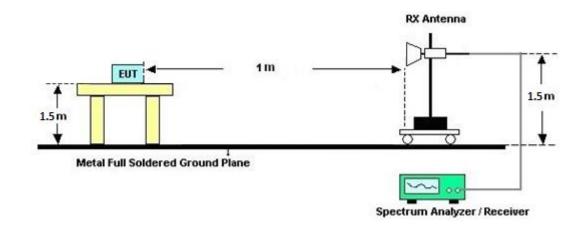

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1 GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.2.4 Test Setup


For radiated test below 30MHz


For radiated test from 30MHz to 1GHz

For radiated test from 1GHz to 18GHz

For radiated test above 18GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.7 Duty Cycle

Please refer to Appendix D.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jan. 04, 2021	Jul. 29, 2021~ Aug. 02, 2021	Jan. 03, 2022	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz to 1GHz	Oct. 11, 2020	Jul. 29, 2021~ Aug. 02, 2021	Oct. 10, 2021	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Sep. 29, 2020	Jul. 29, 2021~ Aug. 02, 2021	Sep. 28, 2021	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00993	18GHz ~40GHz	Nov. 19, 2020	Jul. 29, 2021~ Aug. 02, 2021	Nov. 18, 2021	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Jul. 05, 2021	Jul. 29, 2021~ Aug. 02, 2021	Jul. 04, 2022	Radiation (03CH16-HY)
Amplifier	Jet-Power	JPA0118-55-30 3	17100018000 54001	1-18GHz	Jun. 16, 2021	Jul. 29, 2021~ Aug. 02, 2021	Jun. 15, 2022	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 11, 2020	Jul. 29, 2021~ Aug. 02, 2021	Dec. 10, 2021	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 10, 2020	Jul. 29, 2021~ Aug. 02, 2021	Dec. 09, 2021	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A	MY59053012	3Hz~26.5GHz	Nov. 18, 2020	Jul. 29, 2021~ Aug. 02, 2021	Nov. 17, 2021	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/4P E	NA	Aug. 29, 2020	Jul. 29, 2021~ Aug. 02, 2021	Aug. 28, 2021	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/4P E	NA	Aug. 29, 2020	Jul. 29, 2021~ Aug. 02, 2021	Aug. 28, 2021	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-5 757	NA	Aug. 29, 2020	Jul. 29, 2021~ Aug. 02, 2021	Aug. 28, 2021	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Jul. 29, 2021~ Aug. 02, 2021	N/A	Radiation (03CH16-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Jul. 29, 2021~ Aug. 02, 2021	N/A	Radiation (03CH16-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jul. 29, 2021~ Aug. 02, 2021	N/A	Radiation (03CH16-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jul. 29, 2021~ Aug. 02, 2021	N/A	Radiation (03CH16-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2021	Jul. 23, 2021~ Jul. 31, 2021	Mar. 01, 2022	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Jan. 14, 2021	Jul. 23, 2021~ Jul. 31, 2021	Jan. 13, 2022	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jan. 14, 2021	Jul. 23, 2021~ Jul. 31, 2021	Jan. 13, 2022	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Jan. 21, 2021	Jul. 23, 2021~ Jul. 31, 2021	Jan. 20, 2022	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	5.1 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6.8 dB
of 95% (U = 2Uc(y))	0.0 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.6 dB
of 95% (U = 2Uc(y))	4.0 UB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Mina Liu	Temperature:	21~25	°C
Test Date:	2021/7/23~2021/07/31	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> Peak Power Table									
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result				
	0	1	10.26	20.97	Pass				
DH1	39	1	10.23	20.97	Pass				
Γ	78	1	10.15	20.97	Pass				
	0	1	10.30	20.97	Pass				
2DH1	39	1	10.27	20.97	Pass				
Γ	78	1	10.13	20.97	Pass				
	0	1	10.27	20.97	Pass				
3DH1	39	1	10.25	20.97	Pass				
Γ	78	1	10.10	20.97	Pass				

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)										
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)						
	0	1	10.11	5.16						
DH1	39	1	10.04	5.16						
ſ	78	1	10.01	5.16						
	0	1	8.20	5.10						
2DH1	39	1	8.13	5.10						
Ī	78	1	7.98	5.10						
	0	1	8.04	5.12						
3DH1	39	1	7.98	5.12						
ľ	78	1	7.78	5.12						

Appendix B. Radiated Spurious Emission

Test Engineer :	Karl Hou and Andy Yang	Temperature :	20~25°C
Test Engineer .		Relative Humidity :	50~60%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
		inequency		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		2348.01	46.69	-27.31	74	40.7	27.8	8.48	30.29	102	242	Р	н
		2348.01	21.93	-32.07	54	-	-	-	-	-	-	А	н
	*	2402	107.25	-	-	101.45	27.5	8.58	30.28	102	242	Р	н
	*	2402	82.49	-	-	-	-	-	-	-	-	А	н
57													н
BT													н
CH00 2402MHz		2330.055	46.93	-27.07	74	40.94	27.84	8.45	30.3	375	282	Р	V
240211112		2330.055	22.17	-31.83	54	-	-	-	-	-	-	А	V
	*	2402	105.71	-	-	99.91	27.5	8.58	30.28	375	282	Р	V
	*	2402	80.95	-	-	-	-	-	-	-	-	А	V
													V
													V
		2312.8	56.81	-17.19	74	50.82	27.87	8.42	30.3	100	242	Р	Н
		2312.8	32.05	-21.95	54	-	-	-	-	-	-	А	Н
	*	2441	108	-	-	102.19	27.42	8.66	30.27	100	242	Р	Н
	*	2441	83.24	-	-	-	-	-	-	-	-	А	Н
		2491.18	46.41	-27.59	74	40.5	27.4	8.76	30.25	100	242	Р	Н
ВТ СН 39		2491.18	21.65	-32.35	54	-	-	-	-	-	-	А	Н
СН 39 2441MHz		2313.22	54.71	-19.29	74	48.72	27.87	8.42	30.3	371	272	Р	V
277 I WI 12		2313.22	29.95	-24.05	54	-	-	-	-	-	-	А	V
	*	2441	106.04	-	-	100.23	27.42	8.66	30.27	371	272	Ρ	V
	*	2441	81.28	-	-	-	-	-	-	-	-	А	V
		2497.27	46.69	-27.31	74	40.77	27.4	8.77	30.25	371	272	Р	V
		2497.27	21.93	-32.07	54	-	-	-	-	-	-	А	V

	*	2480	108.44	-	-	102.56	27.4	8.74	30.26	100	243	Р	Н
	*	2480	83.68	-	-	-	-	-	-	-	-	А	Н
		2483.96	52.84	-21.16	74	46.95	27.4	8.74	30.25	100	243	Р	н
		2483.96	28.08	-25.92	54	-	-	-	-	-	-	А	Н
вт													Н
CH 78													Н
2480MHz	*	2480	106.99	-	-	101.11	27.4	8.74	30.26	400	274	Р	V
240011112	*	2480	82.23	-	-	-	-	-	-	-	-	А	V
		2483.56	51.98	-22.02	74	46.09	27.4	8.74	30.25	400	274	Р	V
		2483.56	27.22	-26.78	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious results are PA		Peak and	Average lir	nit line.							

2.4GHz 2400~2483.5MHz

DT	Nete	F			31 (Harmo		• [Deth	Due entre	A -== (Table	Deele	Del
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	POI.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		2274	55.91	-18.09	74	49.92	27.95	8.35	30.31	102	242	P	H
		2274	31.15	-22.85	54	-	-	-	-	-	-	А	Н
		4804	39.47	-34.53	74	53.09	31.11	13.35	58.08	100	0	Р	Н
BT		4804	14.71	-39.29	54	-	-	I	-	-	-	А	Н
CH 00		2274	54.57	-19.43	74	48.58	27.95	8.35	30.31	375	282	Р	V
2402MHz		2274	29.81	-24.19	54	-	-	-	-	-	-	А	V
		4804	40.64	-33.36	74	54.26	31.11	13.35	58.08	100	0	Р	V
		4804	15.88	-38.12	54	-	-	-	-	-	-	А	V
		4882	39.51	-34.49	74	53.07	31.14	13.35	58.05	100	0	Р	н
		4882	14.75	-39.25	54	-	-	-	-	-	-	А	Н
DT.		7323	45.63	-28.37	74	50.78	36.45	16.36	57.96	100	0	Р	Н
ВТ СН 39		7323	20.87	-33.13	54	-	-	-	-	-	-	А	Н
СП 39 2441MHz		4882	41.25	-32.75	74	54.81	31.14	13.35	58.05	100	0	Р	V
244110112		4882	16.49	-37.51	54	-	-	-	-	-	-	Α	V
		7323	46.58	-27.42	74	51.73	36.45	16.36	57.96	100	0	Р	V
		7323	21.82	-32.18	54	-	-	-	-	-	-	А	V
		2352	58.2	-15.8	74	52.21	27.79	8.49	30.29	100	243	Р	Н
		2352	33.44	-20.56	54	-	-	-	-	-	-	Α	Н
		4960	40.78	-33.22	74	54.13	31.34	13.33	58.02	100	0	Р	Н
		4960	16.02	-37.98	54	-	-	-	-	-	-	Α	Н
вт		7440	46.62	-27.38	74	51.6	36.4	16.61	57.99	100	0	Ρ	н
ы СН 78		7440	21.86	-32.14	54	-	-	-	-	-	-	Α	Н
2480MHz		2352	56.44	-17.56	74	50.45	27.79	8.49	30.29	400	274	Р	V
240011112		2352	31.68	-22.32	54	-	-	-	-	-	-	Α	V
		4960	40.01	-33.99	74	53.36	31.34	13.33	58.02	100	0	Р	V
		4960	15.25	-38.75	54	-	-	-	-	-	-	А	V
		7440	46.25	-27.75	74	51.23	36.4	16.61	57.99	100	0	Р	V
		7440	21.49	-32.51	54	-	-	-	-	-	-	Α	V
Remark		o other spurious I results are PA		Peak and	Average lim	it line.							

BT (Harmonic @ 3m)

Emission below 1GHz

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		103.72	25.33	-18.17	43.5	39.49	16.55	1.58	32.29	-	-	Р	Н
		150.28	25.75	-17.75	43.5	38.72	17.33	1.96	32.26	-	-	Р	Н
		196.84	27.61	-15.89	43.5	42.55	15.01	2.3	32.25	100	0	Ρ	Н
		246.31	29.77	-16.23	46	41.3	18.06	2.65	32.24	-	-	Р	Н
		406.36	27.32	-18.68	46	33.97	22.33	3.42	32.4	-	-	Р	Н
		705.12	29.89	-16.11	46	31.05	26.63	4.59	32.38	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz BT													Н
LF		50.37	30.12	-9.88	40	47.25	14.2	0.97	32.3	100	0	Р	V
		98.87	28.53	-14.97	43.5	43.33	15.96	1.54	32.3	-	-	Ρ	V
		128.94	27.31	-16.19	43.5	40.31	17.48	1.79	32.27	-	-	Ρ	V
		200.72	25.35	-18.15	43.5	40.15	15.13	2.33	32.26	-	-	Ρ	V
		235.64	23.74	-22.26	46	36.56	16.85	2.58	32.25	-	-	Ρ	V
		631.4	28.55	-17.45	46	30.4	26.36	4.32	32.53	-	-	Р	V
													V
													V
													V
													V
													V
													V

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over $Limit(dB) = Level(dB\mu V/m) - Limit Line(dB\mu V/m)$

For Peak Limit @ 2390MHz:

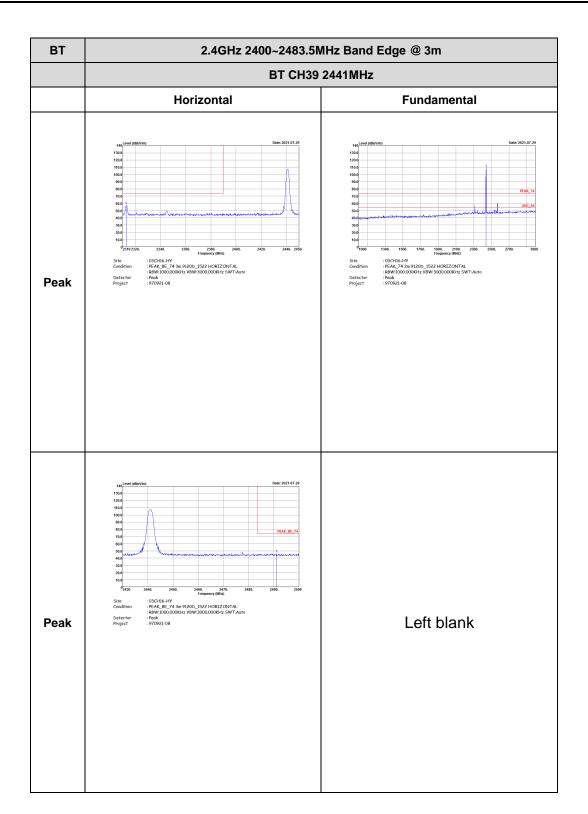
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

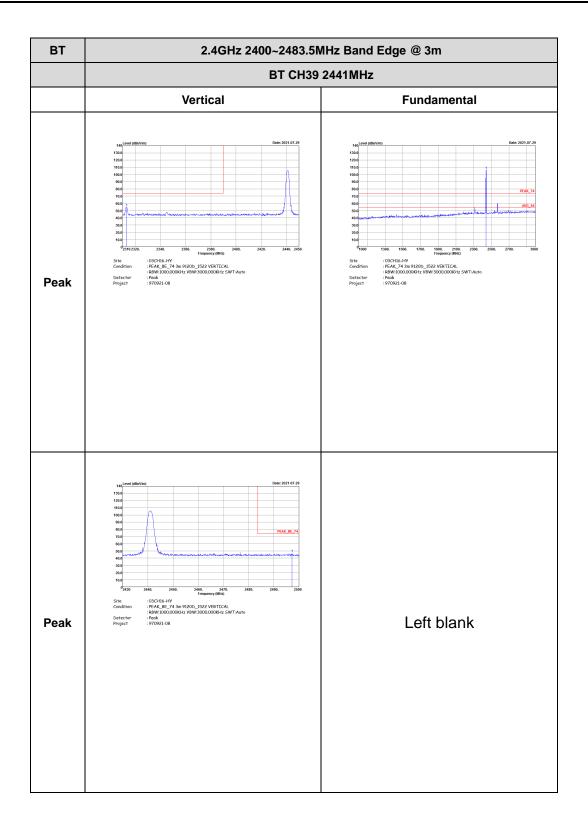
Appendix C. Radiated Spurious Emission Plots

Toot Engineer .		Temperature :	20~25°C
Test Engineer :	Karl Hou and Andy Yang	Relative Humidity :	50~60%

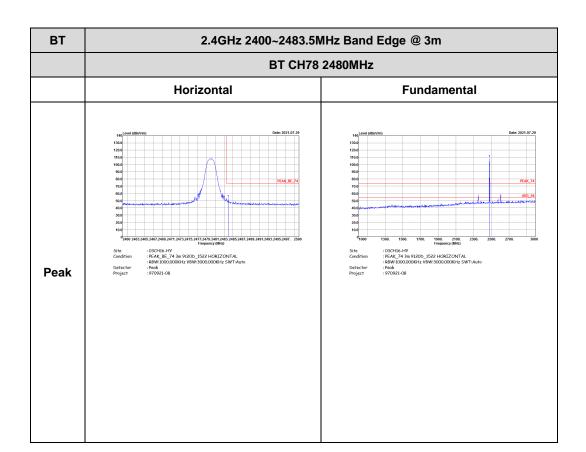
2.4GHz 2400~2483.5MHz

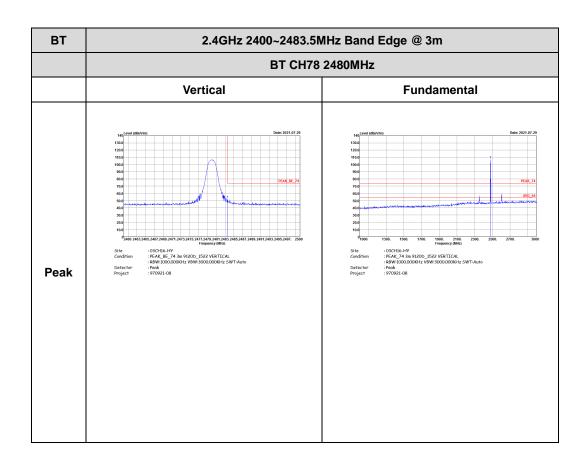

BT (Band Edge @ 3m)

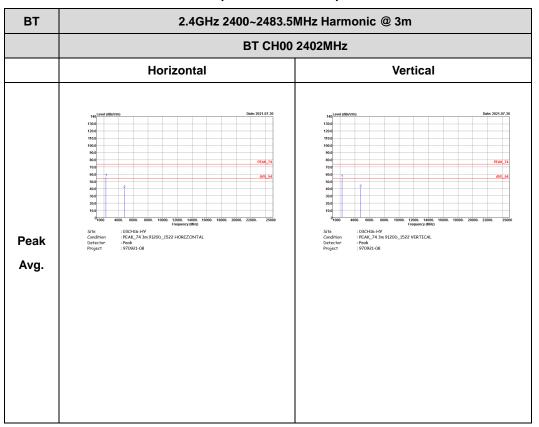
вт	2.4GHz 2400~2483.5MHz Band Edge @ 3m							
	BT CH00 2402MHz							
	Horizontal	Fundamental						
Peak	<pre>interfactor interfactor i</pre>	<pre>image image i</pre>						

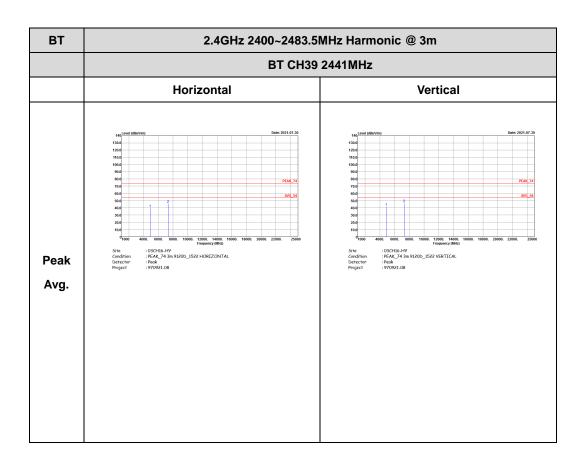


вт	2.4GHz 2400~2483.5MHz Band Edge @ 3m BT CH00 2402MHz							
	Vertical	Fundamental						
Peak	1 Difference 1 1	140 140						

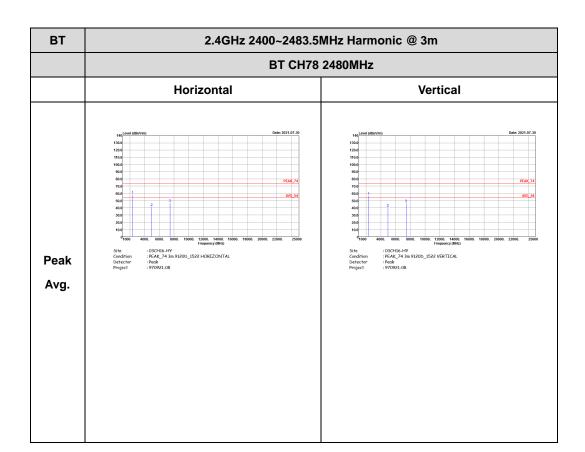




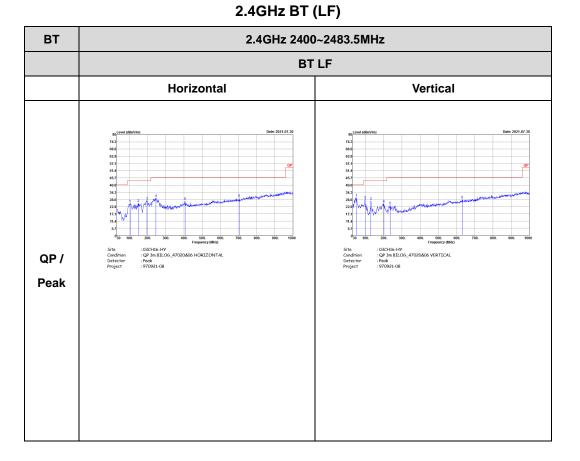




2.4GHz 2400~2483.5MHz



BT (Harmonic @ 3m)



Emission below 1GHz

Appendix D. Duty Cycle Plots

2DH5 on time (One Pulse) Plot on Chan	on time (Count Pulses) Plot on Channel 39		
topsjal Spectrum Analyzer - Swept SA SENSE:NT 1112:003 PM Jul 25, 2021 RL RP 500 AC SENSE:NT 1112:003 PM Jul 25, 2021 rker 3 ∆ 3,75000 ms PHO: Fast Trig: Free Run BAvg Type: RMS Thock PP P P NFE Free Run 10 dB NFE Free Run 10 dB Trig: PP P P	6 Marker	Knycht Spectrum Analyzer - Swegt SA SENSE-INT 11:20:44 PMJal 29, 2021 Scole Marker 1 14,6000 ms FMCC 10, 35 and 100 per pm per	
ΔMkr3 3.750 m -0.01 dB		IFGeint.Low 8Atter: 10 dB Unif (0, dB/dV) Ref 106.99 dBμV 85.96 dBμV 85.96 dBμV	
	Normal	970 Peak 1	
	Delta	20 70 70	
	Fixed⊳	50	
Inter 2.44 1000000 GHz Span 0 Hz Span 0 Hz SW 1.0 MHz #VBW 1.0 MHz Sweep 10.00 ms (1001 pts W0301 Mts Stress V Patients Patients Patients Patients W0301 Mts Stress V Patients Patients W0301 Mts Stress V Patients		270 270 britestyn a hand ar an ar	
Δ2 t (Δ) 2.890 ms (Δ) -1.54 dB F1 t 1.100 ms 48.400 dB/V Δ2 t (Δ) 3.768 ms (Δ) Δ1 t (Δ) 3.768 ms (Δ) Δ2 t t.190 ms 4.500 dB/V	Properties►	22.0 terinlasing til til terinlasing i som sin	
	More 1 of 2	Center 2.441000000 GHz Span 0 Hz	
Suffix not allowed	uired	Res BW 1.0 MHz #VBW 1.0 MHz Sweep 100.0 ms (1001 pts)	

Note:

1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %

- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. 2DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

2.89 ms x 20 channels = 57.8 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops Thus, the maximum possible ON time:

2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$