

FCC ID: P4Q-N635A Report No.: T191105W01-RP1 IC: 2420C-N635A

Page 1 / 63 Rev. 00

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 IC RSS-247 issue 2 and IC RSS-GEN issue 5
Product name	Chiron pro
Brand Name	Mitac, Mio, Navman, Magellan
Model No.	N635
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory)

Approved by:

Tested by:

Komil Ism

Kevin Tsai Deputy Manager

Dally Hong Engineer

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部分複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Compliance Certification Service Inc. 程智科技股份有限公司 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2298-1882 www.sgs.tw www.ccsrf.com

Page 2 / 63 Rev. 00

Revision History

Rev.	lssue Date	Revisions	Effect Page	Revised By
00	January 17, 2020	Initial Issue	ALL	Allison Chen

Table of contents

1.	GENERAL INFORMATION4
1.1	EUT INFORMATION
1.2	INFORMATION ABOUT THE FHSS CHARACTERISTICS
1.3	EUT CHANNEL INFORMATION6
1.4	ANTENNA INFORMATION6
1.5	MEASUREMENT UNCERTAINTY7
1.6	FACILITIES AND TEST LOCATION
1.7	INSTRUMENT CALIBRATION
1.8	SUPPORT AND EUT ACCESSORIES EQUIPMENT9
1.9	TEST METHODOLOGY AND APPLIED STANDARDS9
2.	TEST SUMMERY10
3.	DESCRIPTION OF TEST MODES11
3.1	THE WORST MODE OF OPERATING CONDITION11
3.2	THE WORST MODE OF MEASUREMENT12
3.3	EUT DUTY CYCLE14
4.	TEST RESULT15
4.1	AC POWER LINE CONDUCTED EMISSION
4.2	20dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)18
4.3	OUTPUT POWER MEASUREMENT
4.4	FREQUENCY SEPARATION25
4.5	NUMBER OF HOPPING
4.6	CONDUCTED BANDEDGE AND SPURIOUS EMISSION
4.7	TIME OF OCCUPANCY (DWELL TIME)
	RADIATION BANDEDGE AND SPURIOUS EMISSION

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page 4 / 63 Rev. 00

Report No.: T191105W01-RP1

1. GENERAL INFORMATION

1.1 EUT INFORMATION

FCC Applicant	Mitac Digital Technology Corporation No.200, Wen Hwa 2nd Rd.,Kuei Shan Dist. Taoyuan, 33383 Taiwan
IC Applicant	MiTAC Digital Technology Corporation No.200, Wenhua 2nd Rd., Guishan Dist. Taoyuan City 333 Taiwan
Manufacturer	MITAC COMPUTER (KUNSHAN) CO., LTD. No. 269, 2nd Avenue, District A, Comprehensive Free Trade Zone, Kunshan, Jiangsu, P.R. China
Equipment	Chiron pro
Model No.	N635
Model Discrepancy	Difference of the those trade names (list on this report) are just for marketing purpose only.
Trade Name	Mitac, Mio, Navman, Magellan
Received Date	November 5, 2019
Date of Test	November 25 ~ December 9, 2019
Output Power (W)	GFSK : 0.0093 (EIRP: 0.0126) 8DPSK : 0.0091 (EIRP: 0.0123)
Power Operation	 Power from Rechargeable Li-ion Polymer Battery. Rating: 3.7VDC, 4000mAh, 14.8Wh Power from Adapter. I/P: 100-240VAC, 50/60Hz, 0.5A O/P: 5.0VDC, 2A
HW Version	R02
SW Version	R15

Page 5 / 63 Rev. 00

1.2 INFORMATION ABOUT THE FHSS CHARACTERISTICS

1.2.1 Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.2.2 Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.2.3 Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.2.4 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.2.5 Equipment Description

15.247(a)(1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

RSS-247, 5.1 (a): The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Page 6 / 63 Rev. 00

1.3 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BDR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 and RSS-GEN Table 1 for test channels

Number of frequencies to be tested					
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.4 ANTENNA INFORMATION

Antenna Type	PIFA PCB Dipole Coils Integral		
Antenna Gain	Gain: 1.31 dBi		
Antenna Connector	i-pex		

Page 7 / 63 Rev. 00

1.5 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of *k*=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.6 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	Dally Hong	-
Radiation	Jerry Chang	-
RF Conducted	Jane Wang	-

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Page 8 / 63 Rev. 00

Report No.: T191105W01-RP1

1.7 INSTRUMENT CALIBRATION

RF Conducted Test Site							
Equipment	Manufacturer	Manufacturer Model S/N Cal Date Cal Due					
Coaxial Cable	Woken	WC12	CC003	06/28/2019	06/27/2020		
Power Meter	Anritsu	ML2495A	1149001	02/12/2019	02/11/2020		
Power Seneor	Anritsu	MA2491A	030982	02/12/2019	02/11/2020		
Signal Analyzer	R&S	FSV 40	101073	09/25/2019	09/24/2020		
Software			N/A				

3M 966 Chamber Test Site						
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
Band Reject Filters	MICRO TRONICS	BRM 50702	120	02/26/2019	02/25/2020	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/26/2019	07/25/2020	
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/26/2019	02/25/2020	
Coaxial Cable	EMCI	EMC105	190914+25111	09/20/2019	09/19/2020	
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/30/2019	01/29/2020	
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	10/04/2019	10/03/2020	
Loop Ant	COM-POWER	AL-130	121051	03/22/2019	03/21/2020	
Pre-Amplifier	EMEC	EM330	060609	02/26/2019	02/25/2020	
Pre-Amplifier	HP	8449B	3008A00965	02/26/2019	02/25/2020	
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	05/29/2019	05/28/2020	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Software	e3 6.11-20180413					

AC line Conduction Test Room							
Equipment	Manufacturer	Manufacturer Model S/N Cal Date Cal Due					
CABLE	EMCI	CFD300-NL	CERF	06/27/2019	06/26/2020		
EMI Test Receiver	R&S	ESCI	100064	07/26/2019	07/25/2020		
LISN	SCHWARZBECK	NSLK 8127	8127-541	01/31/2019	01/30/2020		
LISN	SCHAFFNER	NNB 41	03/10013	02/13/2019	02/12/2020		
Software	EZ-EMC(CCS-3A1-CE)						

Remark: Each piece of equipment is scheduled for calibration once a year.

Page 9 / 63 Rev. 00

Report No.: T191105W01-RP1

1.8 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment								
No.	No. Equipment Brand Model Series No. FCC ID IC ID								
	N/A								

	Support Equipment							
No.	No. Equipment Brand Model Series No. FCC ID IC ID							
1	1 NB(J) TOSHIBA PT345T-00L002 N/A PD97260H 1000M-7260H							

1.9 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 5.

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.3	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(1)	RSS-247(5.1)(a)	4.2	20 dB Bandwidth	Pass
-	RSS-GEN 6.7	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(1)	RSS-247(5.4)(b)	4.3	Output Power Measurement	Pass
15.247(a)(1)	RSS-247(5.1)(b)	4.4	Frequency Separation	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.5	Number of Hopping	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Spurious Emission	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(d)	4.7	Time of Occupancy	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Spurious Emission	Pass

Page 10 / 63 Rev. 00

Page 11 / 63 Rev. 00

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BDR-1Mbps (DH5) 8DPSK for EDR-3Mbps (3DH5)
Test Channel Frequencies	GFSK for BDR-1Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel: 2402MHz 2.Middle Channel: 2441MHz 3.Highest Channel: 2480MHz

Page 12 / 63 Rev. 00

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission					
Test Condition	AC Power line conducted emission for line and neutral				
	Mode1: EUT Power by Battery (DC 3V) Mode 2: EUT power by adapter + Type C USB Mode3: EUT Power by Type C USB+ CarCharge (DC12V) Mode4: EUT Power by Cradle(N564)+Micro USB+Adapter Mode5: EUT Power by Cradle(N564)+Micro USB+ CarCharge (DC12V) Mode6: EUT Power by Cradle(N564) + Cable(DC 12V) Mode7: EUT Power by Cradle(N564_TN)+Micro USB+Adapter Mode8: EUT Power by Cradle(N564_TN)+Micro USB+Adapter Mode9: EUT Power by Cradle(N564_TN) + Cable(DC 12V) Mode9: EUT Power by Cradle(N635_V)+Micro USB+Adapter Mode10: EUT Power by Cradle(N635_V)+Micro USB+Adapter Mode11: EUT Power by Cradle(N635_V)+Micro USB+CarCharge (DC12V) Mode12: EUT Power by Cradle(N635_V) + Cable(DC 12V) Mode13: EUT Power by Cradle(N635_VL)+Micro USB+Adapter Mode14: EUT Power by Cradle(N635_VL)+Micro USB+CarCharge (DC12V) Mode15: EUT Power by Cradle(N635_VL)+Micro USB+CarCharge (DC12V) Mode16: EUT Power by Cradle(N635_VL)+Micro USB+CarCharge (DC12V)				
Worst Mode	☐ Mode 1 ☐ Mode 2 ☐ Mode 3 ⊠ Mode 4				

	Radiated Emission Measurement Above 1G					
Test Condition	Radiated Emission Above 1G					
Power supply Mode	Mode1: EUT Power by Battery (DC 3V) Mode2: EUT Power by Adapter + Type C USB Mode3: EUT Power by Type C USB+ CarCharge (DC12V) Mode4: EUT Power by Cradle(N564)+Micro USB+Adapter Mode5: EUT Power by Cradle(N564)+Cable(DC 12V) Mode6: EUT Power by Cradle(N564) + Cable(DC 12V) Mode7: EUT Power by Cradle(N564_TN)+Micro USB+Adapter Mode8: EUT Power by Cradle(N564_TN)+Micro USB+CarCharge (DC12V) Mode9: EUT Power by Cradle(N564_TN) + Cable(DC 12V) Mode10: EUT Power by Cradle(N635_V)+Micro USB+Adapter Mode11: EUT Power by Cradle(N635_V)+Micro USB+CarCharge (DC12V) Mode12: EUT Power by Cradle(N635_V) + Cable(DC 12V) Mode13: EUT Power by Cradle(N635_VL) + Micro USB+Adapter Mode14: EUT Power by Cradle(N635_VL) + Micro USB+CarCharge (DC12V) Mode15: EUT Power by Cradle(N635_VL) + Cable(DC 12V) Mode15: EUT Power by Cradle(N635_VL) + Cable(DC 12V)					
Worst Mode	☑ Mode 1					
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 					

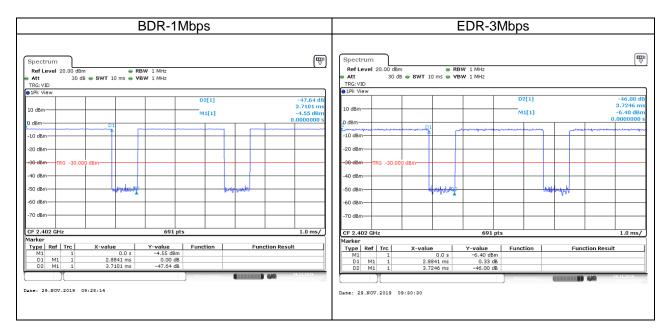
Page 13 / 63 Rev. 00

	Radiated Emission Measurement Below 1G
Test Condition	Radiated Emission Below 1G
Power supply Mode	Mode1: EUT Power by Battery (DC 3V) Mode2: EUT Power by Adapter + Type C USB Mode3: EUT Power by Type C USB+ CarCharge (DC12V) Mode4: EUT Power by Cradle(N564)+Micro USB+Adapter Mode5: EUT Power by Cradle(N564)+Cable(DC 12V) Mode6: EUT Power by Cradle(N564) + Cable(DC 12V) Mode7: EUT Power by Cradle(N564_TN)+Micro USB+Adapter Mode8: EUT Power by Cradle(N564_TN)+Micro USB+CarCharge (DC12V) Mode9: EUT Power by Cradle(N564_TN) + Cable(DC 12V) Mode10: EUT Power by Cradle(N635_V)+Micro USB+Adapter Mode11: EUT Power by Cradle(N635_V)+Micro USB+CarCharge (DC12V) Mode12: EUT Power by Cradle(N635_V) + Cable(DC 12V) Mode13: EUT Power by Cradle(N635_VL)+Micro USB+Adapter Mode14: EUT Power by Cradle(N635_VL)+Micro USB+CarCharge (DC12V) Mode15: EUT Power by Cradle(N635_VL)+Micro USB+CarCharge (DC12V) Mode15: EUT Power by Cradle(N635_VL) + Cable(DC 12V) Mode16: EUT Power by Cradle(N635_VL) + Cable(DC 12V)
Worst Mode	☑ Mode 1
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane)

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Z-Plane) were recorded in this report


3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

Page 14 / 63 Rev. 00

3.3 EUT DUTY CYCLE

Duty Cycle							
Configuration	Duty Cycle (%)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)			
BDR-1Mbps	77.74%	1.09	0.35	1.00			
EDR-3Mbps	77.43%	1.11	0.35	1.00			

Page 15 / 63 Rev. 00

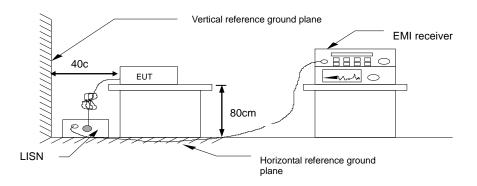
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		

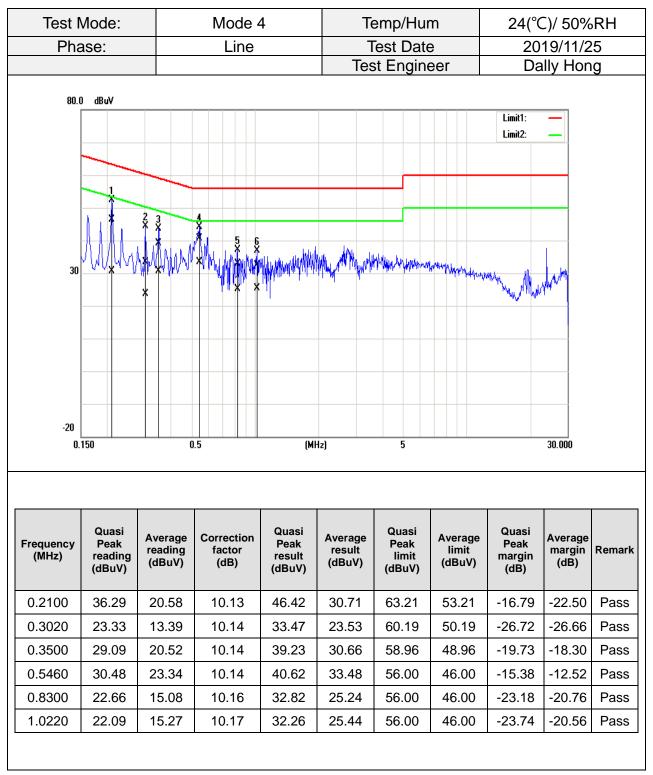

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

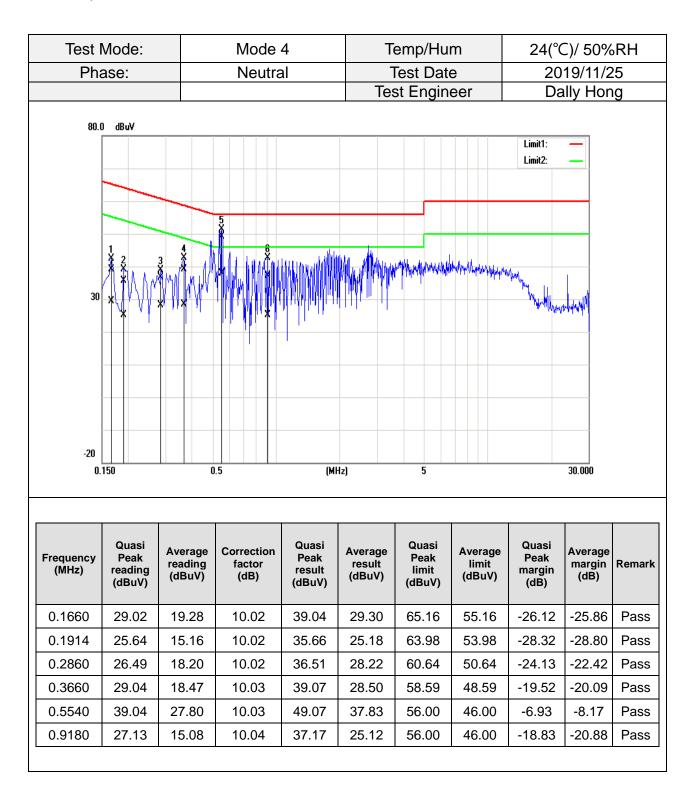
Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup



4.1.4 Test Result PASS


Page 16 / 63 Rev. 00

Test Data

Page 17 / 63 Rev. 00

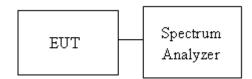
Page 18 / 63 Rev. 00

4.2 20dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.1(a) and RSS-GEN 6.7,

<u>20 dB Bandwidth</u> : For reporting purposes only.


Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

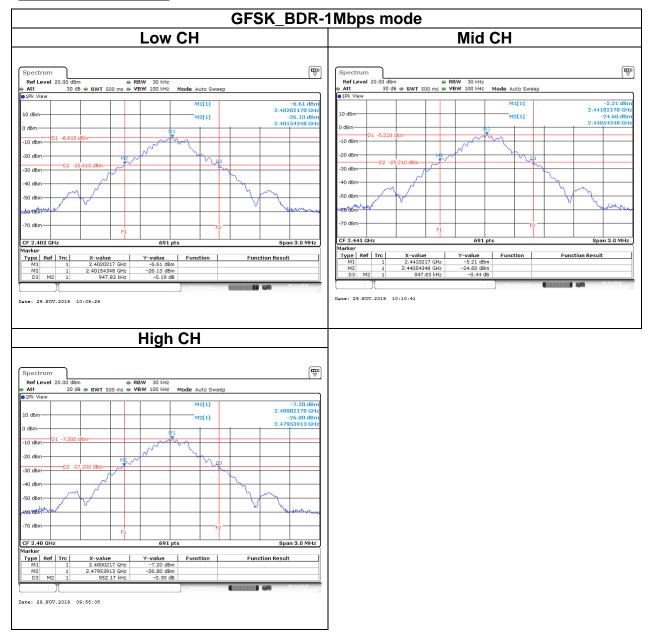
Test method Refer as Section 8.1 and ANSI C63.10: 2013 clause 7.8.7,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW =30kHz, VBW = 100kHz and Detector = Peak, to measurement 20dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.

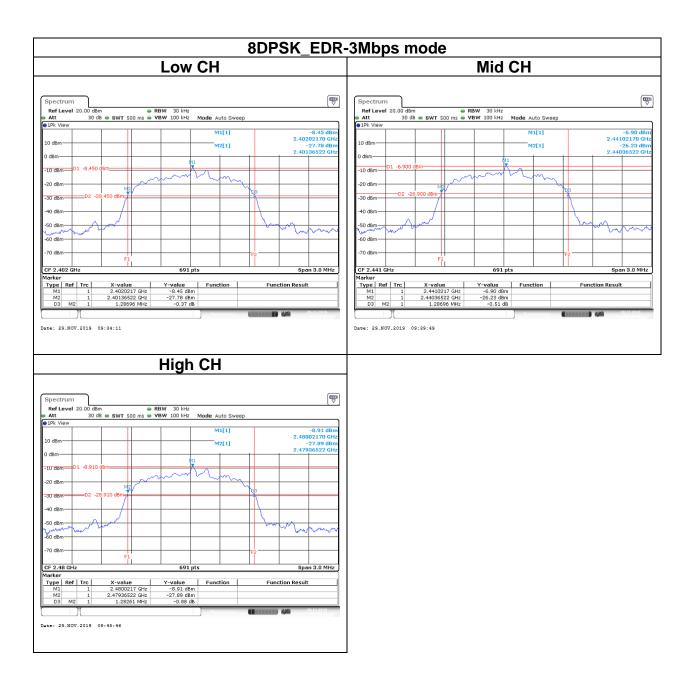
4.2.3 Test Setup

4.2.4 Test Result

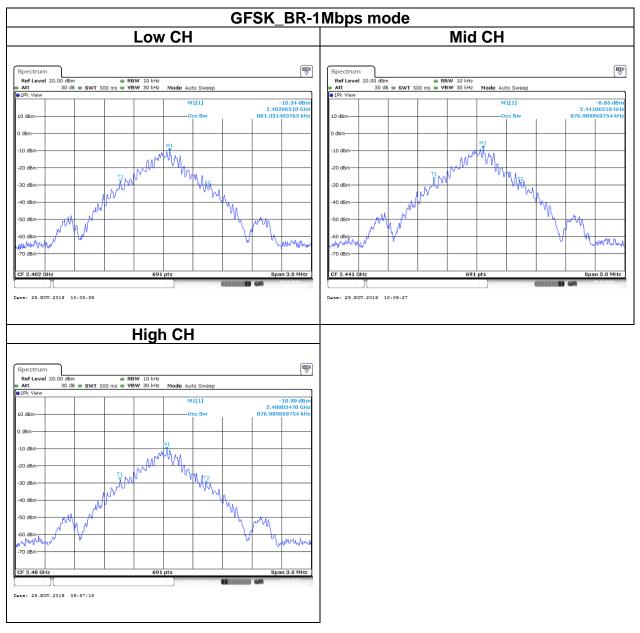
Test mode: GFSK_BDR-1Mbps mode / 2402-2480 MHz							
ChannelFrequency (MHz)OBW(99%) (MHz)20dB BW (MHz)							
Low	2402	0.8813	0.9478				
Mid	2441	0.8769	0.9478				
High	2480	0.8769	0.9521				


Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz							
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)				
Low	2402	1.1765	1.2869				
Mid	2441	1.1765	1.2869				
High	2480	1.1765	1.2826				

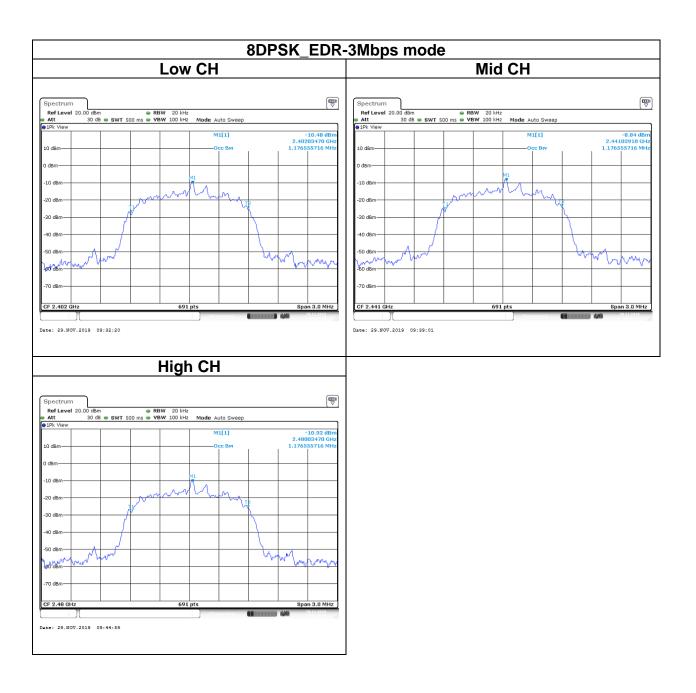
Page 19 / 63 Rev. 00


Test Data

20 dB Bandwidth



Page 20 / 63 Rev. 00



99% Bandwidth

Page 22 / 63 Rev. 00

Page 23 / 63 Rev. 00

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b)(1) and RSS-247 section 5.4(b)

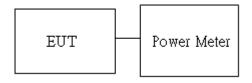
Peak output power :

FCC

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

IC

According to RSS-247 section 5.4(b), For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).


Antenna not exceed 6 dBi : 21dBm
 Antenna with DG greater than 6 dBi : 21dBm [Limit = 30 – (DG – 6)]

Average output power : For reporting purposes only.

4.3.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

BT										
Config.	СН	Freq. (MHz)	Power Setting	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)	IC EIRP Limit (dBm)	Antenna Gain (dBi)
GFSK	0	2402	Default	8.44	9.75	0.0070	0.0094	-		1.31
BR-1Mbps	39	2441	Default	9.69	11.00	0.0093	0.0126		36	
(DH5)	78	2480	Default	8.24	9.55	0.0067	0.0090	21		
8DPSK EDR- 3Mbps	0	2402	Default	8.40	9.71	0.0069	0.0094	21	30	1.31
	39	2441	Default	9.58	10.89	0.0091	0.0123			
(3DH5)	78	2480	Default	8.05	9.36	0.0064	0.0086			

Average output power :

BT				
Config.	СН	Freq. (MHz)	AV Power (dBm)	
GFSK BR-1Mbps (DH5)	0	2402	8.30	
	39	2441	9.57	
	78	2480	8.12	
8DPSK EDR- 3Mbps (3DH5)	0	2402	6.31	
	39	2441	7.46	
	78	2480	6.10	

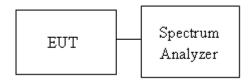
Page 24 / 63 Rev. 00

Page 25 / 63 Rev. 00

4.4 FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(b)


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit	> two-thirds of the 20 dB bandwidth

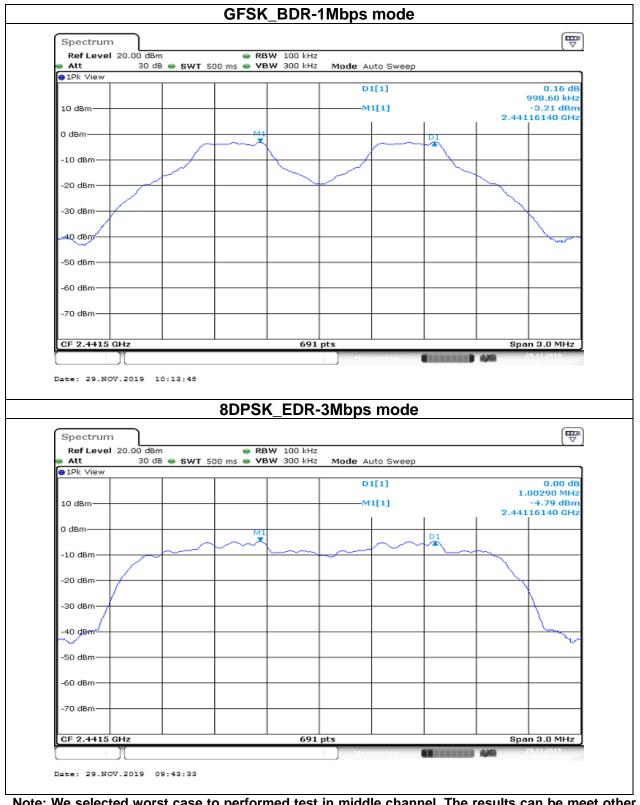
4.4.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

4.4.3 Test Setup

4.4.4 Test Result

Test mode: GFSK_BDR-1Mbps mode / 2402-2480 MHz						
Channel Frequency (MHz)		Channel Separation (MHz) Channel Separation Limits (MHz)		Result		
Low	2402	0.9986	0.632	PASS		
Mid	2441	0.9986	0.632	PASS		
High	2480	0.9986	0.635	PASS		


Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz						
Channel Frequency (MHz)		Channel Separation (MHz)	Channel Separation Limits (MHz)	Result		
Low	2402	1.0029	0.858	PASS		
Mid	2441	1.0029	0.858	PASS		
High	2480	1.0029	0.855	PASS		

Page 26 / 63 Rev. 00

Test Data

Page 27 / 63 Rev. 00

Note: We selected worst case to performed test in middle channel, The results can be meet other channel.

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page 28 / 63 Rev. 00

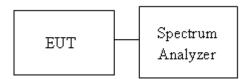
4.5 NUMBER OF HOPPING

4.5.1 Test Limit

According to §15.247(a)(1)(iii) and RSS-247 section 5.1(d)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.5.2 Test Procedure

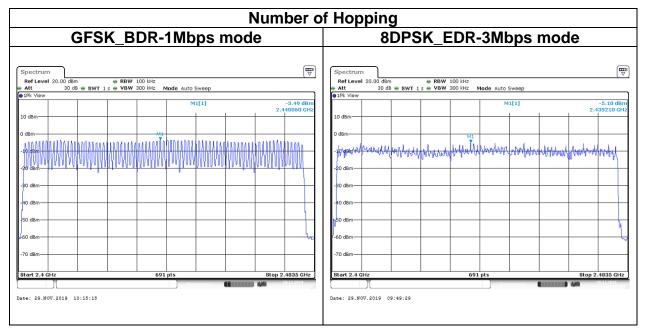

Test method Refer as ANSI C63.10: 2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.

3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW - 100KHz VBW - 300KHz

- =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup


4.5.4 Test Result

Number of Hopping					
Mode Frequency (MHz)		Hopping Channel Number	Hopping Channel Number Limits	Result	
DH5	2402-2480	79			
3-DH5	2402-2480	79	15	Pass	

Page 29 / 63 Rev. 00

Test Data

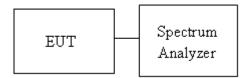
Page 30 / 63 Rev. 00

4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5

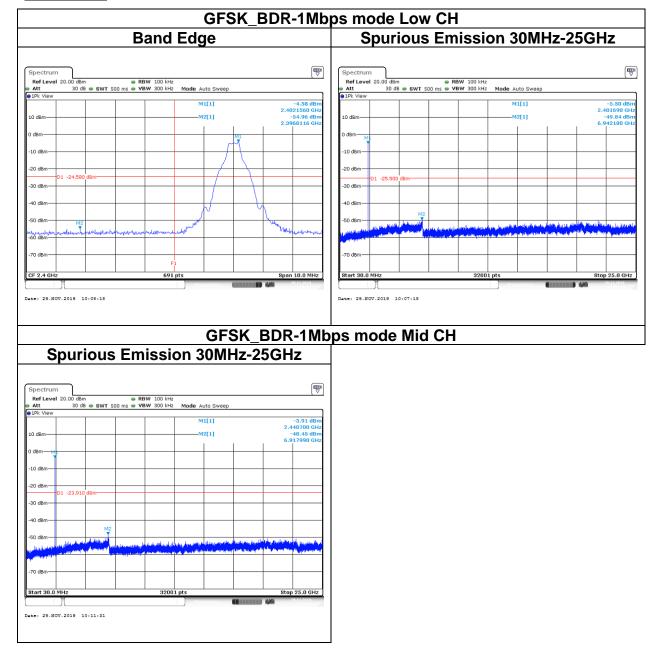
Limit	-20 dBc
-------	---------


4.6.2 Test Procedure

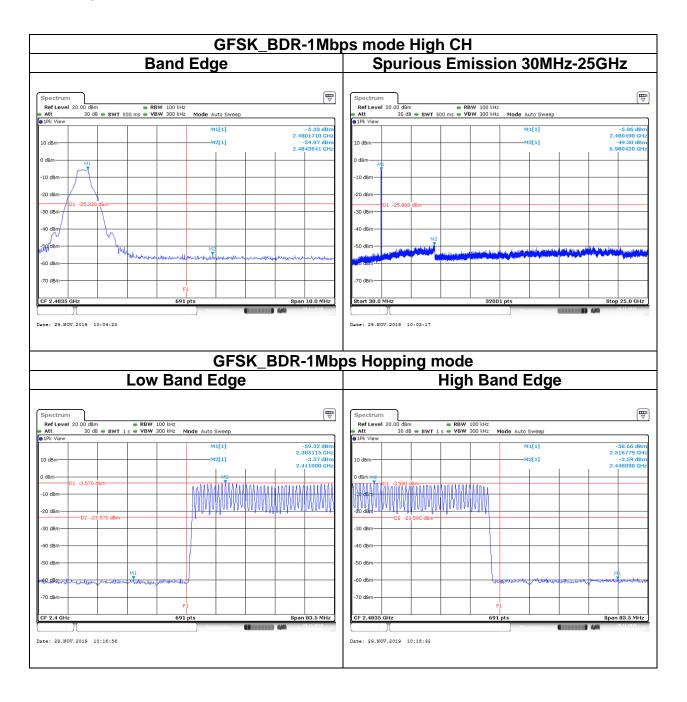
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

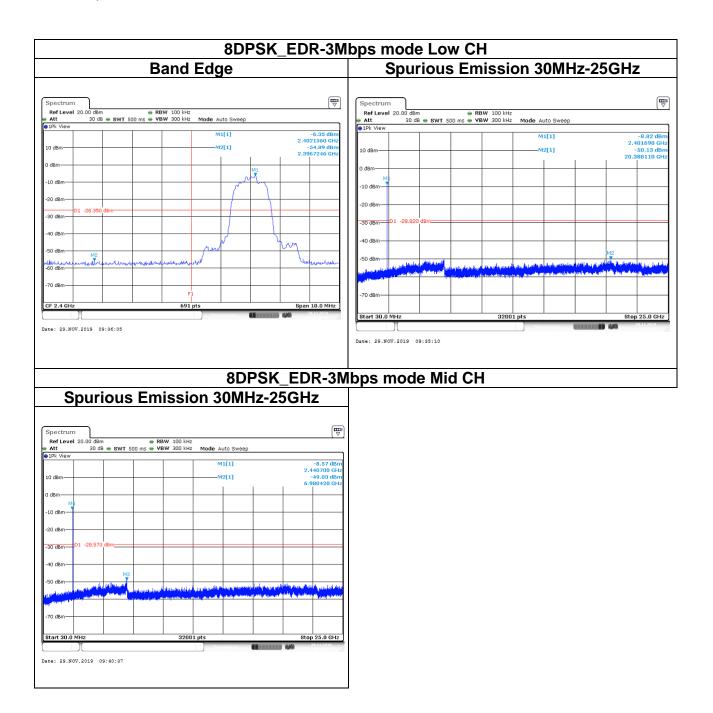
3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with both hopping "ON" and "OFF" modes ".


4.6.3 Test Setup

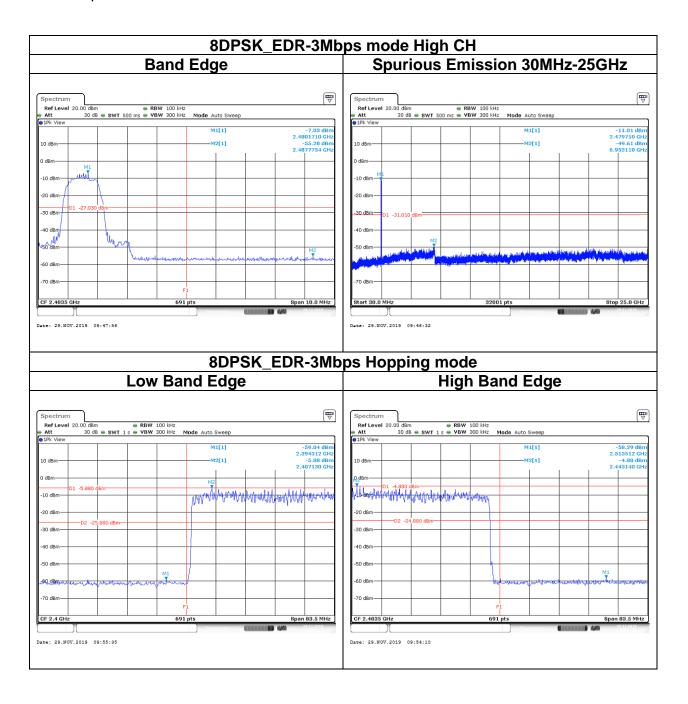
4.6.4 Test Result


Test Data

Page 31 / 63 Rev. 00



Page 32 / 63 Rev. 00



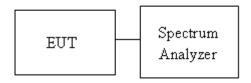
Page 33 / 63 Rev. 00

Page 34 / 63 Rev. 00

Page 35 / 63 Rev. 00

4.7 TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit

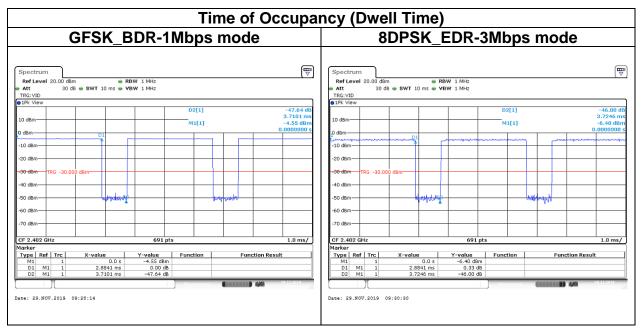

According to §15.247(a)(1)(iii)and RSS-247 section 5.1(d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test Procedure

- 1. EUT RF output port connected to the SA by RF cable.
- 2. Set center frequency of spectrum analyzer = operating frequency.
- 3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms

4.7.3 Test Setup


4.7.4 Test Result

Time of Occupancy (Dwell Time)							
Mode	Frequency (MHz)	Pulse Time Per Hopping (ms)	Minimum Number of Hopping Freq.	Number of pulse in	Dwell Time IN	Dwell Time	Result
				(0.4 * N sec)	(0.4 * N sec)	Limits (s)	
BR-1Mbps	2441	2.8841	79	106.67	0.3076	0.4	Pass
EDR-3Mbps	2441	2.8841	79	106.67	0.3076	0.4	Pass
Non-AFH: 3DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time							
slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 * 0.4 *79 = 106.6							

Page 36 / 63 Rev. 00

Test Data

Page 37 / 63 Rev. 00

4.8 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)					
(MHz)	Transmitters	Receivers				
30-88	100 (3 nW)	100 (3 nW)				
88-216	150 (6.8 nW)	150 (6.8 nW)				
216-960	200 (12 nW)	200 (12 nW)				
Above 960	500 (75 nW)	500 (75 nW)				

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page 38 / 63 Rev. 00

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

<u>RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> (Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Note: Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6.

<u>RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies</u> <u>Below 30 MHz (Transmit)</u>

Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement Distance (m)
9-490 kHz ^{Note}	6.37/F (F in kHz)	300
490-1,705 kHz	63.7/F (F in kHz)	30
1.705-30 MHz	0.08	30

Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector..

Page 39 / 63 Rev. 00

Report No.: T191105W01-RP1

4.8.2 Test Procedure

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

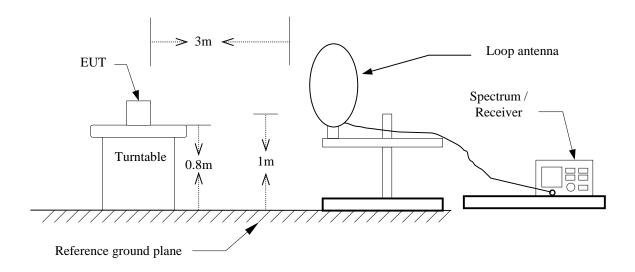
3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

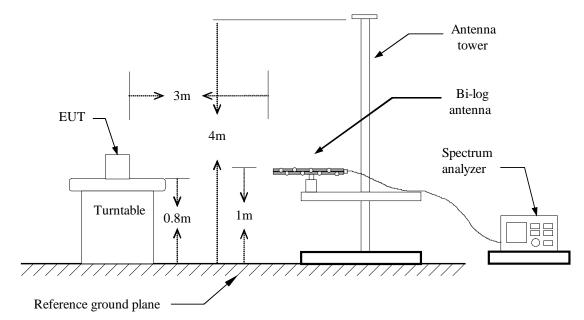
4. For harmonic, the worst case of output power was BDR-1Mbps. Therefore only BDR-1Mbps record in the report.

- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle \geq 98%, VBW=10Hz.

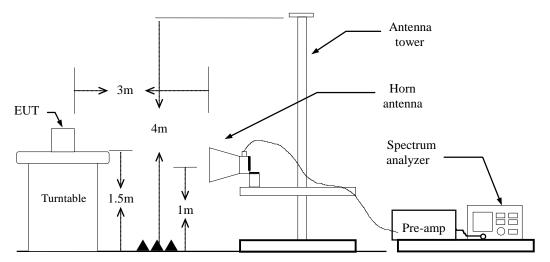
If Duty Cycle < 98%, VBW≥1/T.


- Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 2. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).


Page 40 / 63 Rev. 00

4.8.3 Test Setup

<u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1GHz</u>

Page 41 / 63 Rev. 00

Above 1 GHz

Page 42 / 63 Rev. 00

4.8.4 Test Result

Band Edge Test Data

Test Mo	de:		_BR-1Mbp .ow CH	DS	Temp/Hu	m	18.6(°C	C)/ 59%RH
Test Ite	em	Band Edge			Test Dat	е	Decem	ber 9, 201
Polariz	ze	Vertical			Test Engin	eer		/ Chang
Detect	or	Peal	<pre></pre>)				
130 Level (dBi	ıV/m)							
120								
100			 					
80								
60							2	
40								
20								
0 <mark></mark> 2310	2330		2350. Fi	requency (MH	2370. Iz)		2390.	2410
Freq.	Detector	Sp	ectrum	Factor	Actua	al	Limit	Margin
	Mode	Read	ling Level		FS		@3m	
MHz	PK/QP/A	/	dBµV	dB	dBµV/	m	dBµV/m	dB
2390.00	Average		38.03	-3.38	34.65	5	54.00	-19.35
2390.00	Peak		50.82	-3.38	47.44	1	74.00	-26.56

Test Mo		GFSK_BR-1Mbp Low CH	os	Temp/Hum		:)/ 59%RI
Test It		Band Edge		Test Date		per 9, 201
Polari	ze	Horizontal		est Engineer	Jerry	[,] Chang
Detec	tor	Peak / Average	;			
130 120	uV/m)					
100						
80						
60					2	
40						
20						
0 2310	2330.	2350. Fr	equency (MHz)	2370.	2390.	2410
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
MHz	Mode PK/QP/AV	Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/m	dB
2390.00	Average	38.04	-3.38	34.66	54.00	-19.34
2390.00	Peak	50.53	-3.38	47.15	74.00	-26.85

Page 44 / 63 Rev. 00

Test Mode:		GFSK_BR-1Mbps High CH		Temp/Hum	18.6(°C	18.6(°C)/ 59%RH	
Test It	tem	Band Edge		Test Date		oer 9, 201	
Polar	ize	Vertical		Test Engineer	Jerry	/ Chang	
Detec	ctor	Peak / Averag	e				
120 Level (dB 110	uV/m)						
90							
70							
50		2				1 1 1 1 1 1 1	
30							
10							
0 <mark></mark> 2475	2480.	2485. Fr	equency (MHz	2490.)	2495.	2500	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m	5	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	
2483.50	Average	37.02	-2.83	34.19	54.00	-19.81	
2483.50	Peak	49.07	-2.83	46.24	74.00	-27.76	

Page 45 / 63 Rev. 00

Test Mode:		GFSK_BR-1MI High CH	ops	Temp/Hum	18.6(°0	18.6(°C)/ 59%Rł	
Test It	em	Band Edge		Test Date	Decem	ber 9, 201	
Polari	ze	Horizontal		Test Enginee	r Jerr	y Chang	
Detec	tor	Peak / Averag	ge				
120	ıV/m)						
110							
90							
70							
50		24					
30							
10							
0 2475	2480.	2485. F	requency (M	2490. Hz)	2495.	2500	
Freq.	Detector	Spectrum	Facto	r Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	
2483.50	Average	39.79	-2.83		54.00	-17.04	
2483.50	Peak	53.53	-2.83		74.00	-23.30	
2483.68	Average	39.51	-2.83		54.00	-17.32	
2483.68	Peak	55.35	-2.83		74.00	-21.48	
		1 1		1	1	1	

Page 46 / 63 Rev. 00

Test Mode:		8DPSK_EDR-3Mbps Low CH		Temp/Hum	•	18.6(°C)/ 59%R	
Test It	em	Band Edge		Test Date		oer 9, 201	
Polar	ize	Vertical		Test Engineer	Jerry	/ Chang	
Detec	tor	Peak / Averag	je				
130	uV/m)						
120							
100							
80		· · · · · · · · · · · · · · · · · · ·					
60					2	1	
40							
20							
0							
0 ^L 2310	2330.	2350. Fr	equency (MHz)	2370.	2390.	2410	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	
2390.00	Average	39.68	-3.38	36.30	54.00	-17.70	
2390.00	Peak	57.02	-3.38	53.64	74.00	-20.36	

Page 47 / 63 Rev. 00

Test Mode:		8DPSK_EDR-3Mbps Low CH		Temp/Hum		18.6(°C)/ 59%RI	
Test I		Band Edge		Test Date		oer 9, 201	
Polar	ize	Horizontal		Test Engineer	Jerry	/ Chang	
Detec	ctor	Peak / Averag	e				
130 120 100 80 60	<u>uV/m)</u>						
40 20							
0 <mark>0</mark>	2330.	2350. Fr	requency (MHz)	2370.	2390.	2410	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	
2390.00	Average	37.92	-3.38	34.54	54.00	-19.46	
	_	54.00	-3.38	47.92	74.00	-26.08	
2390.00	Peak	51.30	-3.50	47.32	74.00	-20.00	

Page 48 / 63 Rev. 00

Test Mode:		8DPSK_EDR-3Mbps High CH		Temp/Hum		18.6(°C)/ 59%RF	
Test It		Band Edge		Test Date		oer 9, 201	
Polar	ize	Vertical		Test Engineer	Jerry	/ Chang	
Detec	ctor	Peak / Averag	e				
120 Level (dBi	uV/m)						
90							
70							
50		2					
30		1					
10							
0 <mark></mark> 2475	2480.	2485. Fr	equency (MHz	2490.)	2495.	2500	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m	5	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	
2483.50	Average	37.98	-2.83	35.15	54.00	-18.85	
2483.50	Peak	49.91	-2.83	47.08	74.00	-26.92	

Page 49 / 63 Rev. 00

Test Mode:		8DPSK_EDR-3Mbps High CH		Temp/Hum		18.6(°C)/ 59%RF	
Test I		Band Edge		Test Date		oer 9, 201	
Polar	ize	Horizontal		Test Engineer	Jerry	/ Chang	
Deteo	ctor	Peak / Averag	ge				
120 Level (dB	uV/m)						
110							
90							
70							
50		2					
30		1					
10			 			1 1 1 1 1 1 1	
0 <mark></mark> 2475	2480.	2485. F	requency (MHz	2490.)	2495.	2500	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB	
2483.50	Average	38.74	-2.83	35.91	54.00	-18.09	
2483.50	Peak	51.68	-2.83	48.85	74.00	-25.15	

Page 50 / 63 Rev. 00

Below 1G Test Data

Test Mode Test Item		BT Mode 30MHz-1G		Temp/Hum Test Date	18.6(°C)/ 59%RH	
Polarize		Vertical		est Engineer	December 9, 201 Jerry Chang	
Detector		Peak	' '		Joing	Onang
100 Level (dBuV/m) 90 80 70 60 50 40 30 20 10	23		4	55		6
0 <mark></mark>		418.		612.	806.	1000
50	224.	410.	Frequency (MHz)	012.	000.	1000
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Frequency (MHz) Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	
Frequency	Reading	Correct Factor	Result	Limit	Margin	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
Frequency (MHz) 66.86	Reading (dBuV) 46.27	Correct Factor (dB/m) -15.16	Result (dBuV/m) 31.11	Limit (dBuV/m) 40.00	Margin (dB) -8.89	Remark Peak
Frequency (MHz) 66.86 199.75	Reading (dBuV) 46.27 33.46	Correct Factor (dB/m) -15.16 -9.29	Result (dBuV/m) 31.11 24.17	Limit (dBuV/m) 40.00 43.50	Margin (dB) -8.89 -19.33	Remark Peak Peak
Frequency (MHz) 66.86 199.75 209.45	Reading (dBuV) 46.27 33.46 35.48	Correct Factor (dB/m) -15.16 -9.29 -11.57	Result (dBuV/m) 31.11 24.17 23.91	Limit (dBuV/m) 40.00 43.50 43.50	Margin (dB) -8.89 -19.33 -19.59	Remark Peak Peak Peak

Page 51 / 63 Rev. 00

Test Mode	:	BT Mode	;	Temp/Hum	18.6(°C	C)/ 59%Rł	
Test Item		30MHz-1G	Hz	Test Date	Decem	December 9, 20 ²	
Polarize		Horizonta	al	Test Engineer		/ Chang	
Detector		Peak					
100 Level (dBuV/m))					;1	
90							
80							
70					1 1 1 1		
60					1 		
50					 		
40	「 					· · · · · · · · · · · · · · · · · · ·	
30 12						56	
20		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	 		
10					 		
0 <mark></mark>	224.	418.		612.	806.	1000	
			Frequency (MHz)			
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
51.34	44.73	-15.57	29.16	40.00	-10.84	Peak	
66.86	44.85	-15.16	29.69	40.00	-10.31	Peak	
173.56	40.70	-10.99	29.71	43.50	-13.79	Peak	
209.45	40.41	-11.57	28.84	43.50	-14.66	Peak	
203.45		0.00	30.24	46.00	-15.76	Peak	
922.40	26.31	3.93	30.24	10.00		1 Out	

Page 52 / 63 Rev. 00

Above 1G Test Data

Test Mode	e:	FSK_BR-1I Low CH		Temp/Hum	18.6(°C)/ 59%RH	
Test Item	1	Harmoni	C	Test Date	December 9, 201	
Polarize		Vertical	Te	est Engineer	Jerry	⁷ Chang
Detector	i i i i i i i i i i i i i i i i i i i	Peak				
120 Level (dBuV/m)					
110	 	 				
90		, , , , , , , , , , , , , , , , , , ,				
70						
50	1					
30		 	 			
10						
0 <mark></mark>	6100.	11200		5300.	21400.	26500
			Frequency (MHz)			
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.00	38.14	2.84	40.98	74.00	-33.02	Peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page 53 / 63 Rev. 00

: G	Low CH	-		18.6(°C)/ 59%R	
			Test Date		oer 9, 201
		al To	est Engineer	Jerry	Chang
	Peak				
1					
	· · · · · · · · · · · · · · · · · · ·				
6100.	11200.	. 1 Frequency (MHz)	6300.	21400.	26500
Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
38.05	2.84	40.89	74.00	-33.11	Peak
		Low CH Harmonic Horizonta Peak	Low CH Harmonic Horizontal Peak 1 6100. 11200. 6100. 11200. 6100. 11200. 6100. 1200.	Low CH Temp/Hum Harmonic Test Date Horizontal Test Engineer Peak Image: stress of the s	Low CH Temp/Hum 18.6 (C Harmonic Test Date Decemb Horizontal Test Engineer Jerry Peak Image: strain stra

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page 54 / 63 Rev. 00

	Mid CH			18.6(°C)/ 59%RI	
					er 9, 201
		Te	est Engineer	Jerry	Chang
	Peak				
			I I I I I I I I I I I I I I I I I I I		
1					
6100.	11200.	16 Frequency (MHz)	300.	21400.	26500
Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
37.08	3.03	40.11	74.00	-33.89	Peak
		Mid CH Harmonio Vertical Peak	Init Critical Television Understand Television Television Television Television	Mid CH Temp/Hum Harmonic Test Date Vertical Test Engineer Peak Peak	Mid CH Temp/Hum To.0(C Harmonic Test Date Decemb Vertical Test Engineer Jerry Peak Image: strain

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page 55 / 63 Rev. 00

Test Mode	e: C	FSK_BR-1I Mid CH		Temp/Hum	18.6(°C)/ 59%RF	
Test Item		Harmoni		Test Date		oer 9, 201
Polarize		Horizonta	al 1	est Engineer	Jerry	Chang
Detector		Peak				
120						
110						
90						
70						
50	1					
30						
10						
0	6100.	11200	Frequency (MHz)	16300.	21400.	26500
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4882.00	37.34	3.03	40.37	74.00	-33.63	Peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page 56 / 63 Rev. 00

Test Mode	: G	FSK_BR-1N High CH		Temp/Hum	18.6(°C)/ 59%RH	
Test Item		Harmonio	C I	Test Date	Decemb	oer 9, 201
Polarize		Vertical	Т	est Engineer	Jerry	^r Chang
Detector		Peak				
120						
110						
90						
70						
50	1					
30						
10						
0 <mark></mark>	6100.	11200	. 1 Frequency (MHz)	6300.	21400.	26500
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4960.00	37.35	3.85	41.20	74.00	-32.80	Peak
N/A						
		+			+	

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page 57 / 63 Rev. 00

Test Mode	;; G	FSK_BR-1N High CH		Temp/H	um	18.6(°C)/ 59%RH	
Test Item		Harmonio		Test Date		Decemb	per 9, 201
Polarize		Horizonta	ıl	Test Engineer			Chang
Detector		Peak					
120 Level (dBuV/m) 110 90 70 50	1						
30							
0	6100.	11200.		16300.		21400.	26500
							20000
			Frequency (N	IHz)			
	Reading (dBuV)	Correct Factor (dB/m)	Resul (dBuV/t	t Li	mit ıV/m)	Margin (dB)	Remark
Frequency		Factor	Resul	t Li n) (dBu			Remark Peak
Frequency (MHz)	(dBuV)	Factor (dB/m)	Resul (dBuV/i	t Li n) (dBu	ıV/m)	(dB)	
Frequency (MHz) 4960.00	(dBuV)	Factor (dB/m)	Resul (dBuV/i	t Li n) (dBu	ıV/m)	(dB)	

fundamental frequency.

Page 58 / 63 Rev. 00

Test Mode	7	PSK_EDR-3 Low CH		Temp/Hum	18.6(°C)/ 59%RI	
Test Item		Harmonio		Test Date		oer 9, 201
Polarize		Vertical		Test Engineer	Jerry	Chang
Detector		Peak				
120 Level (dBuV/m)						
110						
90						
70						
50	1					
30						
10			 			
0 <mark></mark>	6100.	11200		16300.	21400.	26500
1000	0100.	11200.	Frequency (MHz)		21400.	20300
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.00	37.87	2.84	40.71	74.00	-33.29	Peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page 59 / 63 Rev. 00

Test Mode	8DI	PSK_EDR-3 Low CH		Temp/Hum	18.6(°C)/ 59%RH	
Test Item		Harmonio	2	Test Date	December 9, 201	
Polarize		Horizonta	ιl Τε	est Engineer	Jerry	^r Chang
Detector		Peak				
120 Level (dBuV/m)						
110						
90						
90						
70						
50	1					
30						
10						
0 <mark></mark>	6100.	11200.	. 1(Frequency (MHz)	5300.	21400.	26500
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804.00	37.77	2.84	40.61	74.00	-33.39	Peak
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page 60 / 63 Rev. 00

Test Mode	e 8DF	PSK_EDR-3 Mid CH		Temp/Hum	18.6(°C)/ 59%RH	
Test Item		Harmonic	;	Test Date	Decemb	oer 9, 201
Polarize		Vertical		Test Engineer	Jerry	[,] Chang
Detector		Peak				
120						
110						
90						
70						
50	1					
30						
10						
0 ^L 1000	6100.	11200.	Frequency (MHz	16300.)	21400.	26500
Frequency	Reading	Correct	Result	Limit	Margin	
(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)		(dB)	Remark
4882.00	36.97	3.03	40.00	74.00	-34.00	Peak
N/A						

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page 61 / 63 Rev. 00

Test Mode	8DI	PSK_EDR-3 Mid CH		Temp/Hum		18.6(°C)/ 59%RH	
Test Item		Harmonic	;	Test Date	Decemb	oer 9, 201	
Polarize		Horizonta		Test Engine	er Jerry	Chang	
Detector		Peak					
120							
110							
90							
70							
50	1						
30							
10							
0 <mark></mark>	6100.	11200.	Frequency (MH	16300. z)	21400.	26500	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m	Limit) (dBuV/r		Remark	
4882.00	37.69	3.03	40.72	74.00	-33.28	Peak	
N/A							

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page 62 / 63 Rev. 00

Test Mode)	PSK_EDR-3 High CH	-	Temp/Hum	18.6(°C)/ 59%RF	
Test Item		Harmonic	;	Test Date	December 9, 201	
Polarize		Vertical	Te	est Engineer	Jerry Chang	
Detector		Peak				
120	•					
110						
90						
70						
50	1					
30						
10						
0 ^L 1000	6100.	11200.	11200. 16300. Frequency (MHz)		21400.	
	Deading	Correct	Result	Limit	Maraia	
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	Margin (dB)	Remark
4960.00	37.26	3.85	41.11	74.00	-32.89	Peak
N/A						
					1	

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

Page 63 / 63 Rev. 00

Test Mode	;	PSK_EDR-3 High CH		Temp/Hum	18.6(°C)/ 59%RF	
Test Item		Harmonic	;	Test Date	December 9, 201	
Polarize		Horizonta	Т 1	est Engineer	Jerry Chang	
Detector		Peak				
120	•					
110						
90						
70						
50	1					
30						
10						
0 ¹ 1000	6100.	11200. 16300. Frequency (MHz)		16300.	21400.	
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
4960.00	38.89	3.85	42.74	74.00	-31.26	Peak
N/A						

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

--End of Test Report--