

Report No.: FR722135-10A

FCC RADIO TEST REPORT

FCC ID : P4Q-N564A

Equipment : Tablet

Brand Name : MiTAC, Mio, NAVMAN, MAGELLAN

Model Name: N564A

Applicant : MiTAC Digital Technology Corporation

No.200, Wen Hua 2nd Rd., Guishan Dist., Taoyuan City 333,

Taiwan (R.O.C.)

Manufacturer: MITAC Computer (Kunshan) Co,. Ltd.

No. 269, 2nd Avenue, District A, Conprehensive Free Trade

Zone, 300 Kunshan, China

Standard : FCC Part 15 Subpart C §15.247

The product was received on Apr. 11, 2018 and testing was started from Apr. 18, 2018 and completed on May 06, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Reviewed by: Jones Tsai

SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 20
FAX: 886-3-328-4978 Issued Date : May 31, 2018

Table of Contents

Report No. : FR722135-10A

His	tory o	of this test report	3
Su	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Output Power Measurement	10
	3.2	Radiated Band Edges and Spurious Emission Measurement	11
	3.3	AC Conducted Emission Measurement	15
	3.4	Antenna Requirements	17
4	List	of Measuring Equipment	18
5	Unce	ertainty of Evaluation	20
Ap	pendi	x A. Conducted Test Results	
Ap	pendi	x B. AC Conducted Emission Test Result	
Ap	pendi	x C. Radiated Spurious Emission	
Ap	pendi	x D. Radiated Spurious Emission Plots	
Ap	pendi	x E. Duty Cycle Plots	
An	pendi	x F. Setup Photographs	

History of this test report

Report No. : FR722135-10A

Report No.	Version	Description	Issued Date
FR722135-10A	01	Initial issue of report	May 21, 2018
FR722135-10A	02	Revise the report type to variant report	May 29, 2018
FR722135-10A	03	Add FCC ID of the referenced report in the remark of summary of test result	May 31, 2018

TEL: 886-3-327-3456 Page Number : 3 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

Summary of Test Result

Report No.: FR722135-10A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(1)	Number of Channels	Not Required	-
-	15.247(a)(1)	Hopping Channel Separation	Not Required	-
-	15.247(a)(1)	Dwell Time of Each Channel	Not Required	-
-	15.247(a)(1)	20dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.247(b)(1)	Peak Output Power	Pass	-
-	15.247(d)	Conducted Band Edges	Not Required	-
-	15.247(d)	Conducted Spurious Emission	Not Required	-
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 9.65 dB at 34.590 MHz
3.3	15.207	AC Conducted Emission	Pass	Under limit 11.32 dB at 0.566 MHz
3.4	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Remark:

- 1. Not required means after assessing, test items are not necessary to carry out.
- This is a variant report. All the test cases were performed on original report which can be referred to Sporton Report Number FR722135-07A (FCC ID: P4Q-N564B).

Reviewed by: Joseph Lin Report Producer: Polly Tsai

TEL: 886-3-327-3456 Page Number : 4 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n, NFC, and GNSS

Product Specification subjective to this standard				
Sample 1 EUT with SKU 1				
Sample 2	EUT with SKU 2			
Sample 3	EUT with SKU 3			
Integrated WLAN Module	Brand Name: Qualcomm			
Integrated WEAN Module	Model Name: WCN3660B			
	WLAN: PIFA Antenna			
Antonno Typo	Bluetooth: PIFA Antenna			
Antenna Type	GPS/GLONASS: PATCH Antenna			
	NFC: Loop Antenna			

Report No.: FR722135-10A

Remark: All test items were performed with Sample 3.

<Sample Information>

SKU	SKU 1	SKU 2	SKU3
Model name	N564B	N564B	N564A
WLAN	Support(2.4G + 5G)	Support(2.4G + 5G)	Support(2.4G + 5G)
WWAN	Support	Support	Not Support
RFID(13.56MHz)	Support	Not Support	Support
RAM	2G	2G	2G
Storage	16G	16G	16G
Camera	Support	Support	Support

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

1.3 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Report No.: FR722135-10A

Test Site	SPORTON INTERNATIONAL INC.				
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978				
Test Site No.	Sporton	Site No.			
Test Site NO.	TH05-HY	CO05-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.			
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.			
rest site NO.	03CH12-HY			

Note: The test site complies with ANSI C63.4 2014 requirement.

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

TEL: 886-3-327-3456 Page Number : 6 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978

Report Template No.: BU5-FR15CBT Version 2.1

Page Number : 7 of 20 Issued Date : May 31, 2018

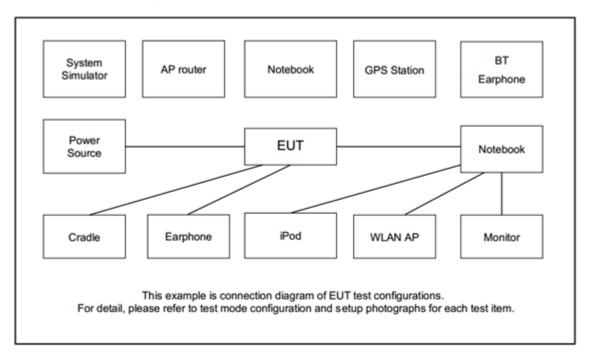
Report No. : FR722135-10A

Report Version : 03

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.

Report No.: FR722135-10A


b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases					
Radiated	Bluetooth EDR 3Mbps 8-DPSK				
Test Cases	Mode 1: CH00_2402 MHz				
AC	Mode 1: Bluetooth Link + WLAN (2.4GHz) Link + GLONASS Rx + Cradle 1 +				
Conducted	Earphone + USB Cable (Charging from AC Adapter) + USB Flash Drive				
Emission	(Link)				
Remark: For radiated test cases, the worst mode data rate 3Mbps was reported only since the					
high	highest RF output power in the preliminary tests.				

TEL: 886-3-327-3456 Page Number : 8 of 20
FAX: 886-3-328-4978 Issued Date : May 31, 2018

2.3 Connection Diagram of Test System

Report No.: FR722135-10A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
5.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0m	N/A
6.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
7.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A
8.	USB Flash Drive	Kingston	DataTraveler	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with base station to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-3456 Page Number : 9 of 20
FAX: 886-3-328-4978 Issued Date : May 31, 2018

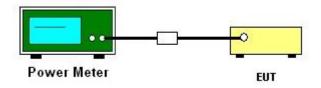
3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

Report No.: FR722135-10A


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 1. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power with cable loss and record the results in the test report.
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 10 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR722135-10A

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 11 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

3.2.3 Test Procedures

1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR722135-10A

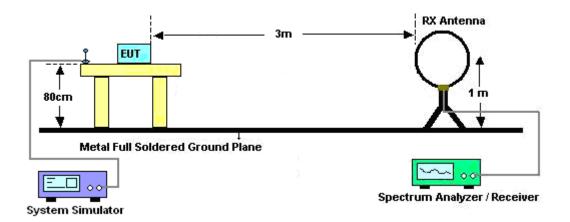
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

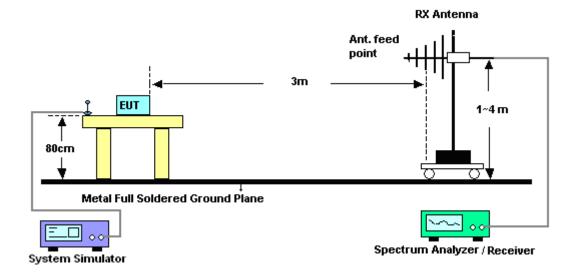
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

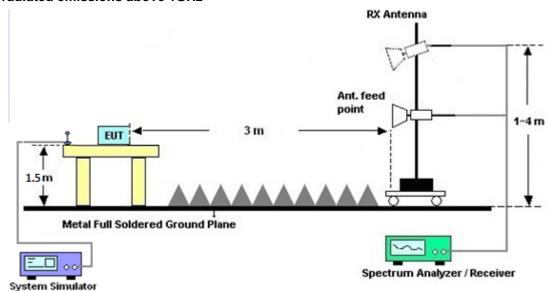

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.73dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-3456 Page Number : 12 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018


3.2.4 Test Setup

For radiated emissions below 30MHz


Report No.: FR722135-10A

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 13 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

For radiated emissions above 1GHz

Report No.: FR722135-10A

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.2.7 Duty Cycle

Please refer to Appendix E.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 14 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

3.3 AC Conducted Emission Measurement

3.3.1 Limit of AC Conducted Emission

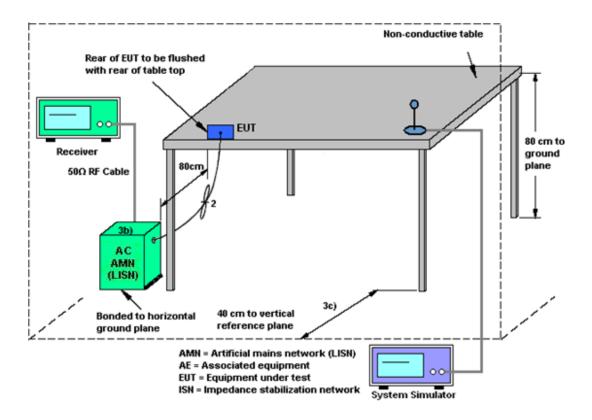
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR722135-10A

Eroquency of emission (MUz)	Conducted	limit (dΒμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.3.2 Measuring Instruments


See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number : 15 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

3.3.4 Test Setup

Report No.: FR722135-10A

3.3.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 16 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

3.4 Antenna Requirements

3.4.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR722135-10A

3.4.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.4.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 17 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

4 List of Measuring Equipment

					Calibration			
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	N/A	Dec. 20, 2017	Apr. 18, 2018	Dec. 19, 2018	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	50MHz~18GHz	Dec. 20, 2017	Apr. 18, 2018	Dec. 19, 2018	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz~40GHz	Jun. 20, 2017	Apr. 18, 2018	Jun. 19, 2018	Conducted (TH05-HY)
BT Base Station (Measure)	Rohde & Schwarz	СВТ	101136	BT 3.0	Sep. 20, 2017	Apr. 18, 2018	Sep. 19, 2018	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Apr. 19, 2018	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	3.6GHz	Dec. 08, 2017	Apr. 19, 2018	Dec. 07, 2018	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 30, 2017	Apr. 19, 2018	Nov. 29, 2018	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 08, 2017	Apr. 19, 2018	Dec. 07, 2018	Conduction (CO05-HY)
Test Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Apr. 19, 2018	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 03, 2018	Apr. 19, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 03, 2018	Apr. 19, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Nov. 23, 2017	May 02, 2018~ May 06, 2018	Nov. 22, 2018	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&N-6-0 6	35414&AT- N0602	30MHz~1GHz	Oct. 14, 2017	May 02, 2018~ May 06, 2018	Oct. 13, 2018	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-132 8	1GHz ~ 18GHz	Oct. 20, 2017	May 02, 2018~ May 06, 2018	Oct. 19, 2018	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz ~ 40GHz	Nov. 27, 2017	May 02, 2018~ May 06, 2018	Nov. 26, 2018	Radiation (03CH12-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Jan. 19, 2018	May 02, 2018~ May 06, 2018	Jan. 18, 2020	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY532701 48	1GHz~26.5GHz	Jan. 15, 2018	May 02, 2018~ May 06, 2018	Jan. 14, 2019	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03K	171000180 0054002	1GHz~18GHz	Apr. 17, 2018	May 02, 2018~ May 06, 2018	Apr. 16, 2019	Radiation (03CH12-HY)
Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 18, 2017	May 02, 2018~ May 06, 2018	Jul. 17, 2018	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 25, 2017	May 02, 2018~ May 06, 2018	Dec. 24, 2018	Radiation (03CH12-HY)
Test Software	Audix	E3 6.2009-8-24	RK-00098 9	N/A	N/A	May 02, 2018~ May 06, 2018	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	May 02, 2018~ May 06, 2018	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	May 02, 2018~ May 06, 2018	N/A	Radiation (03CH12-HY)

Report No. : FR722135-10A

TEL: 886-3-327-3456 Page Number : 18 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Filter	Wainwright	WLKS1200-1 2SS	SN2	1.2G Low Pass	Mar. 23, 2018	May 02, 2018~ May 06, 2018	Mar. 22, 2019	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN2	3 GHz Highpass	Mar. 23, 2018	May 02, 2018~ May 06, 2018	Mar. 22, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30M-18G	Mar. 14, 2018	May 02, 2018~ May 06, 2018	Mar. 13, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15539/ 4	30M-18G	Mar. 14, 2018	May 02, 2018~ May 06, 2018	Mar. 13, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY36979/ 4	30M-18G	Mar. 14, 2018	May 02, 2018~ May 06, 2018	Mar. 13, 2019	Radiation (03CH12-HY)

Report No. : FR722135-10A

TEL: 886-3-327-3456 Page Number : 19 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7
of 95% (U = 2Uc(y))	2.1

Report No.: FR722135-10A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1
of 95% (U = 2Uc(y))	3.1

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	3.2

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	47
of 95% (U = 2Uc(y))	4.7

TEL: 886-3-327-3456 Page Number : 20 of 20 FAX: 886-3-328-4978 Issued Date : May 31, 2018

Report Number : FR722135-10A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Eason Huang	Temperature:	21~25	°C
Test Date:	2018/4/18	Relative Humidity:	51~54	%

TEST RESULTS DATA

Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	6.90	20.97	Pass
DH1	39	1	6.65	20.97	Pass
	78	1	6.04	20.97	Pass
	0	1	7.00	20.97	Pass
2DH1	39	1	6.73	20.97	Pass
	78	1	6.08	20.97	Pass
	0	1	7.25	20.97	Pass
3DH1	39	1	7.03	20.97	Pass
	78	1	6.43	20.97	Pass

TEST RESULTS DATA

Average Power Table

(Rep	orting	Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	6.86	5.16
DH1	39	1	6.34	1.83
	78	1	5.78	1.15
	0	1	4.41	5.12
2DH1	39	1	4.32	1.83
	78	1	3.60	1.13
	0	1	4.42	5.12
3DH1	39	1	4.24	1.85
	78	1	3.63	1.13

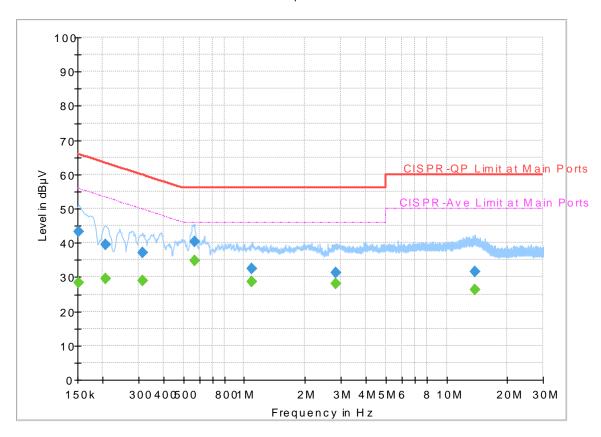
Appendix B. AC Conducted Emission Test Results

Toot Engineer		Temperature :	23~24 ℃
Test Engineer :	Shareer fu	Relative Humidity:	58~62%

Report No. : FR722135-10A

TEL: 886-3-327-3456 Page Number : B1 of B1

EUT Information

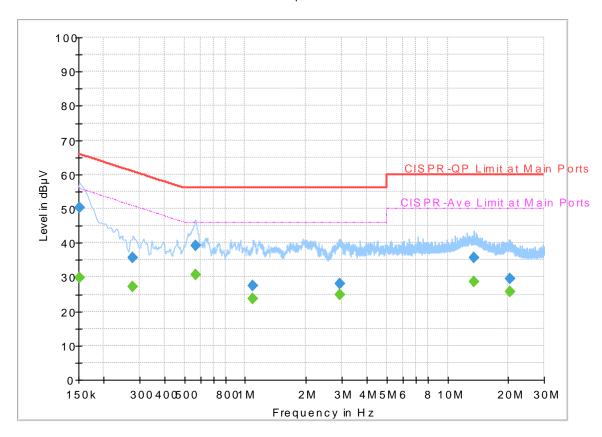

 Report NO :
 722135-10

 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

Full Spectrum


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.152250		28.23	55.88	27.65	L1	OFF	19.5
0.152250	43.23	-	65.88	22.65	L1	OFF	19.5
0.206250		29.49	53.36	23.87	L1	OFF	19.5
0.206250	39.49	-	63.36	23.87	L1	OFF	19.5
0.314250		28.90	49.86	20.96	L1	OFF	19.5
0.314250	37.01		59.86	22.85	L1	OFF	19.5
0.566250		34.68	46.00	11.32	L1	OFF	19.5
0.566250	40.28		56.00	15.72	L1	OFF	19.5
1.092750		28.55	46.00	17.45	L1	OFF	19.5
1.092750	32.60		56.00	23.40	L1	OFF	19.5
2.847750		28.00	46.00	18.00	L1	OFF	19.6
2.847750	31.18		56.00	24.82	L1	OFF	19.6
13.857000		26.27	50.00	23.73	L1	OFF	19.7
13.857000	31.46		60.00	28.54	L1	OFF	19.7

EUT Information

Report NO: 722135-10
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBµV)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		29.83	55.88	26.05	N	OFF	19.5
0.152250	50.32		65.88	15.56	N	OFF	19.5
0.278250		27.18	50.87	23.69	N	OFF	19.5
0.278250	35.56		60.87	25.31	N	OFF	19.5
0.566250		30.83	46.00	15.17	N	OFF	19.5
0.566250	39.08		56.00	16.92	N	OFF	19.5
1.095000		23.71	46.00	22.29	N	OFF	19.5
1.095000	27.42		56.00	28.58	N	OFF	19.5
2.935500		24.80	46.00	21.20	N	OFF	19.6
2.935500	28.04		56.00	27.96	N	OFF	19.6
13.560000		28.73	50.00	21.27	N	OFF	19.8
13.560000	35.65		60.00	24.35	N	OFF	19.8
20.316750		25.59	50.00	24.41	N	OFF	19.9
20.316750	29.66		60.00	30.34	N	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :		Temperature :	23~25°C
rest Engineer.	Karl Hou, Nick Yu, and Peter Liao	Relative Humidity :	56~61%

Report No.: FR722135-10A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

(dBµV/m) 43.78 19.05 95.02 70.29	Limit (dB) -30.22 -34.95	Line (dBµV/m) 74 54	Level (dBµV) 44.22 - 95.4	Factor (dB/m) 27.11 - 27.15	Loss (dB) 4.03	Factor (dB) 31.58 - 31.57	Pos (cm) 104 - 104	(deg) 120 -	Avg. (P/A) P	(H/V) H H
43.78 19.05 95.02	-30.22 -34.95	74 54	44.22	27.11	4.03	31.58	104	120	P	Н
19.05 95.02	-34.95	54	-	-	-	-	-	-	Α	Н
95.02	-	-		- 27.15						
			95.4	27.15	4.04	31.57	104			
70.29	-					01.07	104	120	Р	Н
		-	-	-	-	-	-	-	Α	Н
										Н
										Н
49.16	-24.84	74	49.66	27.07	4.01	31.58	221	87	Р	V
24.43	-29.57	54	-	-	-	-	-	-	Α	V
96.09	-	-	96.47	27.15	4.04	31.57	221	87	Р	V
71.36	-	-	-	-	-	-	-	-	Α	V
										V
										V
	24.43 96.09 71.36	24.43 -29.57 96.09 -	24.43 -29.57 54 96.09 71.36	24.43 -29.57 54 - 96.09 - - 96.47 71.36 - - -	24.43 -29.57 54 - - 96.09 - - 96.47 27.15 71.36 - - - -	24.43 -29.57 54 - - 96.09 - - 96.47 27.15 4.04 71.36 - - - -	24.43 -29.57 54 - - - 96.09 - - 96.47 27.15 4.04 31.57 71.36 - - - - - -	24.43 -29.57 54 - - - - 96.09 - - 96.47 27.15 4.04 31.57 221 71.36 - - - - - -	24.43 -29.57 54 - - - - - 96.09 - - 96.47 27.15 4.04 31.57 221 87 71.36 - - - - - - -	24.43 -29.57 54 - - - - - A 96.09 - - 96.47 27.15 4.04 31.57 221 87 P 71.36 - - - - - - A

Remark

1. No other spurious found.

TEL: 886-3-327-3456 Page Number : C1 of C5

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ		4804	38.44	-35.56	74	57	31.32	6.7	56.58	100	0	Р	Н
		4804	13.71	-40.29	54	-	-	-	-	-	-	Α	Н
													Н
													Н
CH 00 2402MHz		4804	39.81	-34.19	74	58.37	31.32	6.7	56.58	100	0	Р	V
2402WITIZ		4804	15.08	-38.92	54	-	-	-	-	-	-	Α	V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against F	Peak and	Average lim	it line.							

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number

: C2 of C5

Report No. : FR722135-10A

Emission below 1GHz

Report No. : FR722135-10A

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/\
		30.27	25.56	-14.44	40	29.1	26.2	0.44	30.18	-	-	Р	Н
		212.79	25.3	-18.2	43.5	37.97	16.3	1.33	30.3	-	-	Р	Н
		284.88	25.48	-20.52	46	34.73	19.45	1.47	30.17	-	-	Р	Н
		491.8	32.42	-13.58	46	36.15	24.21	1.86	29.8	100	0	Р	Н
		832.7	31.36	-14.64	46	29.64	28.5	2.46	29.24	-	-	Р	Н
		977.6	33	-21	54	29.17	29.99	2.76	28.92	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													H
вт		34.59	30.35	-9.65	40	36.86	23.3	0.45	30.26	100	0	Р	H V
LF		93.72	24.95	-18.55	43.5	39.1	15.42	0.86	30.43	-	-	P	V
		257.61	23.8	-22.2	46	32.95	19.6	1.47	30.22	_	_	P	V
		503.7	29.74	-16.26	46	33.23	24.42	1.86	29.77	_	_	Р	V
		714.4	35.55	-10.45	46	35.86	26.92	2.26	29.49	-	_	Р	V
		968.5	33.71	-20.29	54	29.89	30.02	2.74	28.94	-	-	Р	V
													V
													V
													V
													V
													V
													V

TEL: 886-3-327-3456 Page Number : C3 of C5

Note symbol

Report No. : FR722135-10A

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C4 of C5

A calculation example for radiated spurious emission is shown as below:

Report No.: FR722135-10A

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

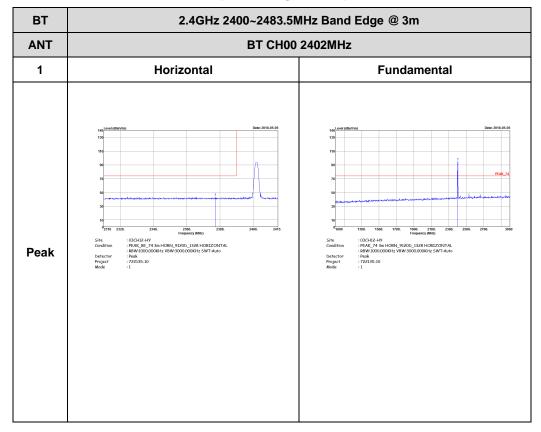
- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

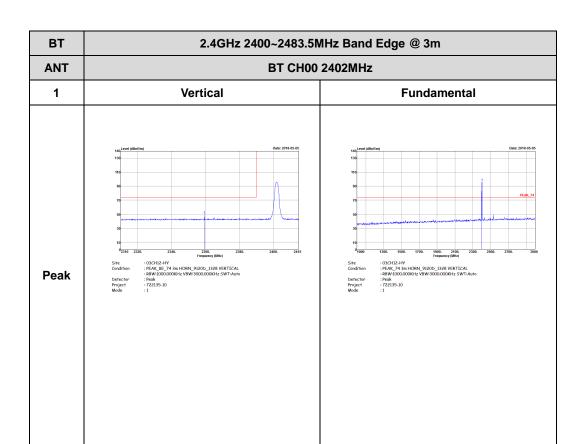
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : C5 of C5


Appendix D. Radiated Spurious Emission Plots

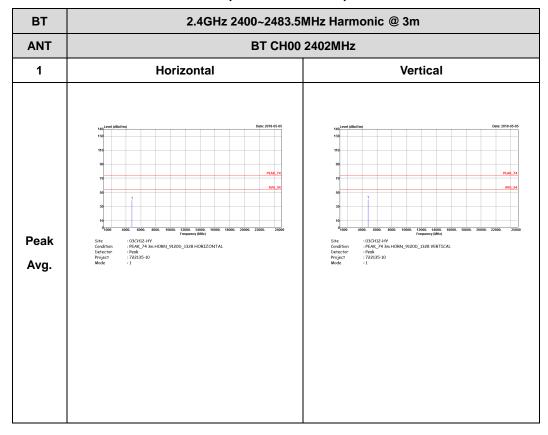
Test Engineer :	Karl Hou, Nick Yu, and Peter Liao	Temperature :	23~25°C
rest Engineer.		Relative Humidity :	56~61%


Report No. : FR722135-10A

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number: D1 of D4

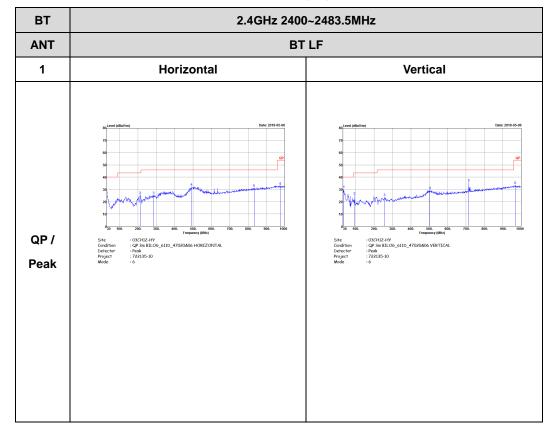

Report No. : FR722135-10A

TEL: 886-3-327-3456 Page Number : D2 of D4

2.4GHz 2400~2483.5MHz

Report No. : FR722135-10A

BT (Harmonic @ 3m)

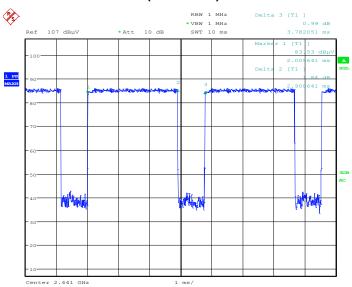


TEL: 886-3-327-3456 Page Number : D3 of D4

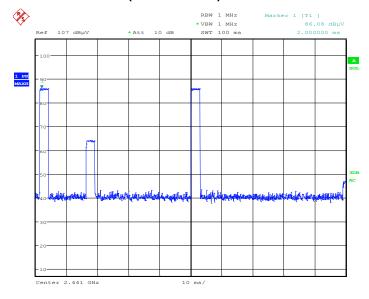
Emission below 1GHz

Report No. : FR722135-10A

2.4GHz BT (LF)


TEL: 886-3-327-3456 Page Number : D4 of D4

Report No.: FR722135-10A


Appendix E. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 39

Date: 5.MAY.2018 02:17:55

on time (Count Pulses) Plot on Channel 39

Date: 5.MAY.2018 02:18:59

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.90 / 100 = 5.8 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.73 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

TEL: 886-3-327-3456 Page Number : E1 of E2

Duty Cycle Correction Factor Consideration for AFH mode:

Report No.: FR722135-10A

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.90 ms x 20 channels = 58 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.90 ms x 2 = 5.8 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.8 \text{ ms/}100\text{ms}) = -24.73 \text{ dB}$

TEL: 886-3-327-3456 Page Number : E2 of E2