

Glo3al United Technology Services Co., Ltd.

Report No.: GTS201608000356E03

FCC Report

Applicant: Mitac International Corporation

Address of Applicant: Building B. No.209, Sec.1, Nan Gang Rd., Nan Gang Taipei,

11568 Taiwan

Equipment Under Test (EUT)

Product Name: GPS Portable Navigation Device

Model No.: N515

Trade Mark: Mitac, Magellan, Mio

FCC ID: P4Q-N515

Applicable standards: FCC CFR Title 47 Part 15 Subpart B:2015

Date of sample receipt: August 29, 2016

August 30-September 01, 2016 Date of Test:

September 02, 2016 Date of report issue:

PASS * Test Result:

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	September 02, 2016	Original

Prepared By:	Bolward.Pan	Date:	September 02, 2016
	Project Engineer		
Check By:	Andy wa	Date:	September 02, 2016
	Reviewer		

3 Contents

		F	⊃age
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
	4.1	Measurement Uncertainty	4
5	GEN	NERAL INFORMATION	5
6	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	CLIENT INFORMATION. GENERAL DESCRIPTION OF EUT. TEST MODE. TEST FACILITY. TEST LOCATION. DESCRIPTION OF SUPPORT UNITS. DEVIATION FROM STANDARDS. ABNORMALITIES FROM STANDARD CONDITIONS. OTHER INFORMATION REQUESTED BY THE CUSTOMER.	5 6 6 6 6
7		T RESULTS AND MEASUREMENT DATA	
•	7.1 7.2	CONDUCTED EMISSIONS	9
8	TES	T SETUP PHOTO	18
9	EUT	CONSTRUCTIONAL DETAILS	19

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 3 of 19

4 Test Summary

Test Item	Section in CFR 47	Result	
Conducted Emission	Part15.107	PASS	
Radiated Emissions	Part15.109	PASS	

PASS: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes	
Radiated Emission	9kHz ~ 30MHz ± 4.34dB		(1)	
Radiated Emission	30MHz ~ 1000MHz ± 4.24dB		(1)	
Radiated Emission	1GHz ~ 26.5GHz ± 4.68dB		(1)	
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.	

5 General Information

5.1 Client Information

Applicant:	Mitac International Corporation
Address of Applicant:	Building B, No.209, Sec.1, Nan Gang Rd., Nan Gang Taipei, 11568 Taiwan
Manufacturer:	MITAC COMPUTER (KUSHAN) CO. LTD
Address of Manufacturer:	No. 269, 2nd Rd, Export Processing Zone Changjiang South Road Kushan, Jiangsu China

5.2 General Description of EUT

Product Name:	GPS Portable Navigation Device
Model No.:	N515
CPT panel No.:	KD070D28-40NB-B22 C
Power Supply:	Adapter 1:
	Model:MIL050200I
	Input: AC 100-240V~50/60Hz, 0.6A
	Output: DC 5V ,2A
	Adapter 2:
	Model:CA-052-00U-09
	Input: DC 12/24V, 1300mA
	Output: DC 5V ,2A
	Adapter 3:
	Model:TCV10100
	Input: DC 12-24V
	Output: DC 5V ,2A
	Or
	DC 3.7V 4000mAh Li-ion Battery

Remark: All of adapters were tested. And found radiated emission of adapter 3 was the worst case. Conducted emission of adapter 1 was the worst. So only the worst case was recorded in the report.

5.3 Test mode

Test mode:				
PC mode	Keep the EUT in data exchange with PC mode.			
REC mode	Keep the EUT in video recording mode.			
USB playing mode	Keep the EUT in video playing via USB flash disk mode.			
TF card playing mode	Keep the EUT in TF card playing mode.			

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016..

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC Approval
Apple	PC	A1278	C1MN99ERDTY3	FCC DoC
DELTA	ADAPTER	ADP-60ADT	N/A	FCC DoC
DELL	KEYBOARD	SK-8115	N/A	FCC DoC
DELL	MOUSE	N/A	N/A	FCC DoC
GS	Lead-Acid battery	S5D26R-MFZ	9442804454	FCC DoC

5.7 Deviation from Standards

Biconical, log.per. antenna and horn antenna were used instead of dipole antenna. Semi-anechoic Chamber was used as alternation of open air test sites, and all test suites were performed with radiated method in it.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

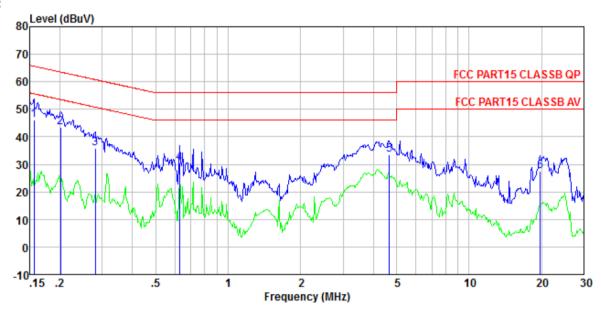
Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June. 29 2016	June. 28 2017
4	Loop Antenna	Zhinan	ZN30900A	GTS534	June. 29 2016	June. 28 2017
5	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June. 29 2016	June. 28 2017
6	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June. 29 2016	June. 28 2017
7	Horn Antenna	ETS-LINDGREN	3160-09	GTS218	June. 29 2016	June. 28 2017
8	RF Amplifier	HP	8347A	GTS204	June. 29 2016	June. 28 2017
9	RF Amplifier	HP	8349B	GTS206	June. 29 2016	June. 28 2017
10	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June. 29 2016	June. 28 2017
11	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	June. 29 2016	June. 28 2017
12	Universal Radio Communication tester	ROHDE&SCHWARZ	CMU 200	GTS538	June. 29 2016	June. 28 2017
13	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
14	Coaxial Cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017
15	Coaxial Cable	GTS	N/A	GTS211	June. 29 2016	June. 28 2017
16	Coaxial Cable	GTS	N/A	GTS210	June. 29 2016	June. 28 2017
17	Coaxial Cable	GTS	N/A	GTS212	June. 29 2016	June. 28 2017
18	Thermo meter	N/A	N/A	GTS256	June. 29 2016	June. 28 2017
19	D.C. Power Supply	Instek	PS-3030	GTS232	June. 29 2016	June. 28 2017

Con	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 29 2016	June. 28 2017	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 29 2016	June. 28 2017	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 29 2016	June. 28 2017	
5	High voltage probe	SCHWARZBECK	TK9420	GTS537	June. 29 2016	June. 28 2017	
6	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 29 2016	June. 28 2017	
7	Coaxial Cable	GTS	N/A	GTS227	June. 29 2016	June. 28 2017	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Thermo meter	KTJ	TA328	GTS233	June. 29 2016	June. 28 2017	
10	10dB Pulse Limiter	Rohde & Schwarz	N/A	GTS224	June. 29 2016	June. 28 2017	

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS255	June. 29 2016	June. 28 2017	

7 Test Results and Measurement Data

7.1 Conducted Emissions


Test Requirement:	FCC Part15 B Section 15.107						
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto					
Limit:		Limit (c	dBuV)				
Limit	Frequency range (MHz)	Average					
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithn	n of the frequency.					
Test setup:	Reference Plane		_				
	AUX Equipment Under Test LISN Filter AC power EMI Receiver Remark E.U.T. Equipment Under Test LISN. Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 						
Test Instruments:	Refer to section 6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Page 9 of 19

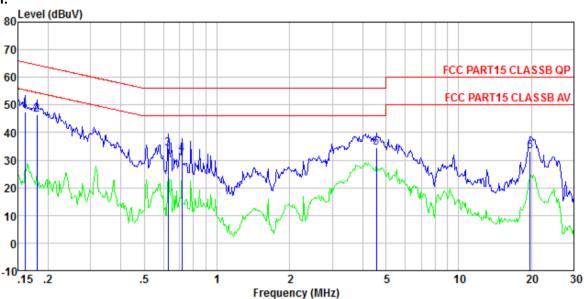
Measurement Data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0356 Test mode : PC mode Test Engineer: Sky


656	bugineer.		LISN	Cable		Limit	Over		
	Freq		Factor					Remark	
	MHz	dBuV	dB	₫B	dBuV	dBuV	dB		—
1 2	0. 156 0. 202	45.88 43.22					-19.50 -20.05		
3	0.280	35.69					-24.91		
4	0.627	30.24					-25.51		
5	4.672	33.21	0.21	0.15	33.57	56.00	-22.43	QP	
6	19 740	26 72	0.59	0.22	27 59	60 00	-22 41	ΩP	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 10 of 19

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

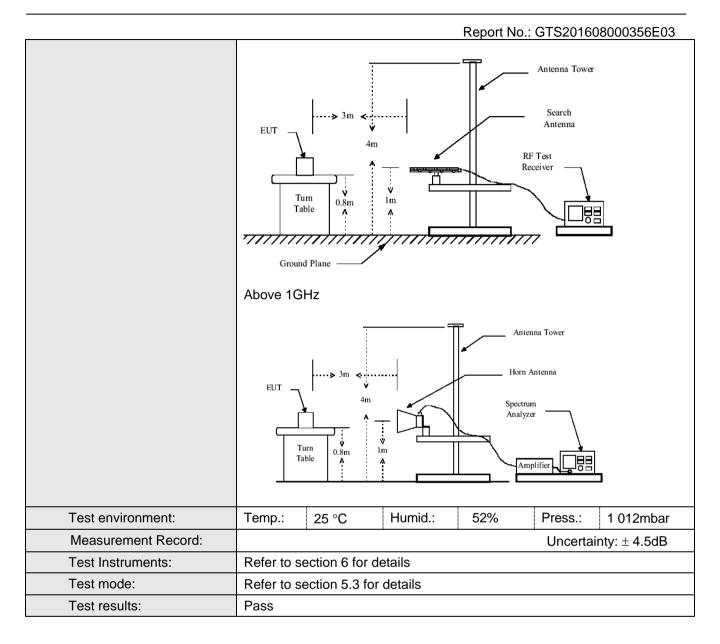
Job No. : 0356 Test mode : PC mode Test Engineer: Sky

	Freq		LISN Factor					Remark	
	MHz	dBuV	dB	₫B	dBuV	dBuV	——dB		
1	0. 161 0. 180	47. 23 46. 12							
2 3	0.627	33.99	0.07	0.12	34. 18	56.00	-21.82	QP	
4	0.716								
5								-	
6	19, 740	32, 32	0.51	n 22	33 05	60 OO	-26 95	ΩP	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 11 of 19


Project No.: GTS201608000356

7.2 Radiated Emission

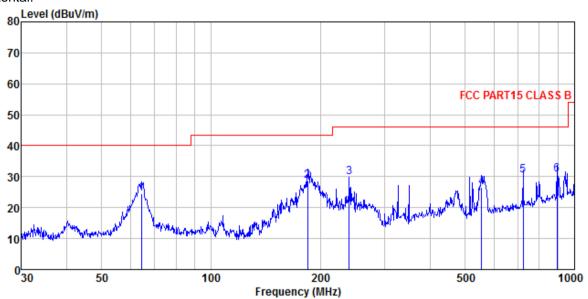
 Naulateu Lillission							
Test Requirement:	FCC Part15 B Section 15.109						
Test Method:	ANSI C63.4:2014						
Test Frequency Range:	30MHz to 25GHz						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:	,						
	Frequency 30MHz-	Detector Quasi-pea	RBW k 120kHz	VBW 300kHz	Remark Quasi-peak Value		
	1GHz	Quasi-pea	K 120KHZ	300KI 12	Quasi-peak value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	7.5070 101.12	Peak	1MHz	10Hz	Average Value		
Limit:					T		
	Freque	ency	Limit (dBuV	/m @3m)	Remark		
	30MHz-8	8MHz	40.0	0	Quasi-peak Value		
	88MHz-2	16MHz	43.5	0	Quasi-peak Value		
	216MHz-9	60MHz	46.0	0	Quasi-peak Value		
	960MHz-	-1GHz	54.0	0	Quasi-peak Value		
	Above 1	IGHz	54.0	0	Average Value		
	7,5000		74.0	0	Peak Value		
Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving						
			•		ole-height antenna		
	ground to de	termine the r	naximum valu	e of the field	r meters above the d strength. Both are set to make the		
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.						
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
Test setup:	Below 1GHz						

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 12 of 19

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor



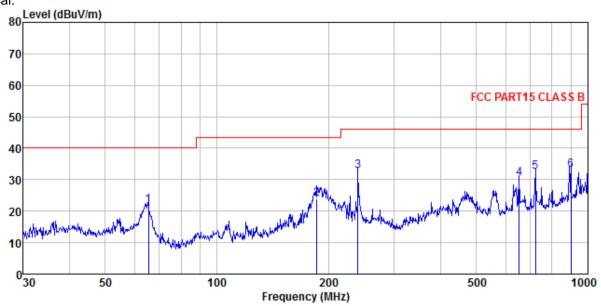
Measurement Data

PC mode:

Below 1GHz

Horizontal:

Site


3m chamber FCC PART15 CLASS B 3m HORIZONTAL Condition

Job No. 0356 Test Mode Test Engir PC mode

est	Engineer:	Sky								
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu∀	dB/m	dΒ	dB	dBuV/m	dBuV/m	dB		
1	64.208	40.41	12.97	0.90	29.89	24.39	40.00	-15.61	QP	
2	184.490	43.92	12.08	1.76	29.26	28.50	43.50	-15.00	QP	
3	239.987	43.15	14.09	2.07	29.56	29.75	46.00	-16.25	QP	
4	554.825	32.61	19.67	3.54	29.30	26.52	46.00	-19.48	QP	
5	721.726	34.25	21.10	4.17	29.20	30.32	46.00	-15.68	QP	
6	893 857	31 92	23 05	4 83	20 10	30 70	46 00	-15 30	ÓΡ	

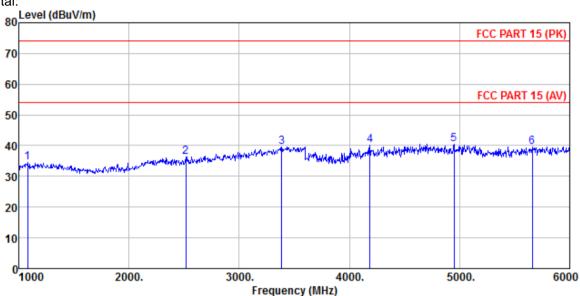
Vertical:

Site

3m chamber FCC PART15 CLASS B 3m VERTICAL Condition

0356 Job No. Test Mode Test Engine PC mode

rugineer.								
	Read	Antenna	Cable	Preamp		Limit	Over	
Frea	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHZ	THE STATE OF THE S	dB/m	AB		dBu377m	dBu377m		
11412	шич	ш, ж	ш	ш	ши, ш	ши, ж	ш	
65 343	38 30	12.57	n an	20 99	21 80	40 OO	-18 11	OP
185.788	39.24	12.16	1.77	29.25	23.92	43.50	-19.58	QP
239.987	46.09	14.09	2.07	29.56	32.69	46.00	-13.31	QP
651.942	35.07	20.65	3.92	29.25	30.39	46.00	-15.61	QP
721.726	36.49	21.10	4.17	29.20	32.56	46.00	-13.44	QP
900.147	34.10	23.09	4.85	29.10	32.94	46.00	-13.06	QP
	Freq MHz 65.343 185.788 239.987 651.942 721.726	Freq Level MHz dBuV 65.343 38.30 185.788 39.24 239.987 46.09 651.942 35.07	MHz dBuV dB/m 65.343 38.30 12.57 185.788 39.24 12.16 239.987 46.09 14.09 651.942 35.07 20.65 721.726 36.49 21.10	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 65.343 38.30 12.57 0.90 185.788 39.24 12.16 1.77 239.987 46.09 14.09 2.07 651.942 35.07 20.65 3.92 721.726 36.49 21.10 4.17	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 65.343 38.30 12.57 0.90 29.88 185.788 39.24 12.16 1.77 29.25 239.987 46.09 14.09 2.07 29.56 651.942 35.07 20.65 3.92 29.25 721.726 36.49 21.10 4.17 29.20	ReadAntenna Cable Preamp Level Factor Loss Factor Level	ReadAntenna Cable Preamp Limit Level Factor Level Line Level	ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit

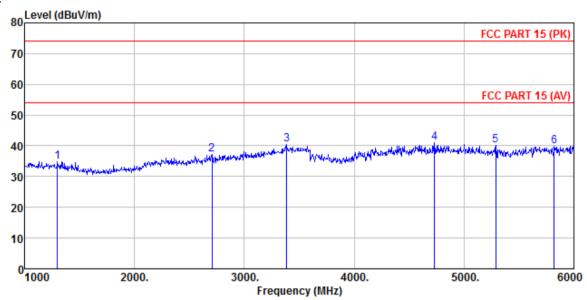

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Above 1GHz

PC mode:

Horizontal:

3m chamber FCC PART 15 (PK) 3m HORIZONTAL 0356 PC mode


Site Condition Job No. Test Mode Test Engineer: Sky

	Freq	Read	Antenna Factor					Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>q</u> B	
1 2 3 4 5 6	1080.000 2515.000 3385.000 4185.000 4950.000 5660.000	37.22 33.96 32.08	27.57 28.57 30.18	5.50 6.74 8.04 8.71		36.39 39.64 40.20 40.54	74.00 74.00 74.00 74.00	-37.61 -34.36 -33.80 -33.46	Peak Peak Peak Peak

Page 16 of 19

Vertical:

3m chamber FCC PART 15 (PK) 3m VERTICAL 0356 Site Condition

Job No. Test Mode PC mode

est	Engineer:	эку							
	-	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						Remark
			<u></u>			JD. 77/-	JD. 77/-		
	MHz	dBu∀	aB/m	dВ	ав	dBuV/m	abuv/m	dВ	
1	1300.000	38.00	25.63	4.54	33.27	34.90	74.00	-39.10	Peak
2	2705.000	37.05	28.17	5.67	33.66	37.23	74.00	-36.77	Peak
3	3385.000	38.05	28.57	6.74	32.89	40.47	74.00	-33.53	Peak
4	4730.000	32.96	31.70	8.54	32.05	41.15	74.00	-32.85	Peak
5	5290.000	31.59	31.72	9.19	32.32	40.18	74.00	-33.82	Peak
6	5820.000	29.45	32.68	9.95	32.23	39.85	74.00	-34.15	Peak

Remark: No emission found from 6GHz to 25GHz. So this band was not display on the report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

8 Test Setup Photo

Radiated Emission(PC mode)

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201608000356E01

----- End-----