FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Portable Navigator

Model: Mio C720; Mio C320; Mio C520

Trade Name: Mio DigiWalker

Prepared for

Mitac International Corporation 6th Fl., No. 187, Tiding Blvd., Sec. 2, Nei-Hu, Taipei, Taiwan, R.O.C.

Issued by

COMPLIANCE CERTIFICATION SERVICES (KUNSHAN) INC.

10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300) CHINA

TEL: 86-512-57355888

FAX: 86-512-57370818

Lab. Code: 200581-0

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	3
2. E	UT DESCRIPTION	3
3. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES	5
3.4	MODIFICATION	
3.5	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	6
3.6	DESCRIPTION OF TEST MODES	6
4. IN	NSTRUMENT CALIBRATION	7
5. F	ACILITIES AND ACCREDITATIONS	8
5.1	FACILITIES	8
5.2	EQUIPMENT	8
5.3	LABORATORY ACCREDITATIONS AND LISTING	8
TAB	LE OF ACCREDITATIONS AND LISTINGS	9
6. SI	ETUP OF EQUIPMENT UNDER TEST	10
6.1	SETUP CONFIGURATION OF EUT	10
6.2	SUPPORT EQUIPMENT	10
7. F	CC PART 15.247 REQUIREMENTS	11
7.1	PEAK POWER	
7.2	BAND EDGES MEASUREMENT	12
7.3	PEAK POWER SPECTRAL DENSITY	18
7.4	FREQUENCY SEPARATION	
7.5	NUMBER OF HOPPING FREQUENCY	
7.6	TIME OF OCCUPANCY (DWELL TIME)	
7.7	RADIO FREQUENCY EXPOSURE	
7.8	SPURIOUS EMISSIONS	
7.9	POWERLINE CONDUCTED EMISSIONS	40
APPE	NDIX 1 PHOTOGRAPHS OF TEST SETUP	44

1. TEST RESULT CERTIFICATION

Applicant:

Mitac International Corporation

6th Fl., No. 187, Tiding Blvd., Sec. 2, Nei-Hu, Taipei, Taiwan,

Date of Issue: January 5, 2007

R.O.C.

Equipment Under Test:

Portable Navigator

Trade Name:

Mio DigiWalker

Model:

Mio C720; Mio C320; Mio C520

Date of Test:

From December 20, 2006 to January 5, 2007

APPLICABLE STANDARDS						
STANDARD	TEST RESULT					
FCC 47 CFR Part 15 Subpart C	No non-compliance noted					

We here by certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Miro Chueh Section Manger

Compliance Certification Service Inc.

Reviewed by:

Lin Zhang

EMC Supervisor

Compliance Certification Service Inc.

2. COMPLIANCE CERTIFICATION SERVICES INC. EUT DESCRIPTION

ECT DESCRIT	
Product	Portable Navigator
Trade Name	Mio DigiWalker
Model Number	Mio C720; Mio C320; Mio C520
Model Discrepancy	All the above models are identical except the model designation.
Bluetooth module Model Number	BC41B143A
Bluetooth module Brand name	CSR
Power Supply	For AC adapter: Trade name: PHIHONG Model number: PSAA05R-050 Input: AC 100-240V, 50~60Hz, 0.3A Output: DC 5V, 1A; For DC adapter: Trade name: Atech Model number: PCC609050100 Input: DC 10-30V, 3A Output: DC 5V, 1A;
Frequency Range	2402 ~ 2480 MHz
Transmit Power	0.33 dBm
Modulation Technique	FHSS
Transmit Data Rate	1Mbps
Number of Channels	79 Channels
Antenna Specification	Chip Antenna / Gain: -3.50 dBi

Remark: This submittal(s) (test report) is intended for FCC ID: <u>P4Q-MIOC720</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

Page 4 Rev. 00

Date of Issue: January 25, 2007

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Date of Issue: January 25, 2007

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

MODIFICATION

N/A

Page 5 Rev. 00

FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

Date of Issue: January 25, 2007

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110 10.495 - 0.505	16.42 - 16.423	399.9 - 410	4.5 - 5.15 5.25 - 5.46
2.1735 - 2.1905	16.69475 - 16.69525 16.80425 - 16.80475	608 - 614 960 - 1240	5.35 - 5.46 7.25 - 7.75
4.125 - 4.128 4.17725 - 4.17775	25.5 - 25.67 37.5 - 38.25	1300 - 1427 1435 - 1626.5	8.025 - 8.5 9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.0 - 9.2 9.3 - 9.5
6.215 - 6.218 6.26775 - 6.26825	74.8 - 75.2 108 - 121.94	1660 - 1710 1718.8 - 1722.2	10.6 - 12.7 13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294 8.362 - 8.366	149.9 - 150.05 156.52475 -	2310 - 2390 2483.5 - 2500	15.35 - 16.2 17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475 12.29 - 12.293	156.7 - 156.9 162.0125 - 167.17	3260 - 3267 3332 - 3339	23.6 - 24.0 31.2 - 31.8
12.51975 - 12.52025		3345.8 - 3358 3600 - 4400	36.43 - 36.5
12.57675 - 12.57725 13.36 - 13.41	240 - 285 322 - 335.4	3600 - 4400	()

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode is programmed. The field strength of spurious radiation emission was measured in the following position:

Mode 1: Charging Mode laid in Horizontal

Mode 2: PC Link Mode laid in Horizontal

Mode 3: Charging Mode laid in Vertical

Mode 4: PC Link Mode laid in Vertical

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

Mode 1 Channel Low (2402MHz) • Mid (2441MHz) and High (2480MHz) were chosen for full testing.

Page 6 Rev. 00

² Above 38.6

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: January 25, 2007

Page 7 Rev. 00

5. FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300), CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

Date of Issue: January 25, 2007

EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200581-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

Page 8 Rev. 00

TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP	EN 55022, EN 61000-3-2, EN 61000-3-3, EN550024, EN 61000-4-2, EN 61000-4-3, EN61000-4-4, EN 61000-4-5, EN 61000-4-6, IEC 61000-4-8, EN 61000-4-11 ANSI C63.4, CISPR16-1, IEC61000-3-2, IEC61000-3-3, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	Lab. Code: 200581-0
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 9 Rev. 00

Date of Issue: January 25, 2007

6. SETUP OF EQUIPMENT UNDER TEST

SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

SUPPORT EQUIPMENT

No	Equipment	Model	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1	SD card	128MB	N/A	DoC	Kingston	N/A	N/A

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 10 Rev. 00

Date of Issue: January 25, 2007

7. FCC PART 15.247 REQUIREMENTS

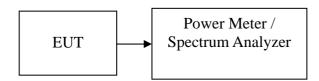
PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt.

Date of Issue: January 25, 2007


2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007
Peak and Avg Power Sensor	Agilent	E9327A	US40441788	07/29/2007
EPM-P Series Power Meter	Agilent	E4416A	QB41292714	07/29/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter.

TEST RESULTS

No non-compliance noted

Test Data

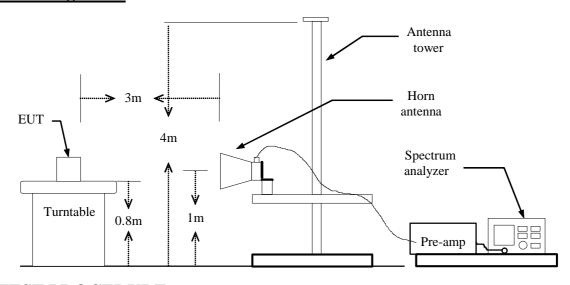
Channel	Frequency (MHz)	Power	Factor (dB)	Power (dPm)	Output Power (W)	Limit (W)	Result
Low	2402	-1.17	1.50	0.33	0.00108		PASS
Mid	2441	-1.24	1.50	0.26	0.00106	1	PASS
High	2480	-1.93	1.50	-0.43	0.00091		PASS

Page 11 Rev. 00

BAND EDGES MEASUREMENT

LIMIT

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).


Date of Issue: January 25, 2007

MEASUREMENT EQUIPMENT USED

977 Chamber (3m)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007						
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/21/2007						
Horn Antenna	Austriah	BBHA9120D	D267	02/03/2007						
Turn Table	CT	CT123	4162	N.C.R						
Antenna Tower	CT	CTERG23	3253	N.C.R						
Controller	CT	CT100	95635	N.C.R						
Coax Switch	Anitsu	MP 598	M 80094	N/A						
Site NSA	CCS Lab.	N/A	N/A	02/15/2007						

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out

Page 12 Rev. 00

the highest emission.

4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

Date of Issue: January 25, 2007

- (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
- (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

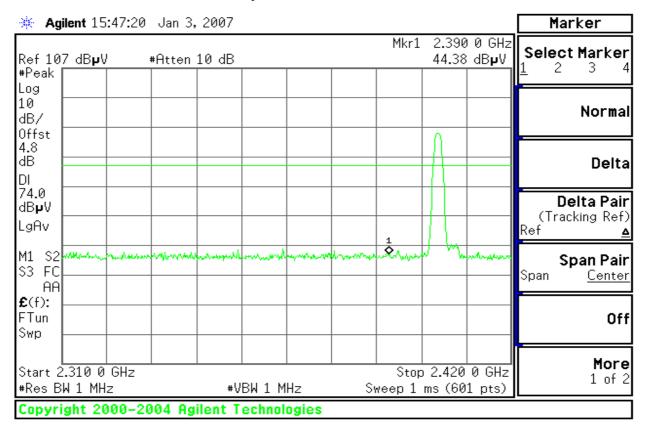
TEST RESULTS

CH LOW

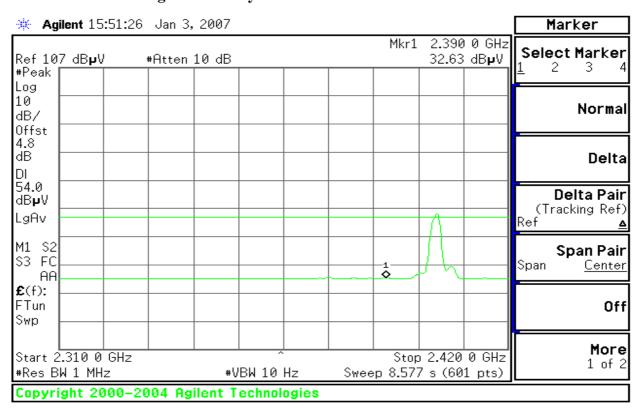
Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Peak Margin	AV Margin
(IVIIIZ)	11/ \	(dBuV)	(dBuV)	(dB)	Peak	AV (dBuV/m)	(aba v/m	(dBuV/m)		(dB)
2390.00	V	39.58	27.83	4.80	44.38	32.63	74	54	-29.62	-21.37
	V									
2390.00	Н	39.91	27.7	4.80	44.71	32.5	74	54	-29.29	-21.5
	Н						, -			
									·	

CH HIGH

Ant. Pol H/V	Peak Reading	AV Reading	CT CF	Actu	al Fs	Peak Limit	AV Limit	Peak Margin	AV Margin
	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	,	(dBuV/m)	(dB)	(dB)
V	47.11	31.04	4.80	51.91	35.84	74	54	-22.09	-18.16
H H	48.07	32.09	4.80	52.87	36.89	74	54	-21.13	-17.11
	H/V V V	H/V Reading (dBuV) V 47.11 V H 48.07	H/V Reading (dBuV) V 47.11 31.04 V 47.11 32.04 H 48.07 32.09	Ant. Pol H/V Reading (dBuV) Reading (dBuV) (dB) V 47.11 31.04 4.80 V H 48.07 32.09 4.80	Ant. Pol H/V Reading (dBuV) Reading (dBuV) (dBuV) (dB) Peak (dBuV/m) V 47.11 31.04 4.80 51.91 V 48.07 32.09 4.80 52.87	Ant. Pol H/V Reading (dBuV) Reading (dBuV) (dBuV) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) (dBuV/m) V 47.11 31.04 4.80 51.91 35.84 V H 48.07 32.09 4.80 52.87 36.89	Ant. Pol H/V Reading (dBuV) Reading (dBuV) (dBuV) (dBuV/m) (dBuV/m	Ant. Pol H/V Reading (dBuV) Reading (dBuV) (dBuV/m) (dBuV	Ant. Pol H/V Reading (dBuV) (dBuV) (dB) (dB) (dBuV/m) (dB

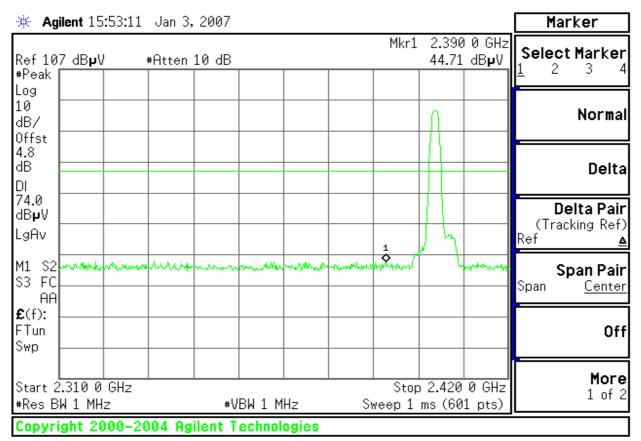

Refer to attach spectrum analyzer data chart.

Page 13 Rev. 00

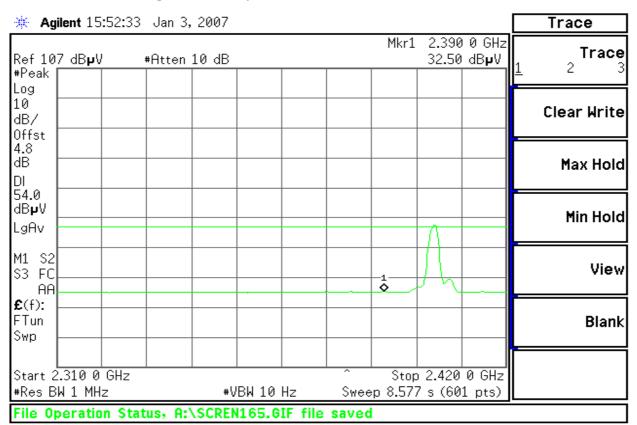

CC ID: P4Q-MIOC720 Date of Issue: January 25, 2007

Band Edges (CH Low)

Detector mode: Peak Polarity: Vertical

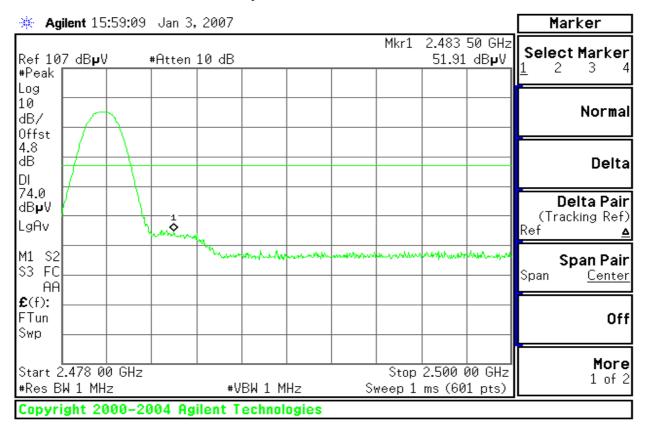


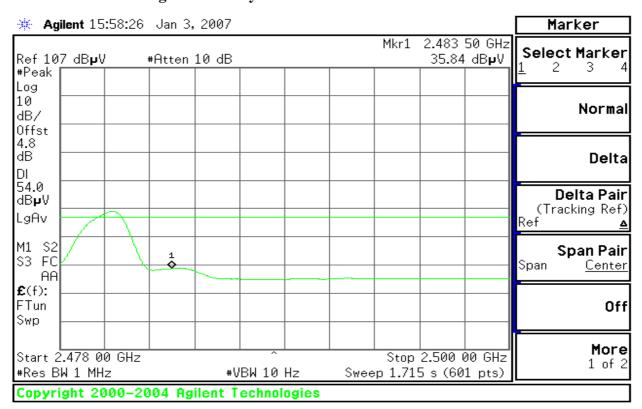
Detector mode: Average Polarity: Vertical



Page 14 Rev. 00

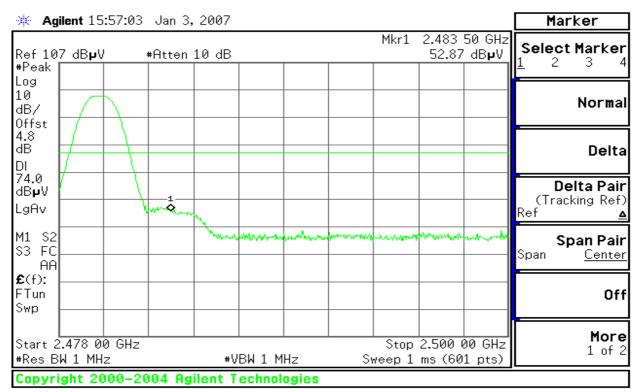
Detector mode: Peak Polarity: Horizontal

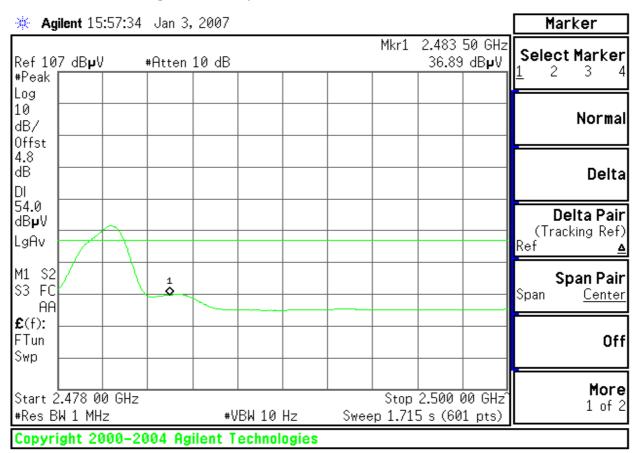

Detector mode: Average Polarity: Horizontal


CC ID: P4Q-MIOC720 Date of Issue: January 25, 2007

Band Edges (CH High)

Detector mode: Peak Polarity: Vertical


Detector mode: Average Polarity: Vertical


Page 16 Rev. 00

C ID: P4Q-MIOC720 Date of Issue: January 25, 2007

Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal

Page 17 Rev. 00

PEAK POWER SPECTRAL DENSITY

LIMIT

1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

Date of Issue: January 25, 2007

2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007	

Remark: Each piece of equipment is scheduled for calibration once a year.

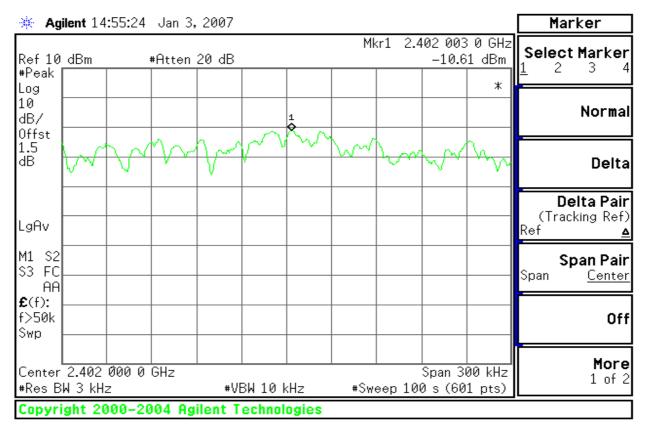
Test Configuration

TEST PROCEDURE

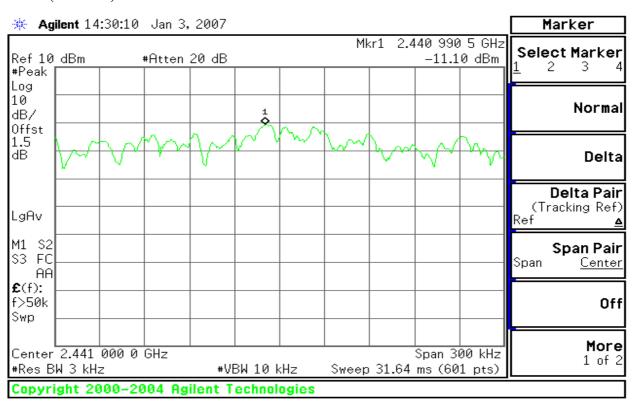
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

No non-compliance noted

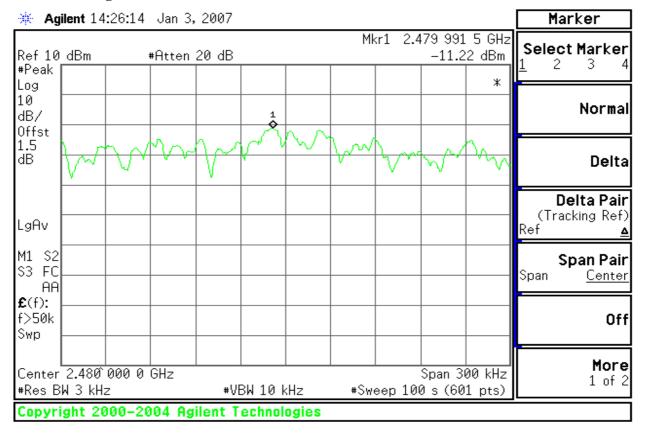

Test Data

Channel	Frequency	Reading (dBm)	Factor (dB)	PPSD (dBm)	Limit (dBm)	Result
Low	2402	-12.11	1.50	-10.61		PASS
Mid	2441	-12.60	1.50	-11.10	8.00	PASS
High	2480	-12.72	1.50	-11.22		PASS


Page 18 Rev. 00

Test Plot

PPSD (CH Low)



PPSD (CH Mid)

Page 19 Rev. 00

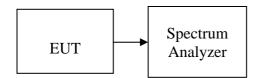
PPSD (CH High)

Page 20 Rev. 00

FREQUENCY SEPARATION

LIMIT

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.


Date of Issue: January 25, 2007

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

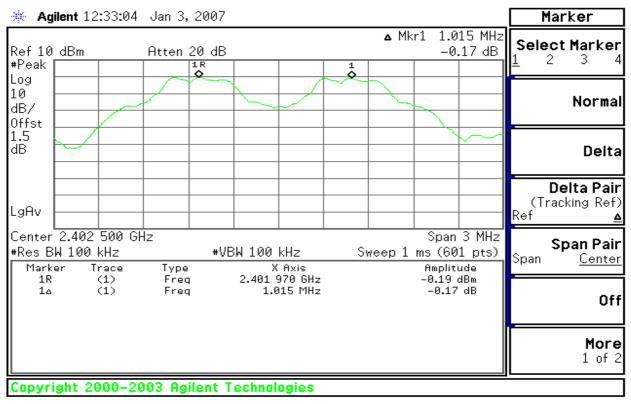
TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW = 30kHz, VBW = 100kHz, Span = 3MHz, Sweep = auto.
- 5. Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

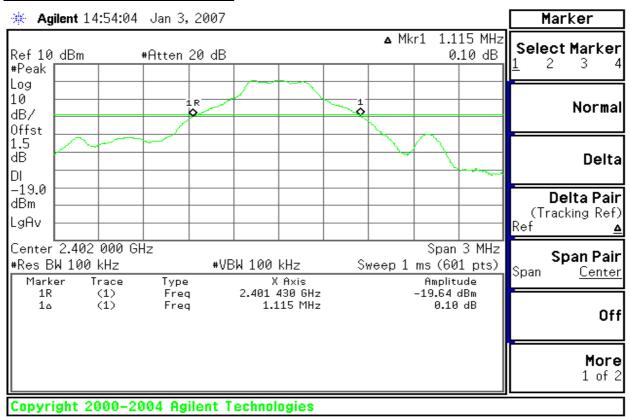
TEST RESULTS

No non-compliance noted

Test Data


Channel Separation (MHz)	20dB Bandwith (kHz)	Limit (kHz)	Result
1.015	1115	>25	Pass

Page 21 Rev. 00


CC ID: P4Q-MIOC720 Date of Issue: January 25, 2007

Test Plot

Measurement of Channel Separation

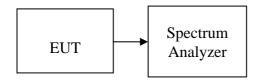
Measurement of 20dB Bandwidth

Page 22 Rev. 00

NUMBER OF HOPPING FREQUENCY

LIMIT

According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 75 hopping frequencies.


Date of Issue: January 25, 2007

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

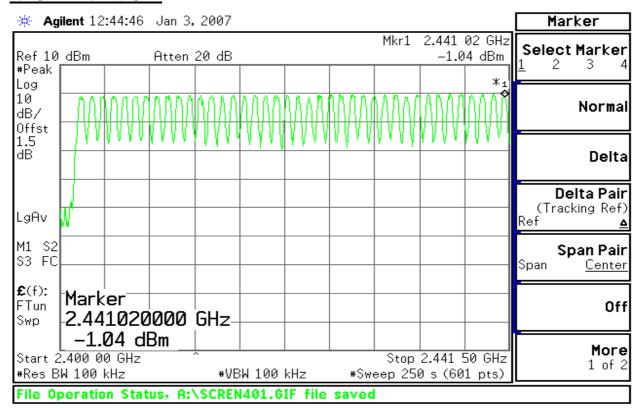
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2441.5MHz, Sweep = auto and Start=2441.5MHz, Stop = 2483.5MHz, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz.
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

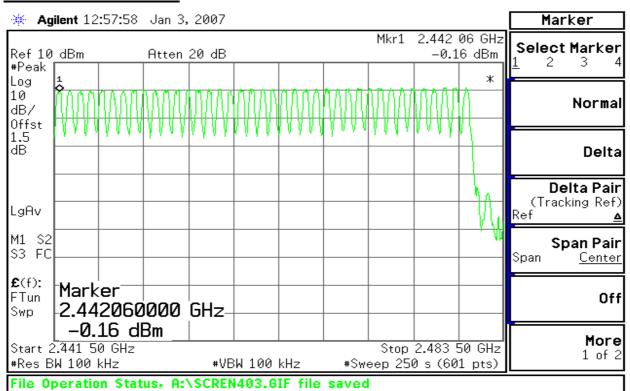
No non-compliance noted

Test Data

Result (No. of CH)	Limit (No. of CH)	Result
79	>75	PASS


Page 23 Rev. 00

CC ID: P4Q-MIOC720 Date of Issue: January 25, 2007


Test Plot

Channel Number

2.4 GHz - 2.4415 GHz

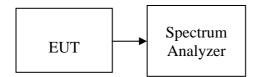
2.4415 GHz – 2.4835 GHz

Page 24 Rev. 00

TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.


Date of Issue: January 25, 2007

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

Page 25 Rev. 00

TEST RESULTS

No non-compliance noted

Test Data

DH 1

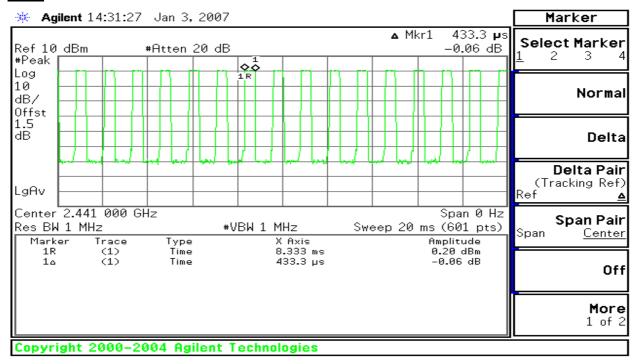
0.433 * (1600/2)/79 * 31.6 = 138.56 (ms)

Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
0.433	138.56	31.60	400.00	PASS

<u>DH 3</u>

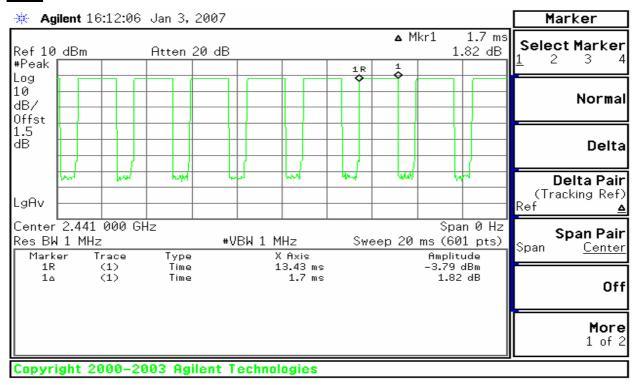
1.70 * (1600/4)/79 * 31.6 = 272.00 (ms)

Pulse Ti	ime	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
1.70		272.00	31.60	400.00	PASS

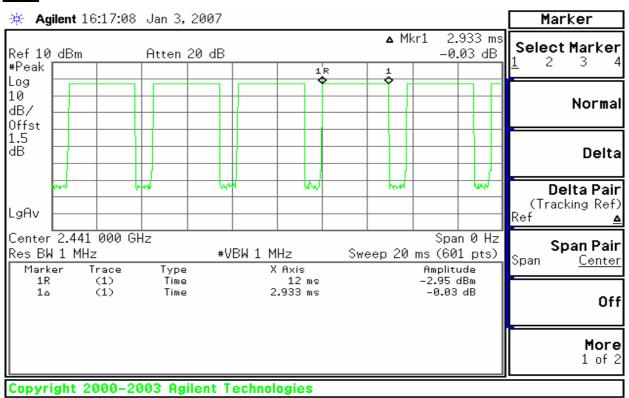

<u>DH 5</u>

2.933 * (1600/6)/79 * 31.6 = 312.85 (ms)

Pulse Time (ms)	Total of Dwell (ms)	Period Time (s)	Limit (ms)	Result
2.933	312.85	31.60	400.00	PASS


Test Plot

DH 1



Page 26 Rev. 00

DH 3

DH 5

Page 27 Rev. 00

RADIO FREQUENCY EXPOSURE

LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See §15.247(b)(4) and §1.1307(b)(1) of this chapter.

Date of Issue: January 25, 2007

EUT Specification

EUT	GPS Tracking System		
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz ✓ Others: Bluetooth: 2.402GHz ~ 2.480GHz 		
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation) ☐ Others		
Exposure classification	Occupational/Controlled exposure $(S = 5mW/cm^2)$ General Population/Uncontrolled exposure $(S=1mW/cm^2)$		
Antenna diversity	 Single antenna Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity 		
Max. output power	0.33dBm (1.079mW)		
Antenna gain (Max)	-3.50 dBi (Numeric gain: 0.447mW)		
Evaluation applied	 ☐ MPE Evaluation ☐ SAR Evaluation ☐ N/A		
Remark:			
1. The maximum output power antenna gain.)	is <u>0.33dBm (1.079mW) a</u> t <u>2402MHz</u> (with <u>0.447 numeric</u>		
	routine RF evaluation; MPE estimate is used to justify the		
· ·	n transmitters, no SAR consideration applied. The minimum I is at least 20 cm, even if the calculations indicate that the MPE		

TEST RESULTS

distance would be lesser.

Non-compliance.

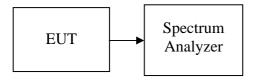
Page 28 Rev. 00

SPURIOUS EMISSIONS

Conducted Measurement

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).


Date of Issue: January 25, 2007

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

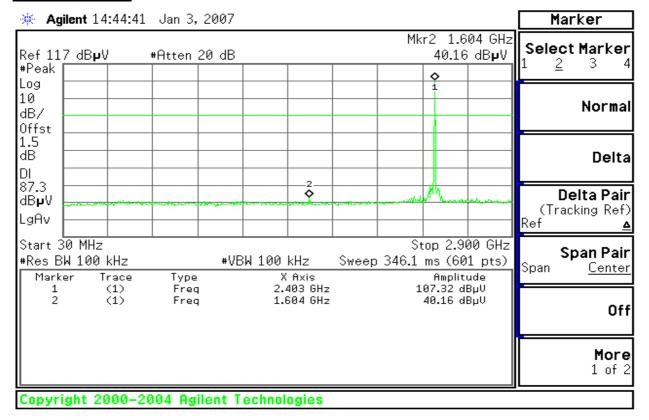
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.

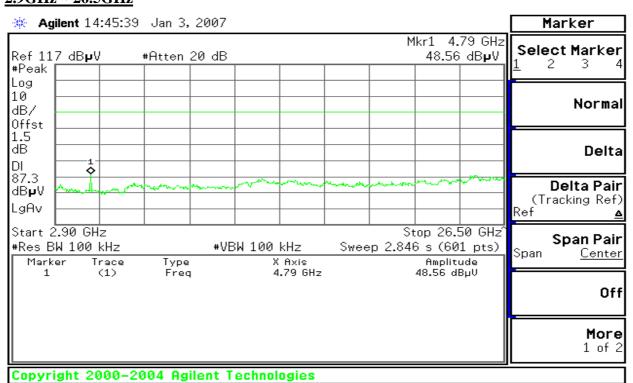
Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

No non-compliance noted

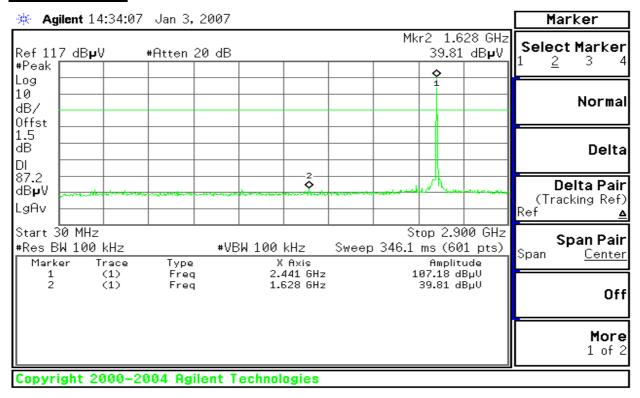

Page 29 Rev. 00

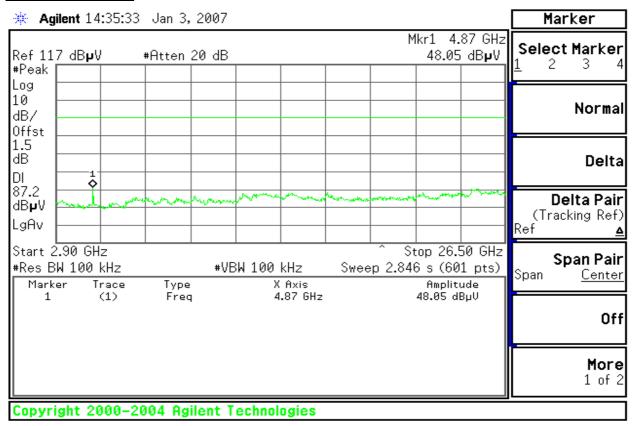
CC ID: P4Q-MIOC720 Date of Issue: January 25, 2007


Test Plot

CH Low

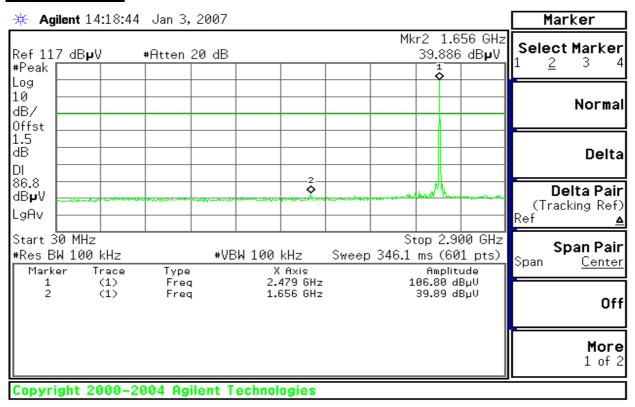
30MHz ~ 2.9GHz

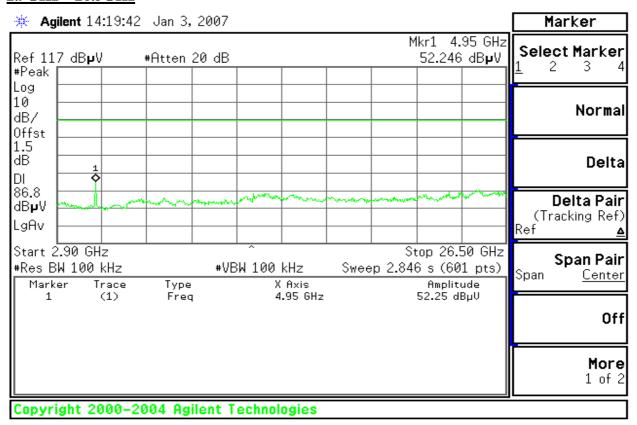

2.9GHz ~ 26.5GHz


Page 30 Rev. 00

CH Mid

30MHz ~ 2.9GHz


2.9GHz ~ 26.5GHz


Page 31 Rev. 00

CH High

30MHz ~ 2.9GHz

2.9GHz ~ 26.5GHz

Page 32 Rev. 00

Radiated Emissions

LIMIT

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

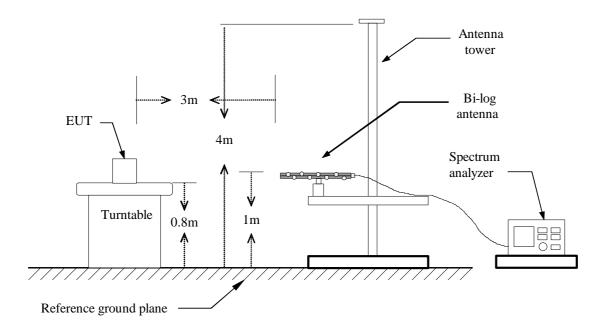
Date of Issue: January 25, 2007

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the above emission table, the tighter limit applies at the band edges.

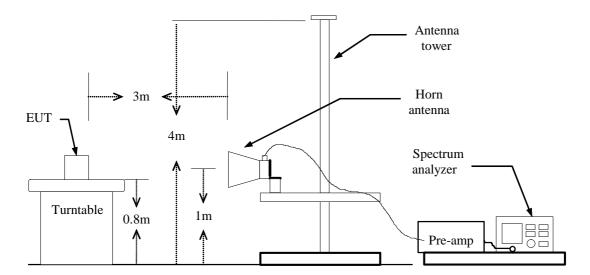
Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

Page 33 Rev. 00


MEASUREMENT EQUIPMENT USED

977 Chamber (3m)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007					
ESPI3 EMI RECEIVER	R&S	ESPI3	101026	11/10/2007					
Pre-Amplfier	MINI	ZFL-1000VH2	d041703	12/12/2007					
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/21/2007					
Bilog Antenna	Sunol Sciences	JB1	A110204-2	11/09/2007					
Horn Antenna	Austriah	BBHA9120D	D267	09/20/2007					
Turn Table	СТ	CT123	4162	N.C.R					
Antenna Tower	СТ	CTERG23	3253	N.C.R					
Controller	СТ	CT100	95635	N.C.R					
Coax Switch	Anitsu	MP 598	M 80094	N/A					
Site NSA	CCS Lab.	N/A	N/A	02/15/2007					

Remark: Each piece of equipment is scheduled for calibration once a year.


Test Configuration

Below 1 GHz

Page 34 Rev. 00

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

Page 35 Rev. 00

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Link **Test Date:** January 8, 2007

Date of Issue: January 25, 2007

Temperature: 23°C **Tested by:** jeff

Humidity: 47 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
66.79	V	Peak	41.13	-14.4	26.73	40.0	-13.27
200.44	V	Peak	42.72	-9.2	33.52	43.5	-9.98
213.43	V	Peak	44.84	-10.5	34.34	43.5	-9.16
733.47	V	Peak	35.67	1.44	37.11	46.0	-8.89
823.25	V	Peak	29.05	2.86	31.91	46.0	-14.09
868.14	V	Peak	28.96	3.29	32.25	46.0	-13.75
109.54	Н	Peak	35.33	-9.91	25.42	43.5	-18.08
200.44	Н	Peak	38.07	-9.20	28.87	43.5	-14.63
422.04	Н	Peak	39.26	-4.06	35.2	46.0	-10.8
733.47	Н	Peak	36.76	1.44	38.2	46.0	-7.8
778.36	Н	Peak	34.46	2.25	36.71	46.0	-9.29
823.25	Н	Peak	32.73	2.86	35.59	46.0	-10.41

Notes:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Page 36 Rev. 00

Above 1 GHz

Operation Mode: TX/ CH Low **Test Date:** January 8, 2007

Date of Issue: January 25, 2007

Temperature: 25°C **Tested by:** jeff

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	CT CF	Actu	Actual Fs		AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak	AV	(aran/w	(dBuV/m)		Kemark
					(dBuV/m)	(dBuV/m)				
4800.00	V	40.04	33.41	10.98	51.02	44.39	74	54	-9.61	Avg
7416.67	V	38.13	26.1	17.97	56.1	44.07	74	54	-9.93	Avg
4800.00	Н	41.13	32.74	10.98	52.11	43.72	74	54	-10.28	Avg
7416.67	Н	37.06	26.22	17.97	55.03	44.19	74	54	-9.81	Avg

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 37 Rev. 00

Operation Mode: TX/ CH Mid **Test Date:** January 8, 2007

Date of Issue: January 25, 2007

Temperature: 25°C **Tested by:** jeff

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	CT CF	Actu	Actual Fs		AV Limit	Margin (dB)	Demonia
		(dBuV)	(dBuV)	(dB)	Peak	AV	(apn A\m	(dBuV/m)		Remark
					(dBuV/m)	(dBuV/m)				
4883.67	V	38.79	30.99	10.56	49.35	41.55	74	54	-12.45	Avg
7325.00	V	39.3	27.43	15.84	55.14	43.27	74	54	-10.73	Avg
4883.33	Н	37.62	30.41	10.56	48.18	40.97	74	54	-13.03	Avg
7324.96	Н	38.33	27.05	15.84	54.17	42.89	74	54	-11.11	Avg

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 38 Rev. 00

Operation Mode: TX/ CH High **Test Date:** January 8, 2007

Date of Issue: January 25, 2007

Temperature: 25°C **Tested by:** jeff

Humidity: 48 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CT CF	Actu	al Fs	Peak Limit	Limit Limit		Domonly
		(dBuV)	(dBuV)	(dB)	Peak	AV	(apn A\m	(dBuV/m)		Remark
					(dBuV/m)	(dBuV/m)				
4958.33	V	38.48	31.91	11.19	49.67	43.1	74	54	-10.9	Avg
7433.33	V	40.18	29.1	18.23	58.41	47.33	74	54	-6.67	Avg
4958.33	Н	40.28	32.52	11.19	51.47	43.71	74	54	-10.29	Avg
7433.33	Н	40.83	29.91	18.23	59.06	48.14	74	54	-5.86	Avg
	·									

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 39 Rev. 00

POWERLINE CONDUCTED EMISSIONS

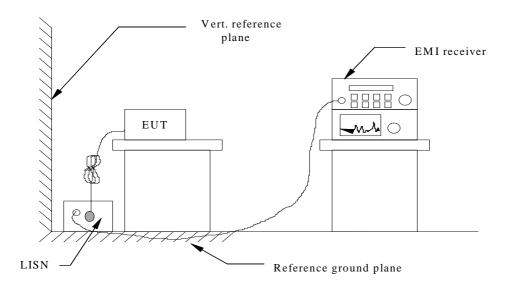
LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Date of Issue: January 25, 2007

Frequency Range (MHz)	Limits (dBµV)					
Frequency Range (MIIIZ)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.


MEASUREMENT EQUIPMENT USED

Conducted Emission Test Site A (10m chamber)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
EMI Test Receiver	R&S	ESI26	100068	02/11/2007					
EMC Analyzer	Agilent	E7402A	US41160329	02/11/2007					
LISN	FCC	FCC-LISN-50-50-2-M	01067	02/11/2007					
LISN (EUT)	FCC	FCC-LISN-50-50-2-M	01068	02/11/2007					
TRANSIENT LIMITER	SCHAFFNER	CFL9206	1710	03/15/2007					
EMI Monitor control box	FCC	0-SVDC	N/A	N/A					

Remark: Each piece of equipment is scheduled for calibration once a year.

Page 40 Rev. 00

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

Page 41 Rev. 00

Date of Issue: January 25, 2007

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Date of Issue: January 25, 2007

Test Data

Model: Mio C720 Test Mode: Normal Link

Temperature: 25°C **Humidity:** 48% RH

Tested by: jeff **Test Results:** Pass

Freq. (MHz)	Q.P. Raw reading (dBuV)	AVG Raw reading (dBuV)	Correction factor(dB)	•	AVG Amptd. (dBuV)		AVG Limit (dBuV)	Q.P. Margin (dB)	AVG Margin (dB)	Line/Neutral
0.407	22.03	21.79	10.41	32.44	32.20	58.64	48.64	-26.20	-16.44	Line
0.533	20.56	18.33	10.40	30.96	28.73	56.00	46.00	-25.04	-17.27	Line
0.718	17.67	17.81	10.41	28.08	28.22	56.00	46.00	-27.92	-17.78	Line
0.878	20.93	19.44	10.42	31.35	29.86	56.00	46.00	-24.65	-16.14	Line
1.149	13.74	14.85	10.44	24.18	25.29	56.00	46.00	-31.82	-20.71	Line
2.166	13.37	12.94	10.52	23.89	23.46	56.00	46.00	-32.11	-22.54	Line
0.411	32.85	32.84	10.40	43.25	43.24	58.55	48.55	-15.30	-5.31	Neutral
0.541	16.89	16.29	10.39	27.28	26.68	56.00	46.00	-28.72	-19.32	Neutral
0.743	28.31	28.66	10.40	38.71	39.06	56.00	46.00	-17.29	-6.94	Neutral
0.877	30.11	29.83	10.41	40.52	40.24	56.00	46.00	-15.48	-5.76	Neutral
1.116	30.50	30.95	10.43	40.93	41.38	56.00	46.00	-15.07	-4.62	Neutral
1.812	18.60	18.46	10.48	29.08	28.94	56.00	46.00	-26.92	-17.06	Neutral

Remark:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.
- 4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.

Note:

Freq. = Emission frequency in KHz

 $Factor(dB) = cable\ loss + Insertion\ loss\ of\ LISN+\ Insertion\ loss\ of\ TRANSIENT\ LIMITER\ (The\ TRANSIENT\ LIMITER\ included\ 10\ dB\ ATTENUATION)$

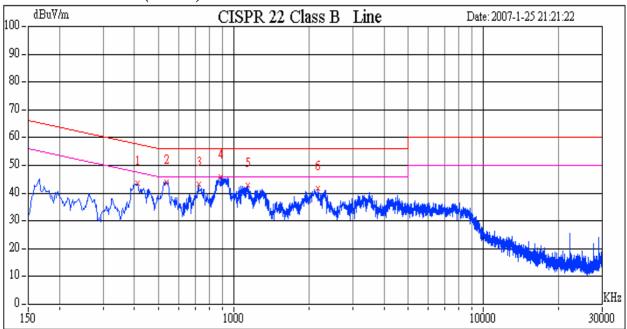
Page 42 Rev. 00

Amptd dBuV = Uncorrected Analyzer/Receiver reading + cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER,

Date of Issue: January 25, 2007

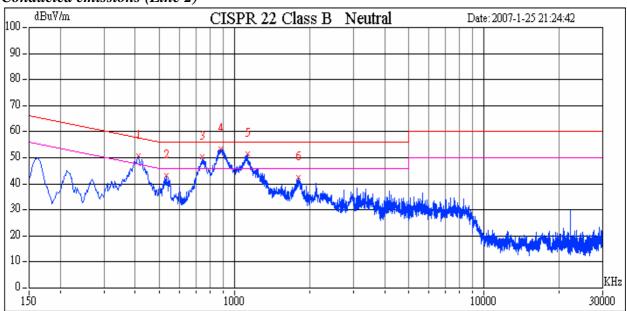
if it > 0.5 dB

Limit dBuV = Limit stated in standard


Margin dB = Reading in reference to limit

Calculation Formula

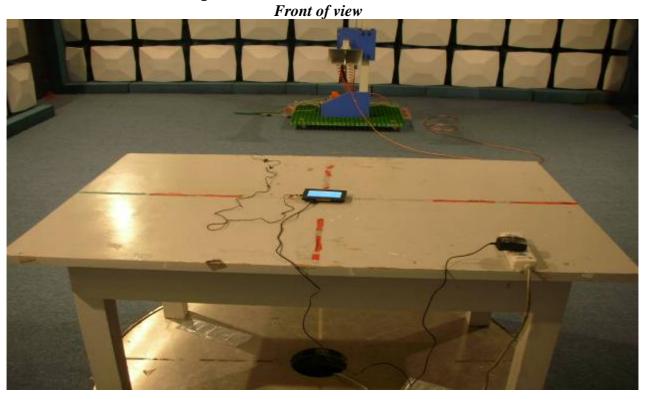
Margin(dB) = Amptd(dBuV) - Limit(dBuV)


Test Plot

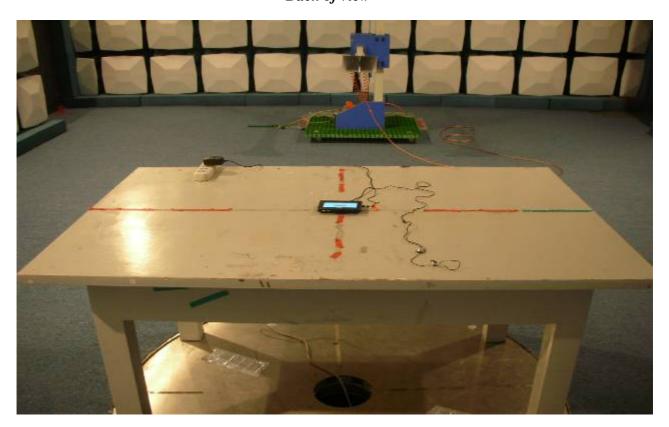
Conducted emissions (Line 1)

Test Plot

Conducted emissions (Line 2)

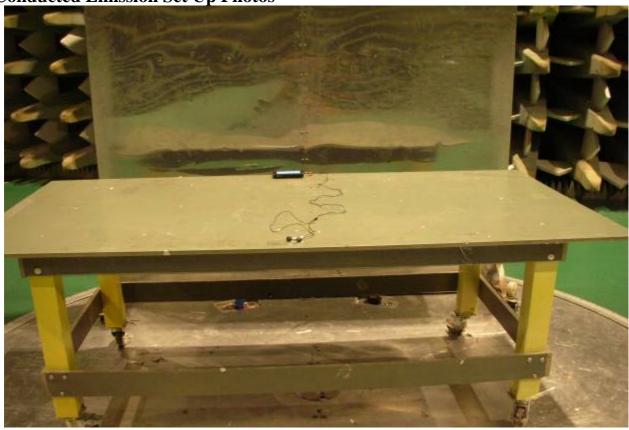


Page 43 Rev. 00


D: P4Q-MIOC720 Date of Issue: January 25, 2007

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Radiated Emission Set up Photos



Back of view

Page 44 Rev. 00

Page 45 Rev. 00