

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Portable Navigator

Model: BE 7977

Trade Name: HARMAN/BECKER AUTOMATIVE SYSTEM

Prepared for

Mitac International Corporation 6th Fl., No. 187, Tiding Blvd., Sec. 2, Nei-Hu, Taipei, Taiwan, R.O.C.

Issued by

COMPLIANCE CERTIFICATION SERVICES (KUNSHAN) INC.

10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone

Kunshan city JiangSu, (215300) CHINA

TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	
2.	COMPLIANCE CERTIFICATION SERVICES INC.	EUT DESCRIPTION 4
3.	TEST METHODOLOGY	5
	EUT CONFIGURATION	5
	EUT EXERCISE	5
	GENERAL TEST PROCEDURES	
	MODIFICATION	
	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
	DESCRIPTION OF TEST MODES	
4.	INSTRUMENT CALIBRATION	7
5.	FACILITIES AND ACCREDITATIONS	
	FACILITIES	
	EQUIPMENT	
	TABLE OF ACCREDITATIONS AND LISTINGS	9
6.	SETUP OF EQUIPMENT UNDER TEST	
	SETUP CONFIGURATION OF EUT	
7.	FCC PART 15.247 REQUIREMENTS	
	peak power 11	
	BAND EDGES MEASUREMENT	
	PEAK POWER SPECTRAL DENSITY	
	FREQUENCY SEPARATION	
	NUMBER OF HOPPING FREQUENCY	
	TIME OF OCCUPANCY (DWELL TIME)	
	RADIO FREQUENCY EXPOSURE	
	SPURIOUS EMISSIONS	
	POWERLINE CONDUCTED EMISSIONS	41
Al	PPENDIX 1 PHOTOGRAPHS OF TEST SETUP	

1. TEST RESULT CERTIFICATION

Applicant:	Mitac International 6 th Fl., No. 187, Ti R.O.C.	Corporation ding Blvd., S	n Sec. 2, Nei-Hu, Taipei, Taiwan,			
Equipment Under Test:	Portable Navigator					
Trade Name: HARMAN/BECKER AUTOMATIVE SYSTEM						
Model:	BE 7977					
Date of Test:	From October 9, 2007 to October 17,2007					
	APPLICABLE S	FANDARDS				

STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart C	No non-compliance noted

We here by certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Miro Chueh

EMC Manager Compliance Certification Service Inc.

Reviewed by: Lin Zhang

EMC Section Manager Compliance Certification Service Inc.

2. COMPLIANCE CERTIFICATION SERVICES INC. EUT DESCRIPTION

Product	Portable Navigator						
Trade Name	HARMAN/BECKER AUTOMATIVE SYSTEM						
Model Number	BE 7977						
Model Discrepancy	N/A						
Bluetooth module Model Number	BC41B143A						
Bluetooth module Brand name	CSR						
Power Supply	For DC adapter: Trade name: UDID Model number: G12PCL-535-A061 Input DC: 12-24V, 0.8A Output DC: 5V, 1A; For AC adapter: Trade name: PHIHONG Model number: PSAA05R-050 Input: 100-240V, 50~60Hz, 0.3A Output: 5V, 1A;						
Frequency Range	2402 ~ 2480 MHz						
Transmit Power	2.41 dBm						
Modulation Technique	FHSS						
Transmit Data Rate	1Mbps						
Number of Channels	79 Channels						
Antenna Specification	EMBEDDED Antenna / Gain: -0.02 dBi						

Remark: This submittal(s) (test report) is intended for FCC ID: <u>P4Q-BE7977</u> filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

MODIFICATION

Note: please refer to the file BE7977.PDF

FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
$^{1}0.495 - 0.505$	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$(^{2})$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

DESCRIPTION OF TEST MODES

The EUT had been tested under operating condition. There are three channels have been tested as following:

Channel	Frequency (MHz)					
LOW	2402					
Middle	2441					
High	2480					

Bluetooth mode: GFSK (worst case) was chosen for full testing.

Note: After the preliminary san GFSK, $\pi/4$ -DQPSK, 8-DPSK. we found the test mode(s) producing the highest emission level, so evaluated we chosen the above modes (worst case) as a representative.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone

Kunshan city JiangSu, (215300), CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	A2LA	47 CFR FCC Part 15/18 (using ANSI C63.4:2003); VCCI V3; CNS 13438; CNS 13439; CNS 13803; CISPR 11; EN 55011; CISPR 13; EN 55013; CISPR 22:2005; CISPR 22:1997 +A1 :2000+A2 :2002; EN 55022:2006; EN55022 :1998 +A1 :2001+A2 :2003; EN 61000-6-3 (excluding discontinuous interference); EN 61000-6-4; AS/NZS CISPR 22; CAN/CSA-CEI/IEC CISPR 22; EN 61000-3-2; EN 61000-3-3; EN550024; EN 61000-4-2; EN 61000-4-3; EN61000-4-4; EN 61000-4-5; EN 61000-4-6; IEC 61000-4-8; EN 61000-4-5; EN 61000-4-6; IEC 61000-4-8; IEC 61000-4-2; IEC 61000-4-6; IEC 61000-4-4; IEC 61000-4-2; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-5; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-11; EN 300 220-3; EN 300 328; EN 300 330-2; EN 300 440-1; EN 300-440-2; EN 300 893; EN 301 489-01; EN 301 489-3; EN 301 489-07; EN 301 489-17; 47 CFR FCC Part 15, 22, 24	ACCREDITED TESTING CERT #2541.01
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707

* No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

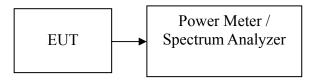
6. SETUP OF EQUIPMENT UNDER TEST

SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

SUPPORT EQUIPMENT

No.	Equipment	Model No.	Serial No.	FCC ID	Trade Name	Data Cable	Power Cord
1	HDD	HTS421240 H9AT00	AHCM30SJ	DoC	Hitachi	N/A	N/A
2	earphone	CD-371	N/A	N/A	JINLIAN	Un-Shielded, 2.0m	N/A


7. FCC PART 15.247 REQUIREMENTS PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

- According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- 2. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 3. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Test Configuration

TEST PROCEDURE

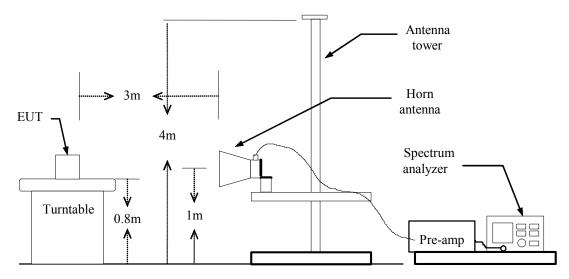
The transmitter output is connected to the Power Meter.

TEST RESULTS

No non-compliance noted

<u>Test Data</u>

Channel	Frequency (MHz)	Reading Power (dBm)	Factor (dB)	Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2402	0.91	1.50	2.41	0.00174		PASS
Mid	2441	0.73	1.50	2.23	0.00167	0.125	PASS
High	2480	0.68	1.50	2.18	0.00165		PASS



BAND EDGES MEASUREMENT

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

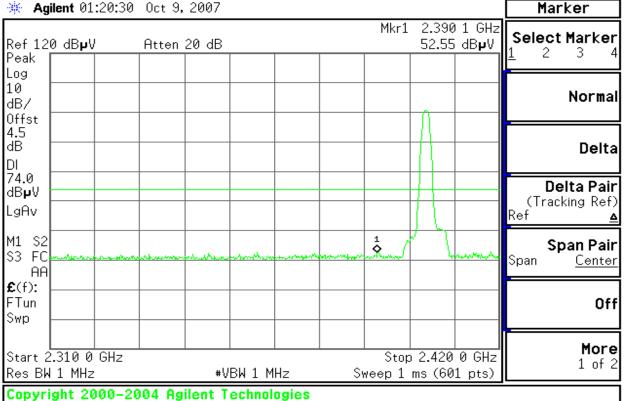
TEST RESULTS

CH LOW

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Peak Margin	AV Margin
~ /		(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)
2390.10	V	48.05	34.64	4.50	52.55	39.14	74	54	-21.45	-14.86
2390.10	Н	46.17	34.18	4.50	50.67	38.68	74	54	-23.33	-15.32

<u>CH HIGH</u>

Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Peak Margin	AV Margin
	(dBuV)	(dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	` /	(dBuV/m)	(dB)	(dB)
V	53.83	38.38	4.50	58.33	42.88	74	54	-15.67	-11.12
V									
Н	51.28	37.05	4.50	55.78	41.55	74	54	-18.22	-12.45
	V V	V 53.83 V - - - - - - - - -	(dBuV) (dBuV) V 53.83 38.38 V - - I - - I - - I - - I - - I - - I - - I - - I - - I - -	(dBuV) (dBuV) (dB) V 53.83 38.38 4.50 V - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - - U - - -	(dBuV) (dBuV) (dB) Peak (dBuV/m) V 53.83 38.38 4.50 58.33 V - - - Image: Constraint of the state of	(dBuV) (dBuV) (dB) Peak (dBuV/m) AV (dBuV/m) V 53.83 38.38 4.50 58.33 42.88 V - - - - - Image: Constraint of the state of the stat	(dBuV) (dBuV) (dB) Peak (dBuV/m) AV (dBuV/m) (dBuV/m) V 53.83 38.38 4.50 58.33 42.88 74 V 53.83 38.38 4.50 58.33 42.88 74 V - - - - - - - V - - - - - - - V - - - - - - - Image: Comparison of the system of the	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $


Refer to attach spectrum analyzer data chart.

Band Edges (CH Low)

Detector mode: Peak Polarity: Vertical

🔆 Agilent 01:20:30 Oct 9, 2007

Detector mode: Average Polarity: Vertical

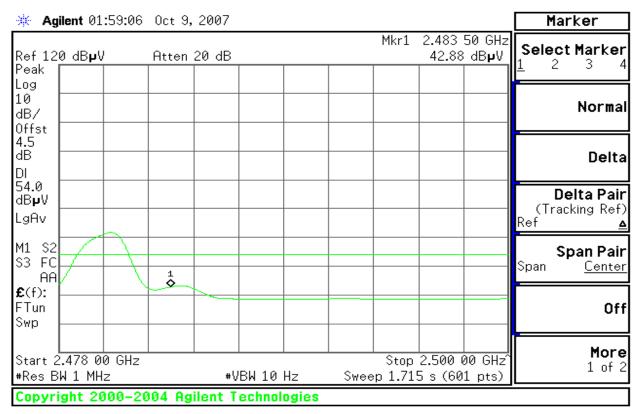
Norma Log Norma 10 Norma 0ffst Di 4.5 Di 54.0 Di dB Di 54.0 Di Sart 2.310 0 GHz Stop 2.420 0 GHz Res BW 1 MHz #VBW 10 Hz Sweep 8.577 s (601 pts)	🔆 Agi	ilent 01:	:21:39	Oct 9,	, 2007					Marker
Log 10 10 dB/ Offst 4.5 dB DI Start 2.310 0 GHz Res BW 1 MHz WBW 10 Hz Sweep 8.577 s (601 pts) Norma Norma Delta Delta Delta Stop 2.420 0 GHz Sweep 8.577 s (601 pts) Norma Norma Delta Norma Norma Norma Norma Norma Norma Norma Norma Norma Norma Norma Norma Norma Norma Delta	Ref 120 Reak	0 dBµV		Atten	20 dB			Mkr1		Select Marker
4.5 dB DI S4.0 dBµV LgAv M1 S2 S3 FC AA £(f): FTun Swp Start 2.310 0 GHz Res BW 1 MHz *VBW 10 Hz Sweep 8.577 s (601 pts) MDelta Pair (Tracking Ref) Ref AA Span Pair Span Center 1 of 2	Log 10 dB/									 Normal
dBµV Derta Pair (Tracking Ref. Ref LgAv M1 S2 M1 S2 M1 S2 S3 FC M1 S2 AA M1 S2 FTun M1 S2 Swp Start 2.310 0 GHz Res BW 1 MHz #VBW 10 Hz	4.5 dB									 Delta
S3 FC AA 1 Span Center £(f): 1 0 0 0 0 Swp Start 2.310 0 GHz Stop 2.420 0 GHz 1 0 0 Start 2.310 0 GHz #VBW 10 Hz Sweep 8.577 s (601 pts) 1 0 1 0	dBµV								Λ	 Delta Pair (Tracking Ref) Ref <u>▲</u>
FTun Swp Off Start 2.310 0 GHz Stop 2.420 0 GHz Res BW 1 MHz #VBW 10 Hz Sweep 8.577 s (601 pts)	S3 FC AA							1	Æ	 Span Pair Span <u>Center</u>
Start 2.310 0 GHz Stop 2.420 0 GHz 1 of 2 Res BW 1 MHz #VBW 10 Hz Sweep 8.577 s (601 pts) 1 of 2	FTun									 Off
Copyright 2000–2004 Agilent Technologies	Res BW	1 MHz					Swee			More 1 of 2

Detector mode: Peak Polarity: Horizontal

🔆 Agilen	t 01:30:27	Oct 9,	2007							Marker
Ref 120 d Peak	BµV	Atten 2	20 dB				Mkr1		3 GHz dB µ V	Select Marker <u>1</u> 234
Log 10 dB/ Offst										Normal
4.5 dB DI 74.0								Λ		Delta
74.0 dB µ V LgAv								\mathbf{H}		Delta Pair (Tracking Ref) Ref <u>▲</u>
M1 S2 S3 FC		والمرتبع فالإعاراني	helinger		an a	and the star	1 Q	75	un an	Span Pair Span <u>Center</u>
£(f): FTun Swp										Off
Start 2.31 Res BW 1	MHz			W 1 Mł		Sv	Stop Yeep 1	2.420 ms (60		More 1 of 2
Copyright	t 2000-20)04 Agi	lent Te	chnolo	gies					

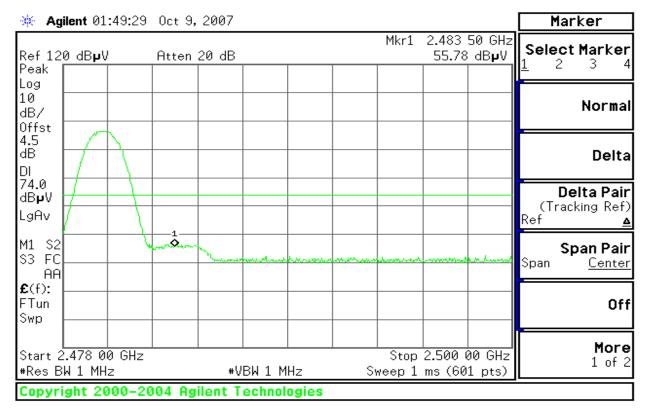
Detector mode: Average Polarity: Horizontal

🔆 Agilent 01:39	1:53 Oct 9,2007				Marker
Ref 120 dB µ V Peak	Atten 20 dB		Mkr1	2.390 3 GHz 38.68 dBµV	Select Marker
Log 10 dB/ Offst					Normal
4.5 dB DI					Delta
54.0 dB µ V LgAv					Delta Pair (Tracking Ref) Ref <u>∆</u>
M1 S2 S3 FC AA £(f):			1	A	Span Pair Span <u>Center</u>
FTun Swp			◆ →		Off
Start 2.310 0 GH Res BW 1 MHz	#	VBW 10 Hz		2.420 0 GHz s (601 pts)	More 1 of 2
Copyright 2000	-2004 Hglient	i echnologies			

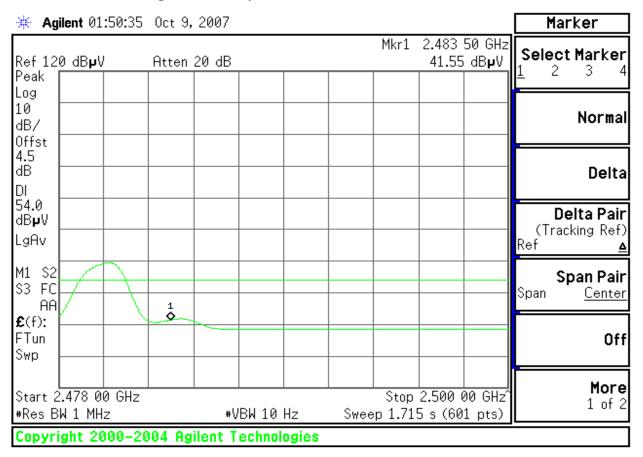


Band Edges (CH High)

Detector mode: Peak Polarity: Vertical

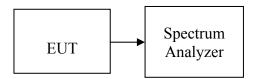

🔆 Agilent 01:58:13 Oct 9, 2007 Marker Mkr1 2.483 50 GHz Select Marker Ref 120 dBµV Atten 20 dB 58.33 dBµV 2 3 Peak Log 10 Normal dB/ Offst 4.5 dB Delta DL 74.0 Delta Pair dB₽V (Tracking Ref) LgAv Ref Δ M1 S2 Span Pair S3 FC Span Center AA **£**(f): FTun Off Swp More Start 2.478 00 GHz Stop 2.500 00 GHz 1 of 2 #Res BW 1 MHz Sweep 1 ms (601 pts) #VBW 1 MHz File Operation Status, A:\SCREN012.GIF file saved

Detector mode: Average Polarity: Vertical



Detector mode: Peak Polarity: Horizontal

Detector mode: Average Polarity: Horizontal



PEAK POWER SPECTRAL DENSITY

LIMIT

- 1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- 2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

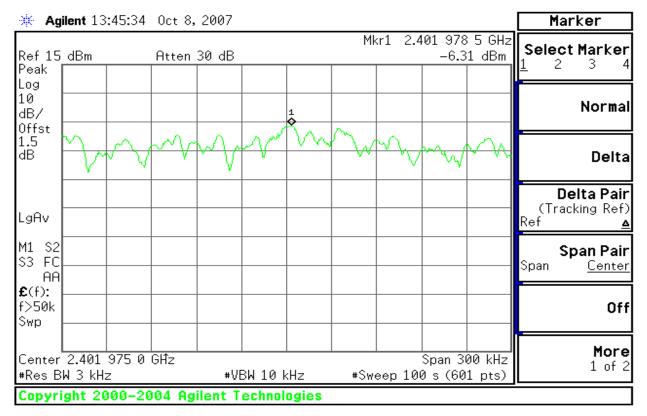
Test Configuration

TEST PROCEDURE

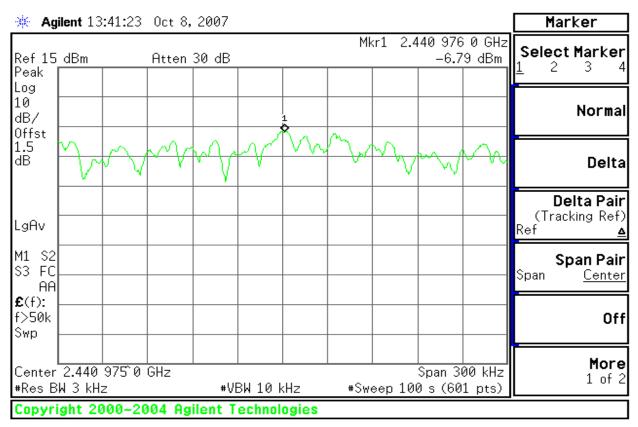
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

No non-compliance noted

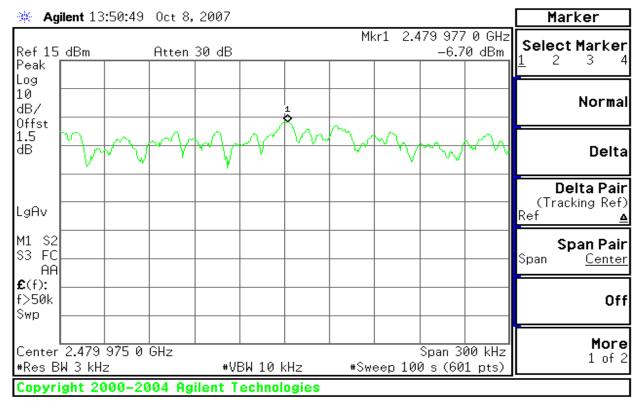

<u>Test Data</u>

Channel	Frequency	PPSD (dBm)	Limit (dBm)	Result
Low	2402	-6.31		PASS
M id	2441	-6.79	8.00	PASS
High	2480	-6.70		PASS



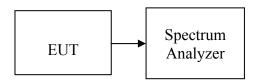
Test Plot

PPSD (CH Low)



PPSD (CH Mid)

PPSD (CH High)



FREQUENCY SEPARATION

LIMIT

According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

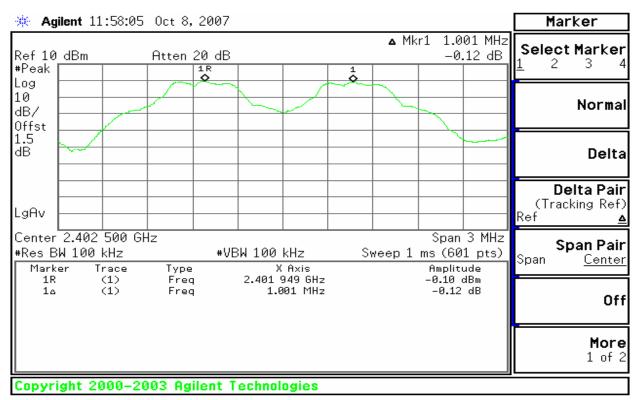
Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW = 100kHz, VBW = 100kHz, Span = 3MHz, Sweep = auto.
- 5. Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

TEST RESULTS

No non-compliance noted


<u>Test Data</u>

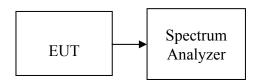
Channel Separation	20dB Bandwith	Limit	Result
(MHz)	(kHz)	(kHz)	
1.001	1109	739	Pass

Test Plot

Measurement of Channel Separation

Measurement of 20dB Bandwidth

':32 Oct 8, 2007			Display
Atten 30 dB	<u>م</u>	Mkr1 1.109 MHz -0.02 dB	Full Screer
			Display Line -19.33 dBn <u>On</u> Off
			Limits
z #VBW 10 e Type	X Axis	Amplitude	Active Fctn Position Cente
		-19.33 dBm -0.02 dB	Title
			Preferences
	Atten 30 dB	Atten 30 dB	Atten 30 dB -0.02 dB -0.02 dB 1R 1R 1 1 1 1 1 1 1 1 1 1 1 1 1



NUMBER OF HOPPING FREQUENCY

LIMIT

According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 75 hopping frequencies.

Test Configuration

TEST PROCEDURE

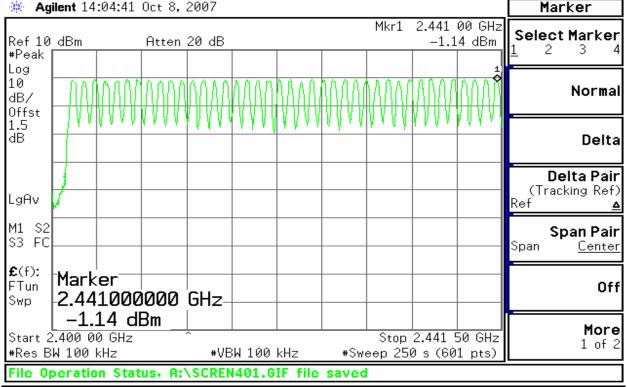
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2441.5MHz, Sweep = auto and Start=2441.5MHz, Stop = 2483.5MHz, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz.
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

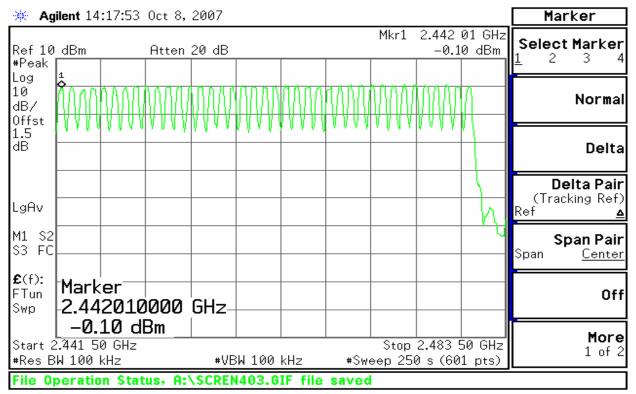
No non-compliance noted

<u>Test Data</u>

Result (No. of CH)	Limit (No. of CH)	Result
79	>15	PASS



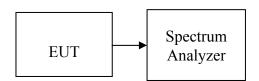
Test Plot


Channel Number

<u>2.4 GHz – 2.4415 GHz</u>

🔆 Agilent 14:04:41 Oct 8, 2007

2.4415 GHz - 2.4835 GHz



TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=1MHz, Span = 0Hz, Sweep = auto.
- 5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

No non-compliance noted

<u>Test Data</u>

<u>DH 1</u>

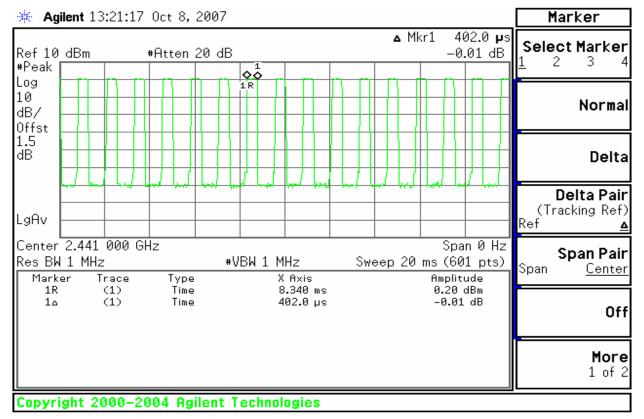
0.402 * (1600/2)/79 * 31.6 = 128.64 (ms)

Pulse Time	Total of Dwell	Period Time	Limit	Result
(ms)	(ms)	(s)	(ms)	
0.402	128.64	31.60	400	PASS

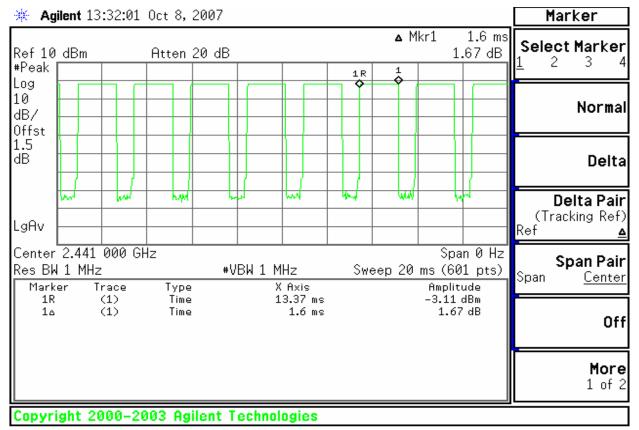
<u>DH 3</u>

1.60 * (1600/4)/79 * 31.6 = 256.00(ms)

Pulse Time	Total of Dwell	Period Time	Limit	Result
(ms)	(ms)	(s)	(ms)	
1.60	256.00	31.60	400	PASS

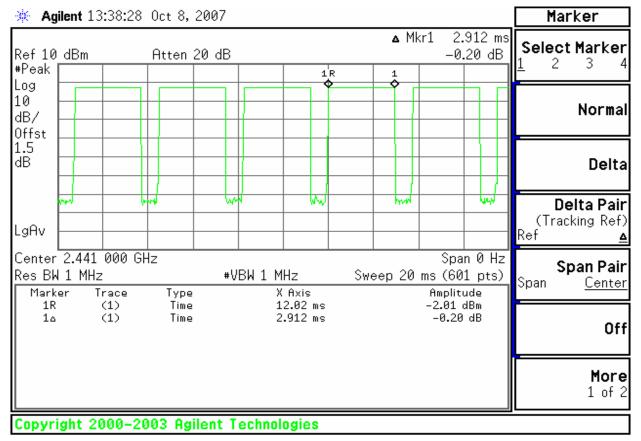

<u>DH 5</u> 2.912<u>* (1600/6)/79 * 31.6 = 310.61 (ms)</u>

Pulse Time	Total of Dwell	Period Time	Limit	Result
(ms)	(ms)	(s)	(ms)	
2.912	310.61	31.60	400	PASS



Test Plot

<u>DH 1</u>



<u>DH 3</u>

<u>DH 5</u>

RADIO FREQUENCY EXPOSURE

LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See 15.247(b)(4) and 1.1307(b)(1) of this chapter.

EUT Specification

EUT	Portable Navigator
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz ∑ Others: Bluetooth: 2.402GHz ~ 2.480GHz
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	Occupational/Controlled exposure $(S = 5mW/cm^2)$ General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	 Single antenna Multiple antennas Tx diversity Rx diversity Tx/Rx diversity
Max. output power	2.41dBm (1.742mW)
Antenna gain (Max)	-0.02dBi (Numeric gain: 0. 955mW)
Evaluation applied	 MPE Evaluation SAR Evaluation N/A

Remark:

- 1. The maximum output power is <u>2.41dBm (1.742mW) at 2402MHz</u> (with <u>0.955numeric</u> <u>antenna gain</u>.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm, even if the calculations indicate that the MPE distance would be lesser.

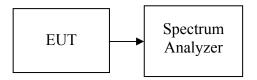
TEST RESULTS

Non-compliance.

SPURIOUS EMISSIONS

Conducted Measurement

LIMIT


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

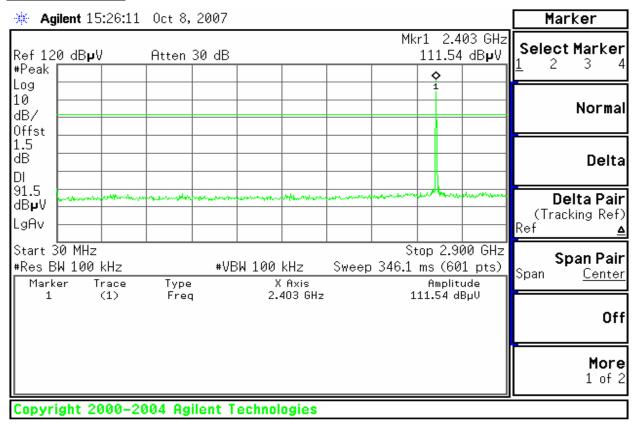
TEST PROCEDURE

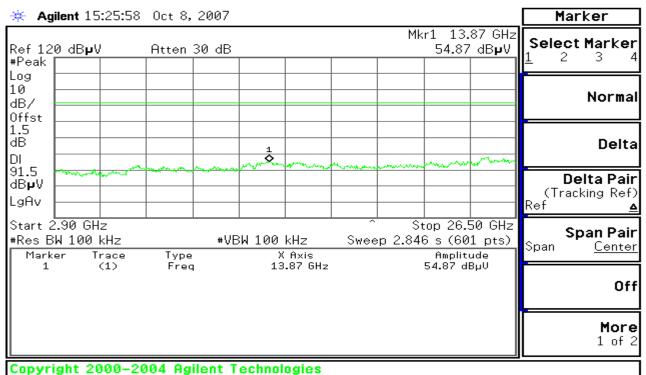
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 KHz. The video bandwidth is set to 100 KHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

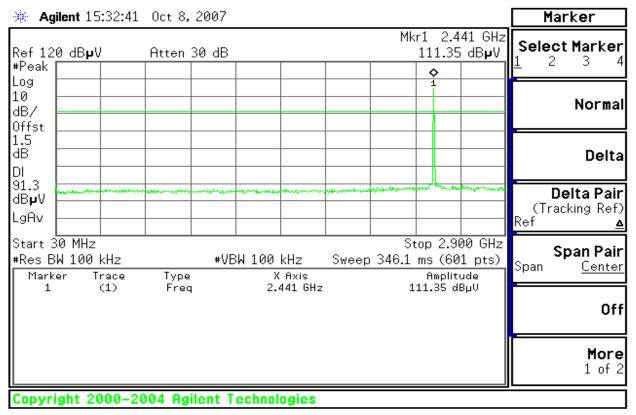
TEST RESULTS

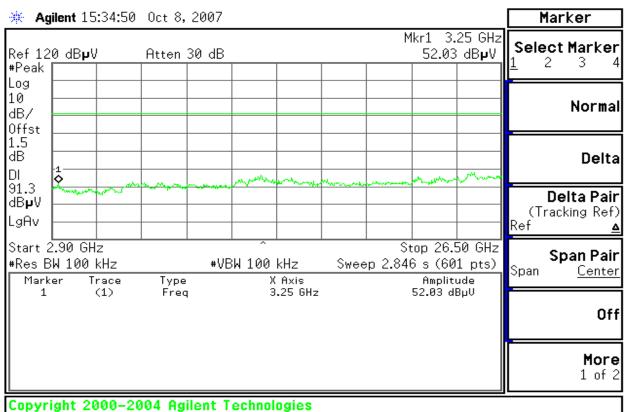

No non-compliance noted


Test Plot

CH Low

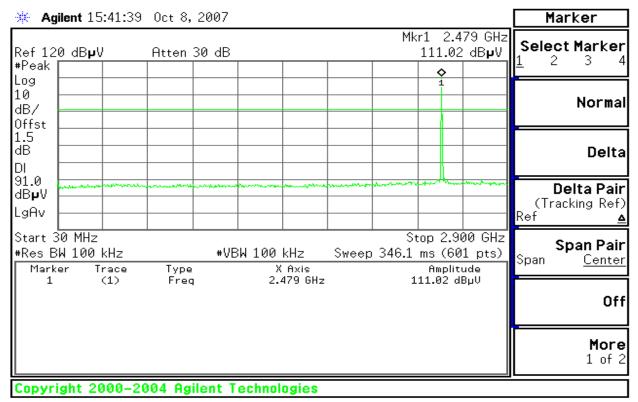
<u> 30MHz ~ 2.9GHz</u>

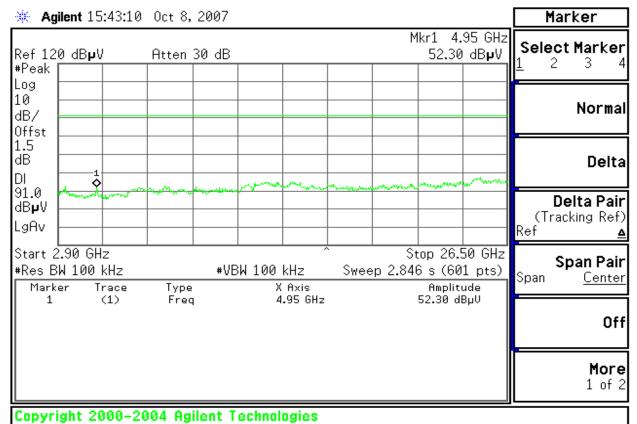

<u>2.9GHz ~ 26.5GHz</u>



CH Mid

<u>30MHz ~ 2.9GHz</u>


<u>2.9GHz ~ 26.5GHz</u>



<u>CH High</u>

<u>30MHz ~ 2.9GHz</u>

<u>2.9GHz ~ 26.5GHz</u>

Radiated Emissions

LIMIT

1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

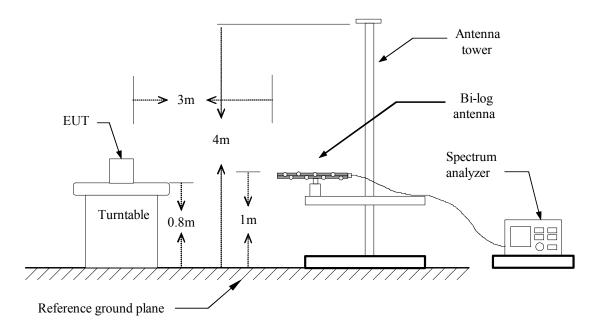
Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

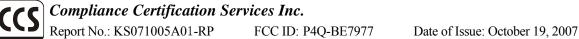
Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

2. In the above emission table, the tighter limit applies at the band edges.

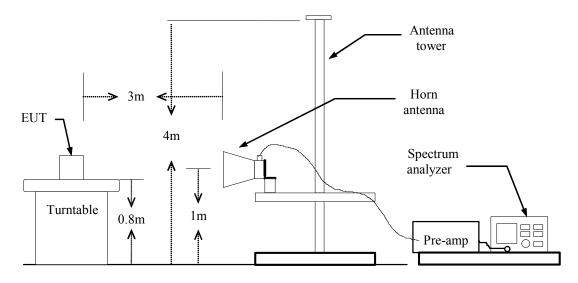
Frequency (Hz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

Page 34


977 Chamber (3m)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Spectrum Analyzer	Agilent	E4446A	MY44020154	11/16/2007					
ESPI3 EMI RECEIVER	R&S	ESPI3	101026	11/10/2007					
Pre-Amplfier	MINI	ZFL-1000VH2	d041703	12/12/2007					
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/21/2008					
Bilog Antenna	Sunol Sciences	JB1	A110204-2	11/09/2007					
Horn Antenna	Austriah	BBHA9120D	D267	09/20/2008					
Turn Table	СТ	CT123	4162	N.C.R					
Antenna Tower	СТ	CTERG23	3253	N.C.R					
Controller	СТ	CT100	95635	N.C.R					
Coax Switch	Anitsu	MP 598	M 80094	N/A					
Site NSA	CCS Lab.	N/A	N/A	02/15/2008					


MEASUREMENT EQUIPMENT USED

Remark: Each piece of equipment is scheduled for calibration once a year.


Test Configuration

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

```
RBW=100kHz / VBW=300kHz / Sweep=AUTO
```

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

- (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 7. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz

Operation	Mode: Norn	nal Link			Test Date	e: October	10, 2007
Temperatu	re: 25°C	l ,			Tested by	y: healing	
Humidity:	45 %	RH			Polarity:	Ver. / Ho	or.
Freq.	Ant.Pol.	Detector	Reading	Factor	Actual FS	Limit 3m	Safe
(MHz)	H/V	Mode (PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	Margin (dB)
35.44	V	Peak	40.11	-5.04	35.07	40.0	-4.93
80.29	V	Peak	46.27	-11.99	34.28	40.0	-5.72
95.02	V	Peak	50.06	-13.76	36.3	43.5	-7.20
175.59	V	Peak	47.53	-10.48	37.05	43.5	-6.45
597.54	V	Peak	40.11	-0.89	39.22	46.0	-6.78
959.75	V	Peak	37.19	4.45	41.64	46.0	-4.36
94.68	Н	Peak	39.93	-3.76	36.17	43.5	-7.33
124.22	Н	Peak	46.08	-8.21	37.87	43.5	-5.63
206.55	Н	Peak	48.43	-10.15	38.28	43.5	-5.22
227.76	Н	Peak	49.29	-9.98	39.31	46.0	-6.69
311.39	Н	Peak	46.06	-7.29	38.77	46.0	-7.23
959.47	Н	Peak	36.08	4.45	40.53	46.0	-5.47

Notes:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Above 1 GHz

Operation Mode: TX/ CH Low

Temperature: 25°C

Humidity: 43 % RH

Test Date:October 10, 2007Tested by:healingPolarity:Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CL CF	Actu	al Fs	Peak Limit	AV Limit	Margin (dB)	Remark
		(dBuV)	(dBuV)	(dB)	Peak	AV	(dBuV/m)	(dBuV/m)		Kennar k
					(dBuV/m)	(dBuV/m)				
4800.00	V	34.48	23.27	12.35	46.83	35.62	74	54	-18.38	Avg
7208.33	V	32.47	18.13	19.42	51.89	37.55	74	54	-16.45	Avg
4800.00	Н	37.94	24.09	12.35	50.29	36.44	74	54	-17.56	Avg
7208.33	Н	30.76	18.19	19.42	50.18	37.61	74	54	-16.39	Avg
	<u>р</u>									

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Operation Mode: TX/ CH Mid

Temperature: 25°C

Humidity: 43 % RH

Test Date:October 10, 2007Tested by:healingPolarity:Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CI CF	Actu	Actual Fs		Actual Fs		AV Limit	Margin (dB)	Domonia
		(dBuV)	(dBuV)	(dB)	Peak	AV	(авиу/т `	(dBuV/m)		Remark		
					(dBuV/m)	(dBuV/m)						
4883.33	V	36.31	21.82	12.42	48.73	34.24	74	54	-19.76	Avg		
7325.00	V	30.84	19.08	19.35	50.19	38.43	74	54	-15.57	Avg		
4883.33	Н	38.92	24.39	12.42	51.34	36.81	74	54	-17.19	Avg		
7325.00	Н	33.43	20.3	19.35	52.78	39.65	74	54	-14.35	Avg		

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Operation Mode: TX/ CH High

Temperature: 25°C

Humidity: 43 % RH

Test Date:October 10, 2007Tested by:healingPolarity:Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading	AV Reading	Ant. / CI CF	Actu	Actual Fs		AV Limit	Margin (dB)	Domonia
		(dBuV)	(dBuV)	(dB)	Peak	AV	(авиу/т `	(dBuV/m)		Remark
					(dBuV/m)	(dBuV/m)				
4958.33	V	37.18	23.37	12.49	49.67	35.86	74	54	-18.14	Avg
7441.67	V	31.62	18.34	19.40	51.02	37.74	74	54	-16.26	Avg
4958.33	Н	38	24.94	12.49	50.49	37.43	74	54	-16.57	Avg
7441.67	Н	32.22	19.78	19.40	51.62	39.18	74	54	-14.82	Avg

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

POWERLINE CONDUCTED EMISSIONS

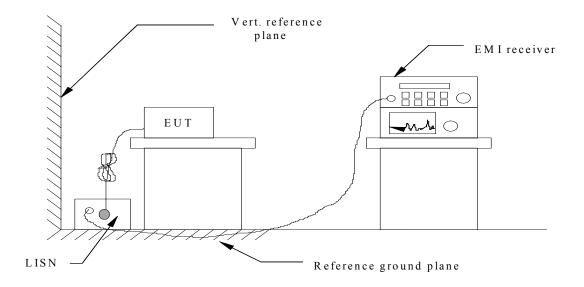
LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)					
Trequency Range (191112)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED


Conducted Emission Test Site A (10m chamber)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
EMI Test Receiver	R&S	ESI26	100068	02/11/2008					
EMC Analyzer	Agilent	E7402A	US41160329	02/11/2008					
LISN	FCC	FCC-LISN-50-50-2-M	01067	02/11/2008					
LISN (EUT)	FCC	FCC-LISN-50-50-2-M	01068	02/11/2008					
TRANSIENT LIMITER	SCHAFFNER	CFL9206	1710	03/15/2008					
EMI Monitor control box	FCC	0-SVDC	N/A	N/A					

Remark: Each piece of equipment is scheduled for calibration once a year.

Page 41

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

<u>Test Data</u>

Model: BE7977

Temperature: 25°C

Test Mode: Normal Link

Humidity: 43% RH

Test Results: Pass

Tested by: healing

Freq. (MHz)	Q.P. Raw reading (dBuV)	AVG Raw reading (dBuV)	Correction factor(dB)	-	AVG Amptd. (dBuV)	Q.P. Limit (dBuV)	AVG Limit (dBuV)	Q.P. Margin (dB)	AVG Margin (dB)	Line/Neutral
0.200	26.45	25.31	10.36	36.81	35.67	62.56	52.56	-25.75	-16.89	Line
0.800	26.33	25.06	10.42	36.75	35.48	58.93	48.93	-22.18	-13.45	Line
1.520	25.63	23.08	10.47	36.10	33.55	56.00	46.00	-19.90	-12.45	Line
2.160	25.54	24.31	10.52	36.06	34.83	56.00	46.00	-19.94	-11.17	Line
2.400	24.38	23.37	10.54	34.92	33.91	56.00	46.00	-21.08	-12.09	Line
2.800	24.89	24.19	10.57	35.46	34.76	56.00	46.00	-20.54	-11.24	Line
0.200	24.66	24.60	10.39	35.05	34.99	60.75	50.75	-25.70	-15.76	Neutral
0.480	23.74	23.04	10.39	34.13	33.43	56.96	46.96	-22.83	-13.53	Neutral
0.800	19.50	19.01	10.41	29.91	29.42	56.00	46.00	-26.09	-16.58	Neutral
1.150	17.63	16.93	10.46	28.09	27.39	56.00	46.00	-27.91	-18.61	Neutral
2.080	18.20	17.71	10.50	28.70	28.21	56.00	46.00	-27.30	-17.79	Neutral
2.400	18.26	17.30	10.52	28.78	27.82	56.00	46.00	-27.22	-18.18	Neutral

Remark:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- *3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.*
- 4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz.

Note:

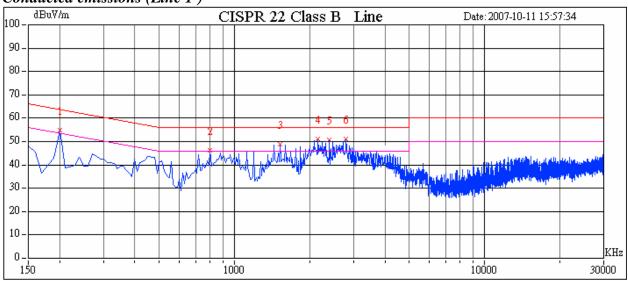
Freq. = Emission frequency in KHz

Factor (dB) = cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER (The TRANSIENT LIMITER included 10 dB ATTENUATION)

Amptd dBuV = Uncorrected Analyzer/Receiver reading + cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER,

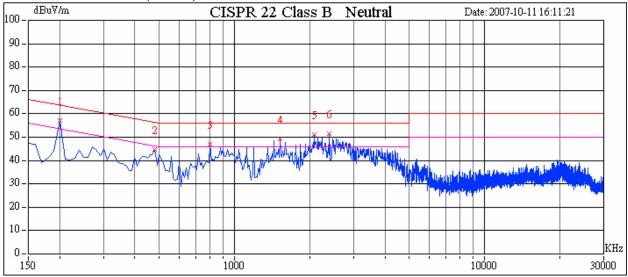
if it $> 0.5 \, dB$

Limit dBuV = *Limit stated in standard*


Margin dB = Reading in reference to limit

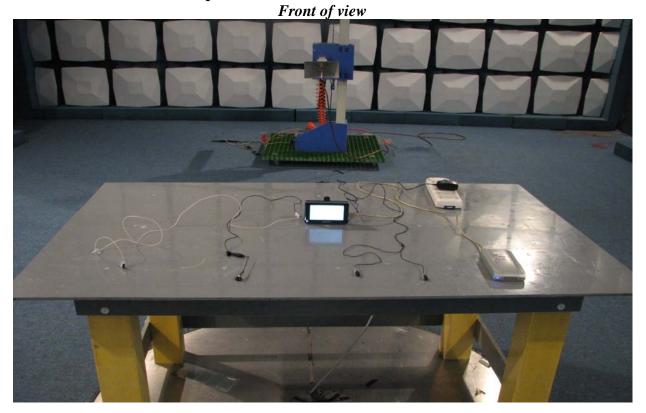
Calculation Formula

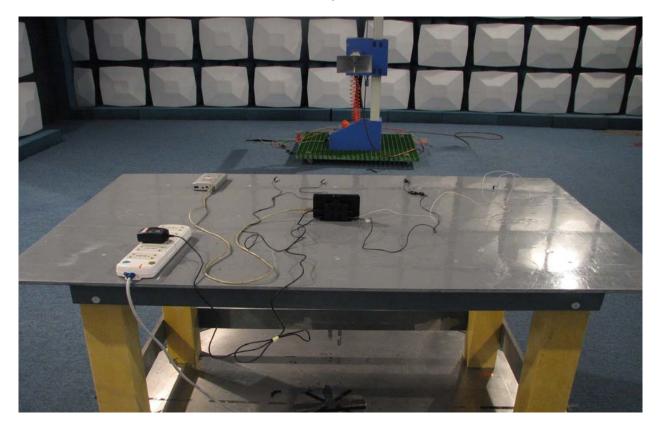
Margin(dB) = Amptd(dBuV) - Limit(dBuV)


<u>Test Plot</u>

Conducted emissions (Line 1)

<u>Test Plot</u>


Conducted emissions (Line 2)



APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Radiated Emission Set up Photos

Back of view

Conducted Emission Set Up Photos

