CDMA DATA TERMINAL

DTG2000-Dual Version 2.0 Reference Manual Application Information

Mar. 16, 2006 01-DTG2000-Dual-V2 X2

AnyTime AnyPlace Any Wireless Data SolutionsTM

International Contact

AnyDATA Corp. 18902 Bardeen Ave Irvine, CA 92612-1522, U.S.A.

e-mail: johnkim@anydata.net

Korea Contact

AnyDATA.NET

Hanvit Bank Bldg. 6th Fl., 1-12

Byulyang-dong Kwachon,

Kyunggi-do, Korea

e-mail: info@anydata.net

Notice

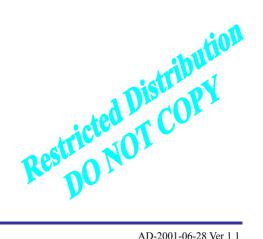
All data and information contained in or disclosed by this document are confidential and proprietary information of **AnyDATA.NET Inc.**, and all rights therein are expressly reserved. By accepting this material, the recipient agrees that this material and the information contained therein are held in confidence and in trust and will not be used, copied, reproduced, or distributed in whole or in part, nor its contents revealed in any manner to others without the express written permission of **AnyDATA.NET Inc.**

AnyDATA.NET Inc. does not assume any liability arising out of the application or use of its products. **AnyDATA.NET Inc.** assumes no responsibility for any damage or loss resulting from the misuse of its products. **AnyDATA.NET Inc.** assumes no responsibility for any loss or claims by third parties, which may arise through the use of its products. **AnyDATA.NET Inc.** assumes no responsibility for any damage or loss caused by the deletion or loss of data as a result of malfunctions or repairs.

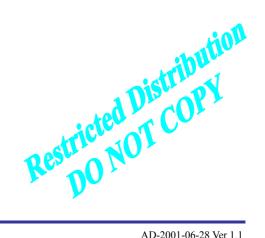
The information contained in this document is subject to change without notice. Information contained herein is for reference only and does not constitute a commitment on the part of **AnyDATA.NET Inc.** Although the information in this document has been carefully reviewed and it's believed to be reliable, **AnyDATA.NET Inc.** assumes no responsibility or liability for any errors or inaccuracies that may appear in this document nor are they in anyway responsible for any loss or damage resulting from the use (or misuse) of this document.

It is advised for the customers to contact our engineers for more information with respect to Keypad, audio interface, RF interface and input power supply before they start an actual design.

OEM integrators and installers are instructed that the phrase 'This device contains transmitter FCC ID: P4M-DTG2000V2 must be placed on the outside of the host.



Warning: Exposure to Radio Frequency Radiation


The radiated output power of this device is far below the FCC radio frequency exposure limits. Nevertheless, the device should be used in such a manner that the potential for human contact during normal operation is minimized. In order to avoid the possibility of exceeding the FCC radio frequency exposure limits, human proximity to the antenna should not be less than 20cm during normal operation and the gain of the antenna must not exceed 1dBi

Contents

- 1 Introduction
 - 1.1 Purpose
 - 1.2 Organization
 - 1.3 Revision History
 - 1.4 Reference
 - 1.5 Acronym List
- 2 Overview
 - 2.1 Application Description
 - 2.2 Technical Specifications
 - 2.2.1 General Specification
 - 2.2.2 Receive Specification
 - 2.2.3 Transmit Specification
 - 2.2.4 Standards
 - 2.3 Interface Diagram
- 3 PIN Description
 - 3.1 I/O Description Parameters
 - 3.2 PIN Names and Pin-outs
 - **3.2.1 100-PIN Connector**
 - 3.3 100-Pin Connector Pin-out (Top view)
- **4 Interface Descriptions**
 - 4.1 Overview
 - 4.2 Powering Up the Module
 - 4.3 CODEC Interface
 - 4.4 UART Interface
 - 4.3.1 UART1 Interface

- 4.3.2 UART2 Interface
- 4.3.3 UART3 Interface
- 4.5 General Purpose Interface
- 4.6 External Hardware Reset and Power Down Registration
- 4.7 User Interface
 - **4.7.1** Key Pad
 - 4.7.2 LCD
 - **4.7.3** Ringer
 - 4.7.4 LED Interface
- 5 Electrical Specifications
 - **5.1 DC Electrical Specifications**
 - **5.1.1** Absolute Maximum Ratings
 - **5.1.2** Recommended Operating Conditions
 - **5.1.3** Power Consumption
 - **5.1.4** Serial Interface Electrical Specifications
 - **5.2** Timing Characteristics
 - **5.2.1 External CODEC Timing**
 - 5.2.2 LCD Timing
- 4 Mechanical Dimension
 - 6.1 DTG2000-Dual V2.0 Outline
 - 6.2 100-Pin Connector
 - 6.3 RF Connector
- 7 Application Schematic

Figures

Figure 2-1 Interface Block Diagram	11
Figure 2-2 General Features	12
Figure 4-1 Interface Block Diagram	16
Figure 4-2 Keypad Matrix	21
Figure 4-3 LCD Interface Block Diagram	22
Figure 4-4 Reference External Ringer Driver Circuit	23
Figure 5-1 External PCM CODEC to Module timing	25
Figure 5-2 Module to External PCM CODEC timing	25
Figure 5-3 LCD Timing	26
Figure 6-1 100-pin Female Connector	29
Figure 6-2 PCB Connector	30
Figure 6-3 PCB Connector Layout	. 30
Figure 6-4 Mechanical Characteristics of Cable Harness Assembly	31

Tables

Table 1-1 Revision History	. 7
Table 3-1 100-PIN Connector Pinouts	15
Table 4-1 Analog Audio Pinouts	17
Table 4-2 Digital CODEC Pinouts	18
Table 4-3 UART Interface Pinouts	18
Table 4-4 UART2 Interface Pinouts	19
Table 4-5 UART3 Interface Pinouts	19
Table 4-6 General Purpose Interface Pinouts	20
Table 4-7 LCD Interface Signals	22
Table 5-1 Absolute Maximum Ratings	24
Table 5-2 External PCM CODEC Parameters	26
Table 5-3 LCD Timing Parameters	27

1. Introduction

1.1 Purpose

This manual provides hardware interface and programming information for the DTG2000-Dual V2.0 CDMA Wireless Data Module.

1.2 Organization

This manual will discuss the interface and operation of the module and is divided into the following subsections:

- Section 2 Introduces users to the DTG2000-Dual V2.0 CDMA Wireless Data Module's basic features and general specifications.
- Section 3 Lists each DTG2000-Dual V2.0 pin and its function within the device. The pinout for the module is listed in numeric sequence.
- Section 4 Specifies the recommended operating conditions, DC voltage characteristics, I/O timing, and power estimations for the module. Timing diagrams are also included.
- Section 5 Details each subsystem or block within the module and shows how the subsystem or block interfaces with external peripherals.
- Section 6 Provides package dimensions for the module.

1.3 Revision History

The revision history for this document is shown in Table 1-1.

Table 1-1 Revision History

Version	Date	Description
V2_X1	Feb. 2005	Initial Release
V2_X2	Mar. 2006	1 st Revision
		-
		-
		-

1.4 References

- 1. QUALCOMM Incorporated. <u>MSM6050 Mobile Station Modem™: Component Supply Specification</u>. 80-V2466-1, April 13, 2002.
- 2. QUALCOMM Incorporated. <u>MSM6050™ Mobile Station Modem: Device Specification</u> (<u>Preliminary Information</u>). 93-V3185-1, March 29, 2002.
- 3. QUALCOMM Incorporated. SURF6050 User Manual. 80-V2551-40, March 29, 2002.

1.5 Acronym List

Term	Definition		
CDMA	Code-Division Multiple Access		
CODEC	Coder-Decoder		
GPIO	General-purpose Input/Output		
JTAG	Joint Test Action Group (ANSI/ICEEE Std. 1149.1-1990)		
LCD	Liquid Crystal Display		
LDO	Voltage Regulator		
LED	Light Emitting Diode		
PCB	Printed Circuit Board		
PCM	Pulse Coded Modulation		
PCS	Personal Communications Service		
RF	Radio Frequency		
Rx	Receive		
TCXO	Temperature-Controlled Crystal Oscillator		
Tx	Transmit		
UART	Universal Asynchronous Receiver Transmitter		

2. Overview

2.1 Application Descriptions

The CDMA Wireless Data Module is a complex consumer communications instrument that relies heavily on both digital signal and embedded processor technologies. The Wireless Data Modules manufactured by AnyDATA.NET support Code-Division Multiple Access (CDMA). This operates in both the cellular and PCS spectrum band.

In a continuing effort to simplify the design and to reduce the size and production cost of the Wireless Data Module, AnyDATA.NET has successfully developed the DTG series. The DTG2000-Dual V2.0 is AnyDATA.NET's latest compact Wireless Data Module operating in the Cellular and PCS spectrum band. The DTG2000-Dual V2.0 contains not only a complete digital modulation and demodulation system for CDMA standards as specified in IS-95 A/B and IS-2000, but also GPSOne position location solution which offers wireless callers their location wherever and whenever they need it. GPSOne is QUALCOMM CDMA Technologies' position location solution. It offers the availability of position location determination in hostile environments (such as indoors) where conventional GPS receivers do not work well.

GPSOne uses a hybrid approach that utilizes signals from the GPS satellite constellation and from CDMA cell sites to determine location. Using the hybrid approach, GPSOne enhances location services availability, accelerates the location determination process, and provides improved accuracy.

The hybrid mode approach for position location uses signals from CDMA cell stations and GPS satellites to compute the user's location. This approach basically takes advantage of an accurate knowledge of GPS system timing on a CDMA mobile station. The knowledge of system timing allows the GPSOne solution to use both the CDMA signal measurements and GPS signal measurements collectively to compute the user's location. It also allows for a central entity, named Position Determination Entity (PDE), to send estimated signal phases to the mobile. This knowledge reduces the time to search the satellite pseudo ranges on the mobile, thus improving the time taken to determine the user's position.

The subsystem in the DTG2000-Dual V2.0 includes a CDMA processor (MSM6050), an integrated CODEC with an ear piece and microphone amplifiers, and an RS-232 serial interface supporting forward link data communications at a rate of 153kbps.

The DTG2000-Dual V2.0 provides an external interface that includes the standard RS-232, Digital Audio, External reset control, parallel LCD Display, Keypad, Ringer extension ports and R-UIM for

China market.

The DTG2000-Dual V2.0 has the capability to power down unused circuits in order to dynamically minimize power consumption.

2.2 Technical Specifications

2.2.1 General Specifications

Parameters	Descriptions			
External Access	Code-Division-Multiple-Access (CDMA)			
CDMA Protocol	IS-95 A/B, IS-98A, IS-126, IS-637A, IS-707A, IS-2000			
Data Rate	153.6Kbps max			
Transmit/Receive Frequency Interval	45MHz for Cellular and 80MHz for PCS			
Vocoder	EVRC, 13kQCELP			
RF technology	Zero Intermediate Frequency			
Number of Channel	832 for Cellular and 42 for PCS			
Operating Voltage	DC +3.4V ~ +4.3V BATT_INT (Pin88 and 90)			
	DC +4.0V to +5.0V +VEXT_DC (Pin87 and 89)			
Current Consumption	1. VCC applied to +VEXT_DC (Pin87 and Pin89)			
	Stand by mode: Idle (110mA), Sleep (less than 9mA)			
	Busy mode: 900mA (Max)			
	2. VCC applied to BATT_INT (Pin88 and Pin90)			
	Stand by mode: Idle (110mA), Sleep (less than 1mA)			
	Busy mode: 900mA (Max)			
	See section 4.5.1 for detail			
Operating Temperature	-30°C ~ +60°C			
Frequency Stability	±300Hz for Cellular and ±150Hz for PCS			
Antenna	2 x GSC Connectors, 50ohm			
Size	38 X 38 X 5.4mm with case			
Weight	About 15g			
External Interface	RS-232s, Digital/Analog Audios, LCD, Keypad, Ringer			
	External Reset Control, R-UIM, MP3, MIDI, GPIOs			
User Interface Software	BREW support			
Additional Function	GPSOne position location solution			

2.2.2 Receiver Specifications

Parameters	Descriptions			
Frequency Range	869.04 ~ 893.97 MHz for Cellular and 1931.25 ~ 1988.75MHz for PCS			
Sensitivity	Below –104 dBm			
Interference Rejection Single tone (-30dBm @900KHz): Below –101dBm				
	Two tone (-43 dBm @900KHz and 1700KHz): Below -101dBm			
	Two tone (-32 dBm @900KHz and 1700KHz): Below –90dBm			
	Two tone (-21 dBm @900KHz and 1700KHz): Below –79dBm			
Spurious Wave Suppression	Below –80dBc			
Input Dynamic Range	-25 dBm ~ -104dBm			
	-25 dBm ~ -104dBm Restricted Discopy Restricted Discopy			
All Rights Reserved.	AD-2001-06-28 Ver 1.			

2.2.3 Transmitter Specifications

Parameters	Descriptions
Frequency Range	824.04 ~ 848.97 MHz for Cellular and 1851.25 ~ 1908.75MHz for PCS
Nominal Max Power	0.32 W (24.7dBm)
Peak Power in Operation Mode	0.45W (26.5dBm)
Minimum Controlled Output Power	Below –50dBm
Max Power Spurious	900KHz: Below –42dBc/30KHz
	1.98MHz: Below –54dBc/30KHz

2.2.4 gpsOne Receiver Specifications

Parameters	Descriptions
Frequency Range	L1, 1575.42MHz
C/A Code	1.023MHz Chip Rate
Receiver Sensitivity	-152dBm

2.2.5 Standards

IS-95 A/B: Protocol Between MS & BTS

IS-96A: Voice Signal Coding IS-98A: Base MS Function IS-126: Voice Loop-Back

IS-637: Short Message Service

IS-707: Data Service

Built-in TCP/IP: AnyDATA proprietary software

IS-657 : packet data IS-916 : Assisted GPS

2.3 Interface Diagram

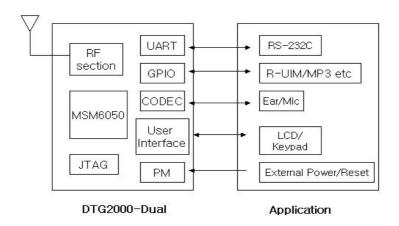


Figure 2-1 Interface Block Diagram

3. PIN Description

3.1 I/O Description Parameters

Symbol	Description		
I	CMOS Input		
О	Output		
В	Bi-directional		
N	Voltage or Current Level		
IS	Input with Schmitt Trigger		
BS	Bi-directional Schmitt Trigger		
PU	Internal Pull-Up		
PD	Internal Pull-Down		

3.2 PIN Names and Pinouts

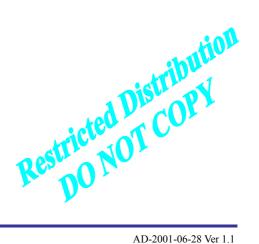
3.2.1 100-Pin Connector

PIN	NAME	TYPE	DESCRIPTION
1	D15	B-K3	Data line
2	AGND	AGND	Analog Ground
3	D14	В-К3	Data line
4	AGND	AGND	Analog Ground
5	D12	B-K3	Data line
6	D13	B-K3	Data line
7	D10	B-K3	Data line
8	D11	B-K3	Data line
9	D08	B-K3	Data line
10	D09	B-K3	Data line
711	GND	GND	Signal ground
12	GND	GND	Signal ground
13	MSM_DP_DCD/ (GPIO_INIT44)	BS-PD	Data carrier detect (UART1)
14	MSM_DP_RI/ (GPIO_INIT54)	BS-PD	Ring indicator (UART1)
15	MSM_DP_RFR/	O	Ready for Receive (UART1)
16	MSM_DP_TXD	O	Transmit data (UART1)
17	MSM_DP_DTR/ (GPIO_INIT50)	BS-PU	Data terminal ready (UART1)
18	MSM_DP_RXD	IS-PD	Receive data (UART1)
19	MSM_DP_CTS/	IS-PD	Clear to send (UART1)
20	MSM_DP_RXD2(UIM_PWR_EN)	BS_PD3	General purpose input output, Receive data (UART2)
21	MSM_DP_TXD2 (UIM_DATA)	BS_PD3	General purpose input output, Transmit data (UART2)
22	MSM_DP_CTS2/ (UIM_RESET)	BS_PD3	General purpose input output, Clear to send (UART2)
23	MSM_DP_RFR2/ (UIM_CLK)	BS_PD3	General purpose input Output, Ready for Receive(UART2)
24	GPIO_INT15	BS_PU3	General purpose input output
25	AUX_PCM_CLK	BS_PD3	External CODEC PCM clock
26	AUX_PCM_DOUT	BS_PU3	External CODEC PCM data output
27	AUX_PCM_SYNC	BS_PD3	External CODEC PCM data strobe
28	AUX_PCM_DIN	IS-PD	External CODEC PCM data input
29	GPIO_INT49	BS_HK2	General purpose input output
30	POWER_ON	I	POWER ON used only when to use 3.6V 1cell battery

PIN	NAME	ТҮРЕ	DESCRIPTION
1111	TVAIVIE	11112	External pull-up required
31	EX RESET	I	External Reset (Low Enable)
32	GPIO INT18	BS PD3	General purpose input output
33	GPIO_INT45	BS_FD3	General purpose input output
34	GPIO_INT33 (IDLE LED)	BS_FD3	General purpose input output General purpose input output, Idle LED Enable
35	GPIO_INT47 (BUSY LED	BS_FD3 BS_PU3	General purpose input output, Idle LED Enable General purpose input output, Busy LED Enable
36	GND GND	GND	Signal ground
37	GND	GND	Signal ground
38	D00	B-K3	Data line
39	D01	B-K3	Data line Data line
40	D01	B-K3	Data line Data line
40	D03	B-K3	Data line Data line
42	D03		
	-	B-K3	Data line
43	D05	B-K3	Data line
44	D06	B-K3	Data line
45	D07	B-K3	Data line
46	A02	B-K3	Address line
47	A01	B_K3	Address line
48	RESET_OUT/	0	Reset Out
49	GPIO_INT37(LCS_CS/)	BS_PU3	General purpose input output
50	GPIO_INT36(LCD_EN)	BS_PU3	General purpose input output
51	OE/	O-3	Output Enable Signal
52	WE/	O-3	Write Enable Signal
53	KEYSENSEO/ (GPIO_INT62)	IS_PU3	Key sense input
54	KEYSENSE1/ (GPIO_INT63)	IS_PU3	Key sense input
55	KEYSENSE2/ (GPIO_INT64)	IS_PU3	Key sense input
56	KEYSENSE3/ (GPIO_INT65)	IS_PU3	Key sense input
57	KEYSENSE4/ (GPIO_INT66)	IS_PU3	Key sense input
58	GPIO_INT61 (KEYPAD00)	BS_PD3	General purpose input output, Keypad input
59	GPIO_INT60 (KEYPAD01)	BS_PD3	General purpose input output, Keypad input
60	GPIO_INT59 (KEYPAD02)	BS_PD3	General purpose input output, Keypad input
61	GPIO_INT58 (KEYPAD03)	BS_PD3	General purpose input output, Keypad input
62	GPIO_INT57 (KEYPAD04)	BS_PD3	General purpose input output, Keypad input
63	GPIO_INT56 (KEYPAD05)	BS_PD3	General purpose input output, Keypad input
64	GPIO_INT48(ON_SW_SENSE)	BS_PU3	General purpose input output
65	GPIO_INT09	BS_HK2	General purpose input output
66	GPIO_INT10	BS_HK2	General purpose input output
67	SMS LED	0	SMS LED Enable
68	GPIO_INT17	BS_PU3	General purpose input output
69	GPIO_INT04	BS_PD3	General purpose input output
70	GPIO_INT16	BS_PU3	General purpose input output
71	VIBRATOR_DRV	0	VIBRATOR_DRV output
72	PS_HOLD	0	PS_HOLD output, POWER LED Enable
73	AUXON	OA	Auxiliary output (-)
74	RINGER	О	Ringer Enable output
75	AUXOP	OA	Auxiliary output (+)
76	GND	GND	Signal ground
77	GND	GND	Signal ground
78	GPIO_INT19(EAR_DET1)	BS_PD3	General purpose input output, EAR Jack Detect
79	EAR2O	OA	Ear Jack speaker output
80	EAR1O_P	OA	External speaker (+) output

PIN	NAME	ТҮРЕ	DESCRIPTION
81	EAR1O_N	OA	External speaker (-) output
82	MIC1P	IA	External Mic (+) input
83	MIC2P	IA	Ear Jack Mic (+) input
84	GND	GND	Signal Ground
85	GND	GND	Signal ground
86	+VBATT	IA	Battery Gauge input
87	+VEXT_DC	V	External DC input
88	VATT_INT	V	Battery input
89	+VEXT_DC	V	External DC input
90	VATT_INT	V	Battery input
91	GPIO_INT11(RXD3)	BS_PD3	General purpose input output (UART3)
92	GPIO_INT12(TXD3)	BS_PD3	General purpose input output (UART3)
93	GPIO_INT13(CTS/3)	BS_PD3	General purpose input output (UART3)
94	GPIO_INT14(RFR/3)	BS_PD3	General purpose input output (UART3)
95	GPIO_INT02	BS_PU3	General purpose input output
96	GP_ADC_DET	BS_PD3	General purpose ADC input
97	GPIO_INT34	BS_PU3	General purpose input output
98	GPIO_INT35	BS_PU3	General purpose input output
99	GND	GND	Signal ground
100	GND	GND	Signal ground

3.3 100-PIN Connect Pinouts (Topview)


Table 3-1 100-PIN Connector Pinouts

1	D15	2	AGND
3	D14	4	AGND
5	D12	6	D13
7	D10	8	D11
9	D08	10	D09
11	GND	12	GND
13	MSM DP DCD/(GPIO INT44)	14	MSM DP RI/(GPIO INT54)
15	MSM DP RFR/	16	MSM DP TXD
17	MSM DP DTR/(GPIO INT50)	18	MSM DP RXD
19	MSM DP CTS/	20	MSM DP RXD2 (UIM PWR EN)
21	MSM DP TXD2 (UIM DATA)	22	MSM DP CTS2/(UIM RESET)
23	MSM DP RFR2/(UIM CLK)	24	UART EN
25	AUX PCM CLK	26	AUX PCM DOUT
27	AUX PCM SYNC	28	AUX PCM DIN
29	GPIO INT49	30	POWER ON
31	EX RESET	32	GPIO INT18
33	GPIO INT45	34	IDLE LED
35	BUSY LED	36	GND
37	GND	38	D00
39	D01	40	D02
41	D03	42	D04
43	D05	44	D06
45	D07	46	A02
47	A01	48	RESET_OUT
49	LCD_CS/(GPIO_INT37)	50	LCD_EN (GPIO_INT36)
51	OE/	52	WE/
53	KEYSENSE0/ (GPIO_INT62)	54	KEYSENSE1/(GPIO_INT63)
55	KEYSENSE2/ (GPIO_INT64)	56	<u> </u>
57	KEYSENSE4/ (GPIO_INT66)	58	KEYPAD00 (GPIO_INT61)
59	KEYPAD01 (GPIO_INT60)	60	KEYPAD02 (GPIO_INT59)
61	KEYPAD03 (GPIO_INT58)	62	KEYPAD04 (GPIO_INT57)
63	KEYPAD05 (GPIO_INT56)	64	GPIO_INT48 (ON_SW_SENSE/)
65	GPIO_INT09	66	GPIO_INT10
67	SMS LED	68	GPIO_INT48 (ON_SW_SENSE/) GPIO_INT10 GPIO_INT17 GPIO_INT16 PS_HOLD, Power On LED RINGER
69	GPIO_INT04	70	GPIO_INT16
71	VIBRATOR_DRV	72	PS_HOLD, Power On LED
73	AUXON	74	RINGER
75	AUXOP	76	GND (1)
77	GND	78	GPIO_INT19 (EAR_DETL)
	EAR2O	80	EAR1O_P

81 EAR1O_N	82 MIC1P
83 MIC2P	84 GND
85 GND	86 +VBATT (NOT IN USE)
87 +VEXT_DC	88 VATT_INT
89 +VEXT_DC	90 VATT_INT
91 GPIO_INT11 (MSM_DP_RXD3) *	92 GPIO_INT12 (MSM_DP_TXD3) *
93 GPIO_INT13 (MSM_DP_CTS3/)	94 GPIO_INT14 (MSM_DP_RFR3)
95 GPIO_INT02	96 GP_ADC_DET
97 GPIO_INT34 (GP_CS0/)	98 GPIO_INT35 (GP_CS1/)
99 GND	100 GND

Notes:

- * Pin 91 and Pin 92 can be used as the third UART for debugging. We strongly recommend that the user have a 3-pin connector or 3 test points on their board, so that one can easily monitor and diagnose their module.
- * LEAVE UNUSED PINS OPEN AT ALL TIMES

4. Interface Descriptions

4.1 Overview

This chapter covers information required to convert the DTG2000-Dual V2.0 into a subscriber unit application. In addition, some of the internal blocks of the device are described. Understanding these internal blocks is necessary for one to completely grasp the functions of the various interfaces.

This chapter discusses the interface to the major blocks of the DTGD2000-Dual V2.0 as shown in the following figure. These blocks include:

- Power Up
- CODEC Interface
- UART Interface
- General Purpose Interface
- External Hardware Reset
- User Interface

4.2 Powering Up the Module

There are two ways to power up the module and customers may choose one of the two ways to power up DTG2000-Dual V2.0.

4.2.1 Supply input to +VEXT DC (Pin 87 and Pin 89)

If the customers don't need to save current in sleep mode, which is around 15mA, supplying the voltage input to +VEXT DC (Pin 87 and 89) is recommended.

When the input voltage from +4V to +5.0V is supplied, DTG2000-Dual V2.0 will automatically start its power-on process and finish it within 2 seconds. In this case, using a regulator with an enable pin is highly recommended so that the customer can reset the module using the enable pin if software lock-up symptoms are found.

If a customer needs to use charging circuit built in the module, apply +4.5V DC to +VEXT_DC (Pin87 and 89) and connect the 3.6V 1cell lithium-ion battery to BATT_INT (Pin88 and 90).

4.2.2 Supply Input to BATT INT (Pin 88 and Pin 90)

If the customers need to get their device to operate in a very low sleep current mode, supplying the voltage input to BATT INT (Pin 88 and 90) is recommended.

When the input voltage from +3.4V to +4.3V is supplied to BATT INT(Pin88 and 90), DTG2000-Dual V2.0 won't automatically start its power-on process without low assertion of POWER_ON (Pin 30). To power the module on, first apply VCC to BATT INT and have POWER ON (Pin30) stay low for more than 500 msec and less than 2 sec.

POWER_ON (Pin 30) needs to be externally pulled up to 3V to 3.6V thru 100kohm resistor.

To power off the module, have POWER ON(Pin 30) stay low for more than 2sec and less than 4sec and then the voltage in BATT_INT may or may not be removed.

If Vcc is supplied thru a regulator to BATT INT(Pin88 and 90), using a regulator with an enable pin is highly recommended so that the customer can shut off the power to the module using the enable pin if software lock-up symptoms are found. If the modem is locked up, low assertion of POWER_ON(Pin 30) won't power on or off the module or Pin 31(Ext Reset) may not work.

If Vcc is supplied directly from a battery, having a FET between the output of a battery and input of DTG2000-Dual V2.0 is recommended that the customer can shut off the Vcc to DTG2000-Dual V2.0 using the FET as a reset method..

4.3 CODEC Interface

With the integrated microphone and earpiece amplifier including CODEC, the DTG2000-Dual V2.0 module interfaces directly, either differential or single-ended, to the microphone and earpiece.

The audio features in the module are

- Two microphone inputs
- Two earphone outputs and one auxiliary audio output.

4.3.1 Internal CODEC Interface

The module contains analog audio interface circuitry. The contained audio interface supports all of the required conversation and amplification stages for the audio front end.

Table 4-1 Analog Audio Pinouts

required conversation	equired conversation and amplification stages for the audio front end.					
The audio interfa	The audio interface includes the amplification stages for both the microphone and earphone.					
The EAR10 and I	The EAR10 and MIC1P are typically used for the handset microphone,					
The EAR_JACK	The EAR_JACK+ and MIC2P are typically used for the ear-jack.					
	Table 4-1 Analog Audio Pinouts					
NAME	NAME DESCRIPTION CHARACTERISTIC					
MIC2P	Mic Jack Input	Analog Input (Pin No. 83, for Ear-Mic Jack) *				
EAR_DET1	EAR/MIC Set Detect	Logic Input (Pin No. 78) **				
EAR JACK+	Earphone Output	Analog Output (Pin No. 79 for Ear-Mic Jack)				

NAME	DESCRIPTION	CHARACTERISTIC
GND_A	Audio Ground	Audio Ground (Pin No. 2, 4)
EAR10_N	Speaker Output -	Analog Output (Pin No. 81)
EAR10_P	Speaker Output +	Analog Output (Pin No. 80)
MIC1D	Mic Innut	Analog Input (Pin No. 82),
MIC1P	Mic Input	Mic bias is supplied from this pin.
AUXON	Auxiliary Output -	Analog Output (Pin No. 73)
AUXOP	Auxiliary Output +	Analog Output (Pin No. 75)

Note:

- * MIC2, along with being a microphone input, checks to see if the user has pressed the headset key, which allows the user to connect to or disconnect from a call. This pin is internally pulled high and is therefore normally in the high state. To activate this input and connect to or disconnect from a call, the user must set the MIC2 pin to a low state for 100ms to 200ms.
- ** EAR_DET1 checks to see if a headset has been connected to the ear-jack. When there is no headset connected to the ear-jack, the audio path thru an ear jack is disconnected. When a headset is connected to the ear-jack, audio path is opened. To simulate a headset connected to the ear-jack, the user must apply a low signal to the EAR_DET1 pin for as long as the user wants the audio path to be kept open.

4.3.2 Extended CODEC Interface

The PCM CODEC interface is used for the car-kit audio system. This interface is optional. External CODEC interface signals are listed below:

Table 4-2 Digital CODEC Pinouts

NAME	DESCRIPTION	PINOUTS
AUX_PCM_CLK	PCM Clock	Pin No. 25
AUX_PCM_DIN	PCM Data Input	Pin No. 28
AUX_PCM_DOUT	PCM Data Output	Pin No. 26
AUX_PCM_SYNC	PCM Sync.	Pin No. 27

4.4 UART Interface

The Universal Asynchronous Receiver Transmitter (UART) communicates with serial data that conforms to the RS-232 Interface protocol. The module has 3 UARTs which provides 3.0V CMOS level outputs and 3.0V CMOS input levels. All the control signals of the RS-232 are active low, however the data signals, RXD and TXD, are active high.

UART1 which has 512 bytes for Tx and Rx FIFO, supports high speed data communication up to 230.4kbps, program download and diagnostic monitor function.

UART2 and 3 which 64 bytes for T/Rx FIFO, support low speed data communication up to 115.2kbps, program download and diagnostic monitor function.

The UART features hardware handshaking, programmable data sizes, programmable stop bits, and odd, even, no parity.

4.4.1 UART1 interface

Table 4-3 UART1 Interface Pinouts

NAME	DESCRIPTION	PIN NUNBER	CHARACTERISTIC
DP_DCD/	Data Carrier Detect	13	Network connected from the module
DP_RI/	Ring Indicator	14	Output to host indicating coming call
DP_RFR/	Ready for Receive	15	Ready for receive to the host
DP_TXD	Transmit Data	16	Output data from the module
DP_DTR/	Data Terminal Ready	17	Host ready signal from the host
DP_RXD	Receive Data	18	Input data to the module
DP_CTS/	Clear to Send	19	Clear to send from the host
GND	Signal Ground	11, 12	Signal ground

^{*} Leave unused Pins open.

4.4.2 UART2 interface

The UART2 supports R-UIM interface.

Table 4-4 UART2 Interface Pinouts

NAME	DESCRIPTION	PIN NUMBER	CHARACTERISTIC
DP_RXD2	Receive Data	20	Input data to the module
DP_TXD2	Transmit Data	21	Output data from the module
DP_CTS2/	Clear to Send	22	Clear to send from the host
DP_RFR2/	Ready for Receive	23	Ready for receive to the host
GND	Signal Ground	11, 12	Signal ground

^{*} Leave unused Pins open.

If a customer wants to use R-UIM card, UART2 can't be used as UART.

4.4.3 UART3 interface

The UART3 is used to monitor and diagnose the status of the DTG2000-Dual V2.0. It is strongly recommended for the user to have the following UART3 pins connected to an extra connector or to test **bution** points, in order to easily troubleshoot any problems with the module.

Table 4-5 UART3 Interface Pinouts

NAME	DESCRIPTION	PIN NUMBER	CHARACTERISTIC
DP_RXD3	Receive Data	29	Input data to the module
DP_TXD3	Transmit Data	30	Output data from the module
DP_CTS3/	Clear to Send	34	Clear to send from the host
DP_RFR3/	Ready for Receive	32	Ready for receive to the host
GND	Signal Ground	11, 12	Signal ground

^{*} Leave unused Pins open.

4.5 General Purpose Interface

The general purpose interface consists of 11 user-definable bi-directional pins.

Each GPIO pin can be configured as an input interrupt source. In addition, some GPIO pins can be used as output control pins from the module. The user can define these pins properly as follows.

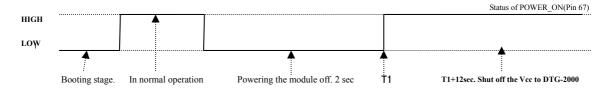
NAME	PIN NUMBER	CHARACTERISTIC
GPIO_INT15	24	Configured as a pull-up, Bi-directional
GPIO_INT45	33	Configured as a pull-up, Bi-directional
GPIO_INT17	68	Configured as a pull-up, Bi-directional
GPIO_INT04	69	Configured as a pull-down, Bi-directional
GPIO_INT16	70	Configured as a pull-down, Bi-directional
GPIO_INT09	65	Configured as a pull-down, Bi-directional
GPIO_INT10	66	Configured as a pull-up, Bi-directional
GPIO_INT13	93	Configured as a pull-up, Bi-directional
GPIO_INT49	29	Configured as a pull-down, Bi-directional
GPIO_INT02	95	Configured as a pull-down, Bi-directional
GPIO INT18	32	Configured as a pull-down, Bi-directional

Table 4-6 General Purpose Interface Pinouts

4.6 External Hardware Reset and Power Down Registration

4.6.1 External Hardware Reset (Pin #31)

There are two types of resets that the user can employ to restart the module. The first type will reset the MSM and the memory and is performed when the user gives the AT command, AT+RESET, to the MSM. Another way to reset the module is by using the external hardware reset. This type of reset will reset the hardware as well as the MSM and the memory. The flash memory will be the only information that is kept. To perform an external hardware reset, make sure the module has powered on and is not in the initialization stage, and then **pull low** the external hardware reset pin (Pin #31) for 200ms to 500ms. Keep the external hardware reset pin high or floating when the module is initializing and booting up as well as during normal operation. This pin is **internally pulled up to +3.0V**.


4.6.2 Power Down Registration

Before DTG2000-Dual V2.0 is powered off, it has to send power down registration message to the CDMA base station to help the base station to maximize its capacity. Depending on air interface environment, it may take 12 seconds at maximum according to CDMA technical standard.

4.6.2.1 Power Down Registration Protocol for CDMA device

4.6.2.1.1 Using AT command (When Vcc is applied to +VEXT_DC) Device connected to DTG-2000 Before powering off DTG-2000, send "AT+POWEROFF" to DTG-2000. After waiting for 12 seconds, the host device may shut down the power to DTG-2000.

4.6.2.1.2 Using POWER_ON (Pin 30) (Only when Vcc is applied to BATT_INT)

Rights Passers 2

4.7 User Interface

4.7.1 Keypad

The keypad interface consists of a 5 X 6 matrix pattern. The 5-KEYSENSE/[4:0] pins are used to connect a matrix keypad to the module. The KEYSENSE/ pins are active low.

The 6-KEYPAD pins are necessary to construct the other side of the matrix. These KEYPAD pins must be active high in order for the keypad matrix to work properly. The general keypad matrix is shown below:

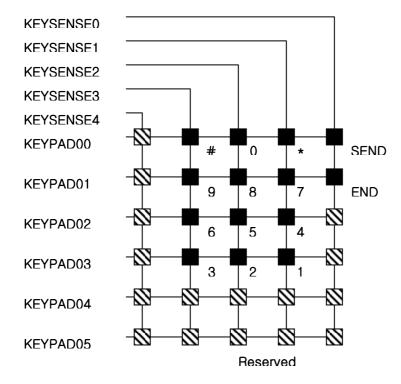


Figure 4-1 Keypad Matrix

DTMF

When key is pressed, CDMA Module generates standard DTMF tone and sends it to the local audio path (speaker). If the Mobile station is in traffic state, the CDMA Module sends DTMF Message to the Base Station and to the local audio path (speaker) at the same time. The network will deliver the analog DTMF tone or DTMF Message to its final destination.

4.7.2 LCD

The module supports the 16 bits parallel LCD interface as well as the 8 bits. The LCD interface is composed of 23-signals. Direct access to the LCD driver is not applicable.

Table 4-7 LCD Interface Signals

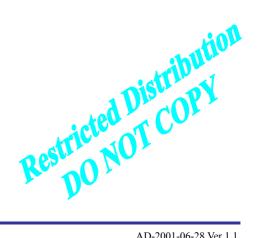
NAME	ТҮРЕ	CHARACTERISTIC	
LWR/	BS_PU	LCD RW pin out from the module	
RD/	BS	LCD E pin out from the module	
A01	В	LCD RS pin out from the module	
LCD_CS/	0	LCD Chip Select pin out from the module	
RES_OUT/	0	LCD Reset from the module	
D00 ~ D015	0	LCD Data Lines from the module	
VDD		LCD Power Supply	
GND		LCD Signal Ground	

4.7.3 Ringer (Pin74)

The Ringer pin provides the output to drive the sound transducer on the host. It alerts the user of a voice call event and outputs key tones if the keypad is connected.

The DTG2000-Dual V2.0 module includes Ringer Driver and drives Buzzer directly.

Table 4-8 Ringer/Buzzer Driver Output Spec.


PARAMETER	TEST CONDITION	TYPICAL VALUE
Drive Frequency		Max 8kHz
Load Current	R_load=10 ohm	Min 300mA
Load Resistance		Typ 10 ohm

4.7.4 LED Interface

Table 4-9 LED interface

PIN NUMBER	USE	REMARK
34	Idle LED	High Enable, High indicates
34	Idle LED	"The device is in CDMA service area"
35	Bugger I ED	High Enable, High indicates
33	Busy LED	"The device is in CDMA Traffic state"
67	SMS LED	High Enable High indicates
67		"The device has received SMS message
72	DO. LED	High Enable High indicates
12	Power On LED	"The device is turned on"

Above pins can not drive LED directly. Must use driver ICs to drive LEDs

5. Electrical Specifications

5.1 DC Electrical Specifications

5.1.1 Absolute Maximum Ratings

Operating the module under conditions that exceed those listed in the Absolute Maximum Ratings table may result in damage to the module.

Absolute Maximum Ratings should be considered as limiting values. The module may not function properly and should not be operated if any one of the parameters is not within its specified operating range.

PARAMETER MIN MAX **UNITS** Storage Temperature -50 +85 °C Voltage On Any Input or Output Pin -0.8 +3.5 +VEXT DC -1.0 +5.0 V Supply Voltage BATT_INT V -1.0 +4.4Initializing Current 250 mA Drop No damages after 60-Inch drop over concrete floor

Table 5-1 Absolute Maximum Ratings

5.1.2 Recommended Operating Conditions

PARAMETER		MIN	TYP	MAX	UNITS
Supply Voltage	+VEXT_DC	+4.0	+4.5	+5.0	V
Supply Voltage	BATT_INT	+3.4	+4.0	+4.3	V
Operating Temperature		-30		+60	°C
Operating Humidity		95% (50°C) Relati	ve Humidity		

5.1.3 Power Consumption

CONVERSATION	STANDBY	
(Busy)	Idle	Sleep
900mA (MAX)	110mA	+VEXT_DC:9mA BATT_INT:1mA

5.1.4 Serial Interface Electrical Specifications

PARAMETER	MIN	TYP (NO LOAD)	MAX	UNITS
Input High Voltage	+2.0	+3	+3.3	V
Input Low Voltage	-0.5	0	+0.8	V
Output High Voltage	+2.4	+2.85	+3.0	V
Output Low Voltage		0	+0.4	V

5.2 Timing characteristics

5.2.1 External CODEC Timing

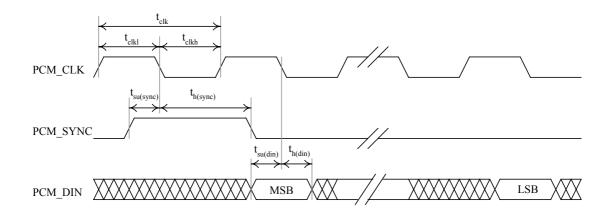


Figure 5-1 External PCM CODEC to Module timing

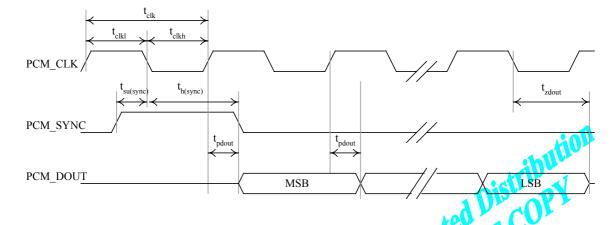


Figure 5-2 Module to External PCM CODEC timing

PARAMETER

 t_{clk}

 t_{clkl}

 t_{clkh}

 $t_{su(sync)}$

 $t_{h(sync)} \\$

 $t_{su(din)}$

 $\underline{t_{h(din)}}$

 t_{pdout}

350

50

10

ns

ns

ns

50

DESCRIPTION TYP. MIN MAX UNIT PCM-CLK cycle time 400 500 ns PCM-CLK low time 200 250 ns PCM-CLK high time 200 250 ns PCM SYNC setup time to PCM CLK falling 150 ns

Table 5-2 External PCM CODEC Parameters

PCM SYNC hold time after PCM CLK falling

PCM_DIN setup time to PCM_CLK falling

PCM DIN hold time after PCM CLK falling

Delay from PCM_CLK falling to PCM_DOUT

5.2.2 LCD Timing

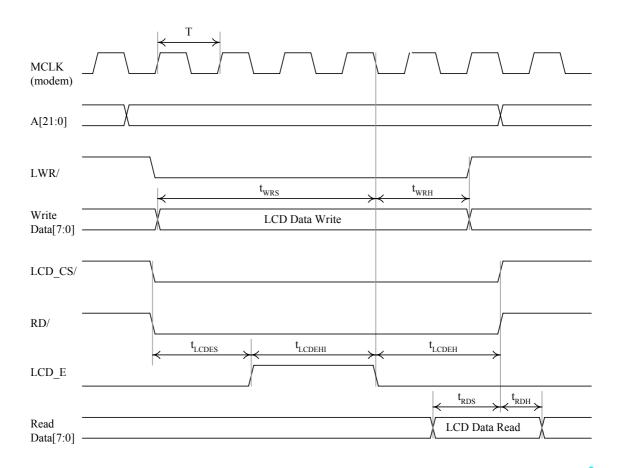
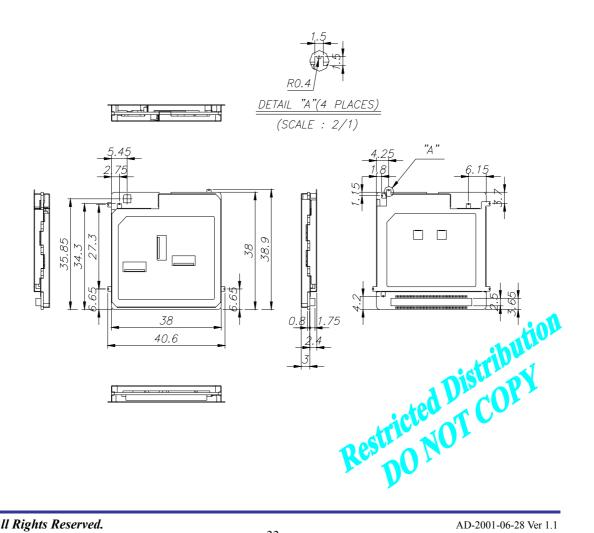


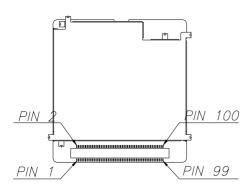
Figure 5-3 LCD Timing

Table 5-3 LCD Timing Parameters

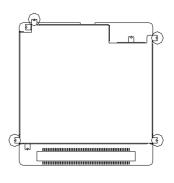
PARAMETER	DESCRIPTION	MIN	MAX	UNIT
t_{LCDES}	LCD_CS/ active to LCD_E active			ns
t_{LCDEHI}	Pulse width if LCD_E active			ns
t_{LCDEH}	LCD_E inactive to LCD_CS/ inactive (write)			ns
t_{LCDEHR}	LCD_E inactive to LCD_CS/ inactive (Read)			
t_{RDS}	Read data setup			ns
t_{RDH}	Read data hold			ns
$t_{ m WRS}$	Write data setup to LCD_E inactive			ns
$t_{ m WRH}$	Write data hold from LCD_E inactive			ns


[•] k, I, n is integer lower than 16, MCLK is internal Clock of module

6. Mechanical Dimensions


6.1 DTG2000-Dual V2.0 Outline

These 4 solder points in red circles MUST be soldered to PCB GND in the host device



6.2 100-Pin Connector Mechanical Dimension

GROUND SOLDING POINT (4 PLACES)

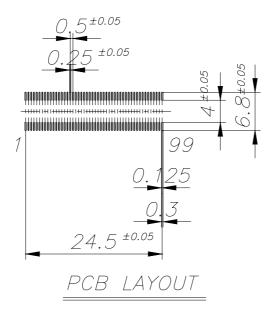


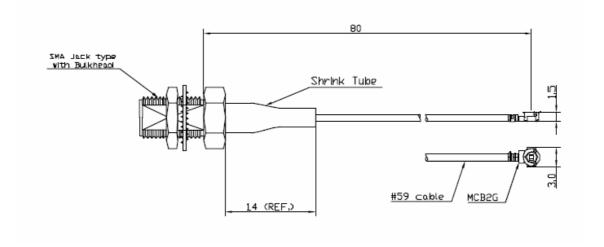
Figure 6-1 100pins Connector (Units: mm)

Counter-Part (the 100-pins socket connector (not on the DTG2000-Dual V2.0)):

Part Name: Socket pin connector (0.5mm pitch, straight, dual row)

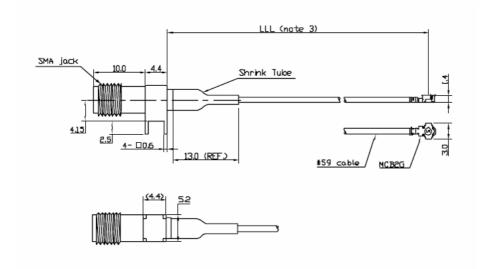
Note: For more information on the 100-pins socket connector,

Please visit http://www.nais-e.com/, click connector, and "NARROW PITCH(0.5mm) CONNECTORS


P5 SERIES P5KF".

6.3 RF Connector

6.3.1 Sunridge Corp. Part


6.3.1.1 Bulkhead SMA Type cable: MCB2G-RH-59-LLL-SMAJB101

(Example, MCB2-RH-59-080-SMAJB101, 80mm-long RF cable)

6.3.1.2 PCB mountable right angle SMA cable: MCB2G-RH-59-LLL-SMAJX103

(Example, MCB2G-RH-59-100-SMAJX103, 100mm-long RF cable)

6.3.1.3 Contact Info.

Chris Su chrissu@sunridge.com

Tel: 626-535-1780 (CA, U.S.A.) Fax: 626-535-1788 (CA, U.S.A.) Tony Su

tsu@sunridge.com

Restricted Distribution

Restricted Distribution

6.3.2 Murata Part

Our part number: MM9329-2700.

Counter part number: MXTK92()()()

Please, visit http://www.murata.com and search for MXTK92 in product search engine

Part Numbering

Coaxial Connectors (Chip Type Receptacle)

(Part Number)

●Product ID

Product ID	
ММ	Microwave Coaxial Connectors (Chip Type Receptacle)

Series

Code	Series
3325	BFA Type Straight
3326	BFA Type Right Angle
7329	FSC Type
8430	SWD Type
9329	GSC Type

Individual Specification Code (1)

Code	Individual Specification Code (1)
-25	Discrete Terminal
-26	Switch Connector SMD Type
-27	Connector SMD Type

Coaxial Connectors (with Cable)

(Part Number)

●Product ID

Product ID	
MX	Coaxial Connectors (with Cable)

Connector (1)

Code	Connector (1)
FG	FSC Type for 76 Cable
FK	FSC Type for 81 Cable
TK	GSC Type
YH	BFA Type

Cable

Code	Cable	
62	0.8D, PE, Double Shield Line	
63	o.8D, PE, Single Shield Line	
75	0.8D, FEP, Double Shield Line	
76	0.8D, FEP, Single Shield Line	
81	0.4D, FEP, Single Shield Line	
88	0.4D, PFA, Single Shield Line, Single Line	
92	0.4D, PFA, Single Shield Line, Spiral	

@Individual Specification Code (2)

Code	Individual Specification Code (2)
00	Serial

Package Product ID

Code	Package Product ID
В	Bulk
R	Reel

Package Detail

Code	Package Detail
A1	FSC, SWD, GSC Type 1000pcs. /Reel (ø178mm)
B3	SWD Type, 3000pcs. /Reel (ø330mm)
B4	FSC Type, 4000pcs. /Reel (ø330mm)
B5	GSC Type, 5000pcs. /Reel (ø330mm)

@Connector (2)

Code	Connector (2)
FG	FSC Type for 76 Cable
FK	FSC Type for 81 Cable
TK	GSC Type
YH	BFA Type
xx	None Connector

Care to the second s

Expressed by four figures. The unit is mm. From first to third figures are significant, and the fourth figure expresses the number of zeros which follow the three figures.

Ex.)	Code	Length
	5000	500mm = 500 x 10 ⁰
	1001	1000mm = 100 x 10 ¹

❸Individual Specification Code

Expressed by two figures.

Restricted Districted Districted Port COPY

7. Application Schematic