

ADDENDUM TO ANYDATA CORPORATION TEST REPORT FC04-054

FOR THE

CDMA DUAL BAND MODEM, EMIV-DUAL

FCC PART 15 SUBPART B SECTIONS 15.107 & 15.109 CLASS B, FCC PART 22 SUBPART H & PART 24 SUBPART E AND RSS 129 & 133

COMPLIANCE

DATE OF ISSUE: SEPTEMBER 14, 2004

PREPARED FOR:

AnyDATA Corporation 18902 Bardeen Ave. Irvine, CA 92612

W.O. No.: 81938

PREPARED BY:

Mary Ellen Clayton CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: June 24 - July 8, 2004

Report No.: FC04-054A

This report contains a total of 93 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	
Summary of Results	4
Conditions for Compliance	4
Approvals	
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	
FCC 2.1033(c)(4) Type of Emissions	
FCC 2.1033(c)(5) Frequency Range	6
FCC 2.1033(c)(6) Operating Power	
FCC 2.1033(c)(7) Maximum Power Rating	
FCC 2.1033(c)(8) DC Voltages	
FCC 2.1033(c)(9) Tune-Up Procedure	
FCC 2.1033(c)(10) Schematics and Circuitry Description	
FCC 2.1033(c)(11) Label and Placement	
FCC 2.1033(c)(12) Submittal Photos	
FCC 2.1033(c)(13) Modulation Information	
FCC 2.1033(c)(14)/2.1046/22.913(a) - RF Power Output	
FCC 2.1033(c)(14)/2.1046/24.232(b) - RF Power Output	
FCC 2.1033(c)(14)/2.1047(b) - Audio Frequency Response	
FCC 2.1033(c)(14)/2.1047(b) - Modulation Limiting Response	
FCC 2.1045 Occupied Bandwidth Part 22	
FCC 2.1045 Occupied Bandwidth Part 24	
Blockedge Plots Part 22	
Blockedge Plots Part 24	
FCC 2.1033(c)(14)/2.1051/22.917(a) - Spurious Emissions at Antenna Terminal	
FCC 2.1033(c)(14)/2.1051/24.238(a) - Spurious Emissions at Antenna Terminal	
FCC 2.1033(c)(14)/2.1053/22.917(a) - Field Strength of Spurious Radiation	
FCC 2.1033(c)(14)/2.1053/24.238(a) - Field Strength of Spurious Radiation	
FCC 2.1033(c)(14)/2.1055/22.355(a)(d) - Frequency Stability	
FCC 2.1033(c)(14)/2.1055/24.235(a)(d) - Frequency Stability	
FCC 15.107 – AC Conducted Emissions.	
FCC 15.109 – Radiated Emissions	
RSS-129 99% Bandwidth	
RSS-133 99% Bandwidth	90

ADMINISTRATIVE INFORMATION

DATE OF TEST:	June 24 - July 8, 2004				
DATE OF RECEIPT:	June 24, 2004				
PURPOSE OF TEST:	To demonstrate the compliance of the CDMA Du Band Modem, EMIV-Dual with the requirements for FCC Part 15 Subpart B Sections 15.107 & 15.109, FCC Part 22 Subpart H & Part 24 Subpar E and RSS 129 & 133 devices. Addendum A is to revise the standard matrix on page 4, the RF power calculations on page 9 and mid spurious emissions table on page 39.				
TEST METHOD:	FCC Part 22 Subpart H & Part 24 Subpart E, ANSI C63.4 (2001) and RSS 212				
FREQUENCY RANGE TESTED:	9 kHz-20 GHz				
MANUFACTURER:	AnyDATA Corporation 18902 Bardeen Ave. Irvine, CA 92612				
REPRESENTATIVE:	John Kim				
TEST LOCATION:	CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92621				

SUMMARY OF RESULTS

As received, the AnyDATA Corporation CDMA Dual Band Modem, EMIV-Dual was found to be fully compliant with the following standards and specifications:

Low	High	FCC	FCC	Canadian	Canadian	Test Description
Frequency	Frequency	Standard	Section	Standard	Section	
824	849	22	22.917	RSS-129	8.1.1.	Spurious Emissions
						(OATS/ANT term)
824	849	22	22.355	RSS-129	9.2.1	Frequency Tolerance
824	849	22	22.913(a)	RSS-129	9.1	Power Output
1850	1910	24	24.235	RSS-133	7.1	Power Output
1850	1910	24	24.232	RSS-133	7.0	Frequency Tolerance
1850	1910	24	24.238	RSS-133	6.2	Power Output
1850	1910	24	24.238	RSS-133	6.3	Spurious Emissions
						(OATS/Ant Term)
		90473		IC 3172-A		Site File No.

CONDITIONS FOR COMPLIANCE

No modifications to the EUT were necessary to comply.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

TEST PERSONNEL:

Joyce Walker, Quality Assurance Administrative Manager

SUDIC

Eddie Wong, EMC Engineer

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Power Suppl	<u>v</u>	CDMA Dual Band Modem		
Manuf:	Oriental Hero Electrical Company	Manuf:	AnyDATA Corporation	
Model:	OH-48052DT	Model:	EMIV-Dual	
Serial:	NA	Serial:	ESN6C1A8BF2	
FCC ID:	NA	FCC ID:	pending	

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

<u>Laptop</u>

Manuf:	Compaq
Model:	EVO N150
Serial:	PP2110
FCC ID:	DoC

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c)(3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS 1M29F9W

FCC 2.1033 (c)(5) FREQUENCY RANGE Part 22 – 824.04 – 848.97 MHz, Part 24 – 1851.25 – 1908.75 MHz

FCC 2.1033 (c)(6) OPERATING POWER

Part 22 – 0.4074 Watts, Part 24 – 0.6792 Watts

FCC 2.1033 (c)(7) MAXIMUM POWER RATING

Part 22 – 7 Watts, Part 24 – 2 Watts

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document.

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION CDMA

Page 6 of 93 Report No.: FC04-054A

FCC 2.1033(c)(14)/2.1046/22.913(a) - RF POWER OUTPUT

22.913 Effective radiated power limits. - The effective radiated power (ERP) of transmitters in the Cellular Radiotelephone Service must not exceed the limits in this section.

(a) Maximum ERP. The effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

<u>Setup</u>

Conducted RF Power

The EUT is placed on the test bench. USB port is connected to support laptop. The Support laptop runs test program to set the Transmitting and receiving channel, power level of the EUT. RF power is measured at the RF output port of the EUT with an Average Power meter. (AGC is adjusted to read +25.5 dBm on the power meter)

Freq	Measured Ave Power
824.04 MHz	+25.5 dBm
836.52 MHz	+25.5 dBm
848.97 MHz	+25.5 dBm

Effective Radiated Power.

Antenna Substitution method. : The EUT is placed on the test bench, the maximum RF level is determined by rotating the turntable and raising and lowering of the receiving Dipole antenna. The EUT is then removed and replaced by a substituting dipole antenna.

A signal generator sends RF power to the substituting dipole antenna, the RF level is adjusted to provided the same RF level as previously measured.

ERP is determined by measuring the RF power at the feed point of the substituting antenna with an Average power meter.

Freq	ERP	
824.04 MHz	+25.0 dBm	0.3162 W
836.52 MHz	+26.1 dBm	$0.4074 \mathrm{W}$
848.97 MHz	+24.4 dBm	0.2754 W

Conclusion

As indicated below, each single channel does not exceed the 7 Watt ERP limits.

FCC 2.1033(c)(14)/2.1046/24.232(b) - RF POWER OUTPUT

§24.232 Power and antenna height limits.

(b) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

<u>Setup</u>

Conducted RF Power

The EUT is placed on the test bench. USB port is connected to support laptop. The Support laptop runs test program to set the Transmitting and receiving channel, power level of the EUT. RF power is measured at the RF output port of the EUT with an Average Power meter. (AGC is adjusted to read +25.5 dBm on the power meter)

Freq	Measured Ave Power
1851.25 MHz	+25.5 dBm
1880.00 MHz	+25.5 dBm
1908.75 MHz	+25.5 dBm

Effective Radiated Power.

Antenna Substitution method. : The EUT is placed on the test bench, the maximum RF level is determined by rotating the turntable and railing and lowering of the measuring Horn antenna. The EUT is then removed and replaced by a substituting Horn antenna.

A signal generator sends RF power to the substituting Horn antenna, the RF level is adjusted to provided the same RF level as previously measured.

Effective Isotropic Radiated Power

ERP is determined by measuring the RF power at the feed point of the substituting antenna with an Average power meter. The EIRP is converted from ERP using the formula

Horn antenna factor = 27.4 dB @1880 MHz

Antenna Gain of Substituting antenna

Gain (dBi) = 20 log(f) – 29.77 – Antenna Factor

<u>= 20 Log (1880) -29.77 - 27.4</u>

= 8.31 dBi EIRP = measured power and 8.31 dBi

Freq	EIRP	
1851.25 MHz 1880.00 MHz	26.53dBm 28 32dBm	0.4498 W 0 6792 W
1908.75 MHz	25.31dBm	0.8792 W 0.3396 W

Conclusion

As indicated above, each single channel does not exceed the 2 Watt EIRP limits.

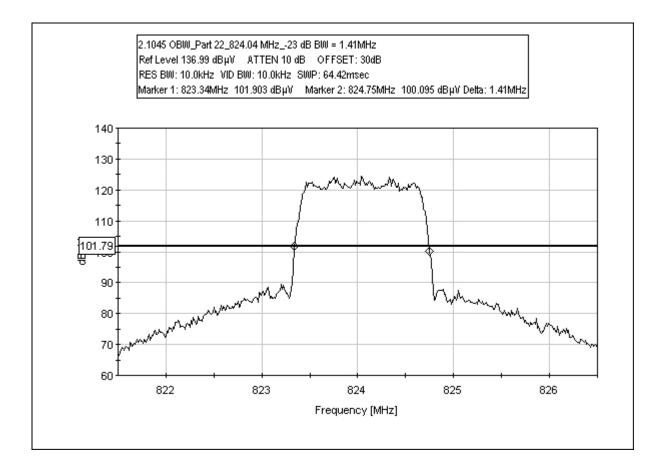
Test Equipment

Test Equipment						
Dipole Antenna	NA	CKC	CKC	Set 4	120202	120204
Horn Antenna	0849	EMCO	3115	6246	091002	091004
Horn Antenna	01646	EMCO	3115	9603-4683	042503	042505
Signal Generator	02227	Marconi	2024	112282/515	090903	090904
RF Power meter	02082	HP	435B	2445A11881	061704	061706
Power Sensor	02036	HP	8482A	1551A01004	061806	061806

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

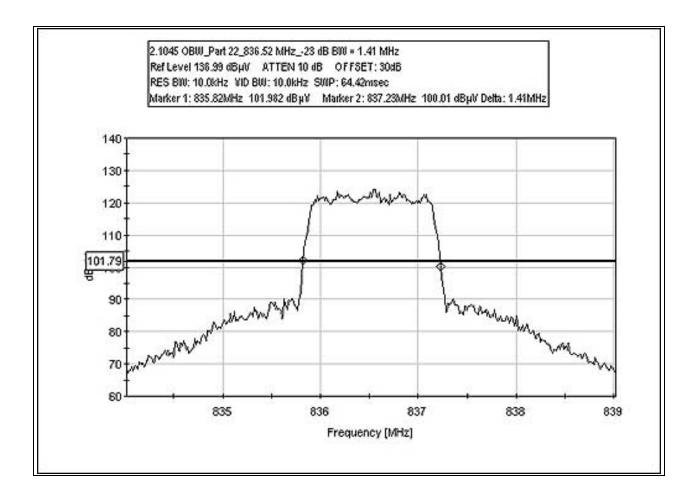
PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

Page 10 of 93 Report No.: FC04-054A

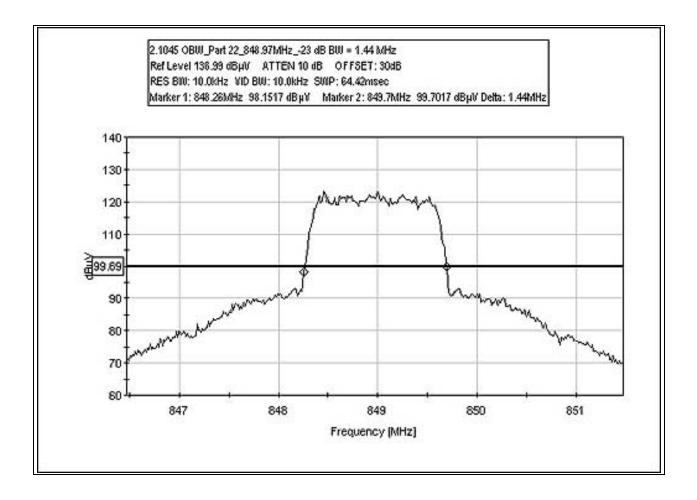


FCC 2.1033(c)(14)/2.1047(a) - MODULATION CHARACTERISTICS - AUDIO FREQUENCY RESPONSE Not applicable to this unit.

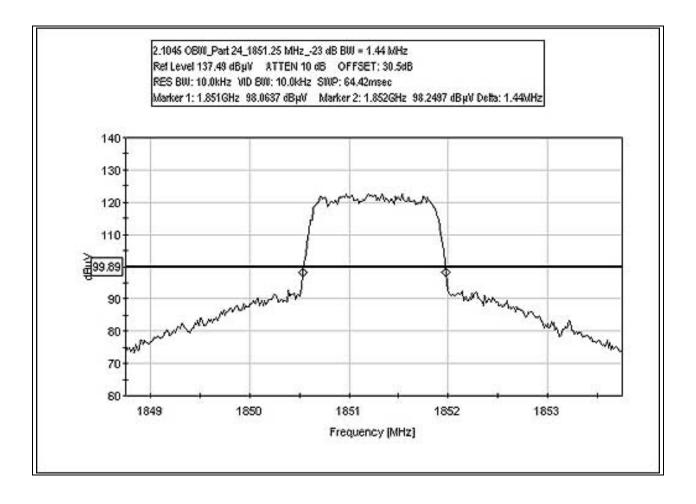
FCC 2.1033(c)(14)/2.1047(b) MODULATION CHARACTERISTICS- Modulation Limiting Response


Not applicable to this unit.

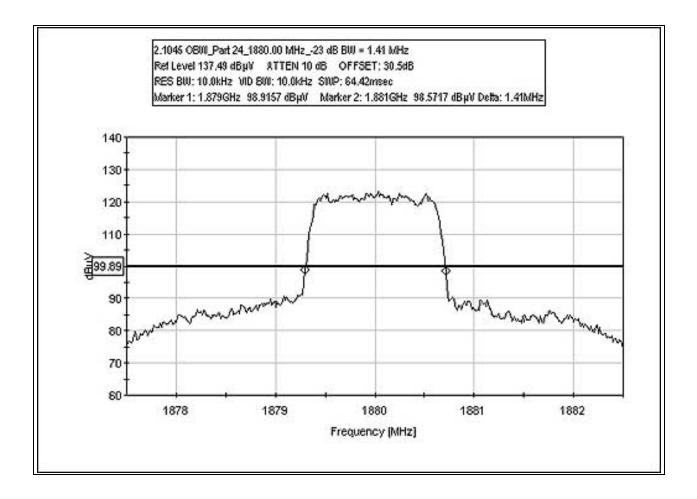
FCC 2.1045 OCCUPIED BANDWIDTH PART 22: 824.04 MHz



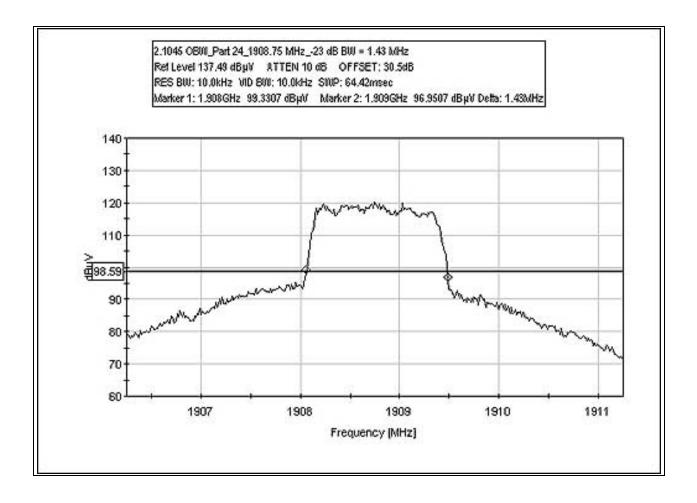
FCC 2.1045 OCCUPIED BANDWIDTH PART 22: 836.52 MHz



FCC 2.1045 OCCUPIED BANDWIDTH PART 22: 848.97 MHz



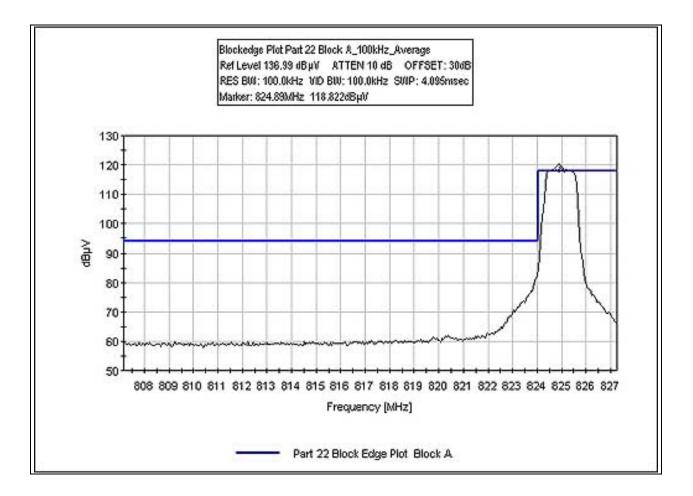
FCC 2.1045 OCCUPIED BANDWIDTH PART 24: 1851.25 MHz



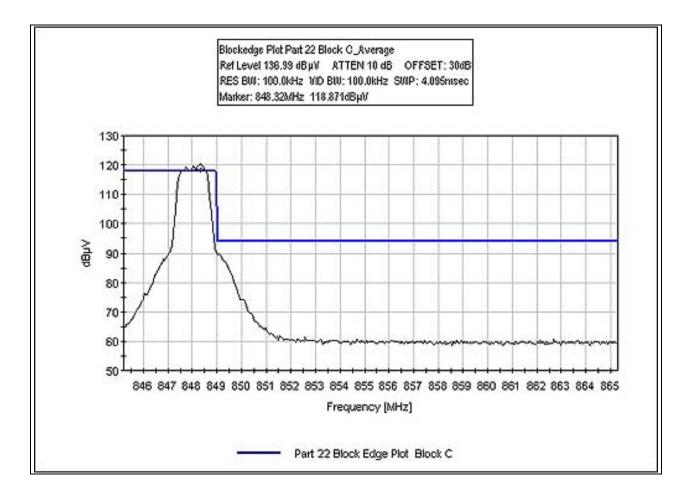
FCC 2.1045 OCCUPIED BANDWIDTH PART 24: 1880.00 MHz

FCC 2.1045 OCCUPIED BANDWIDTH Part 24: 1908.75 MHz

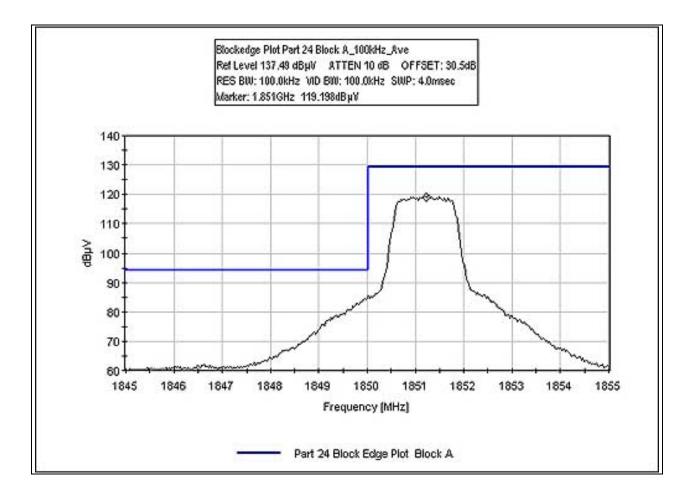
Test Equipment						
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105


PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

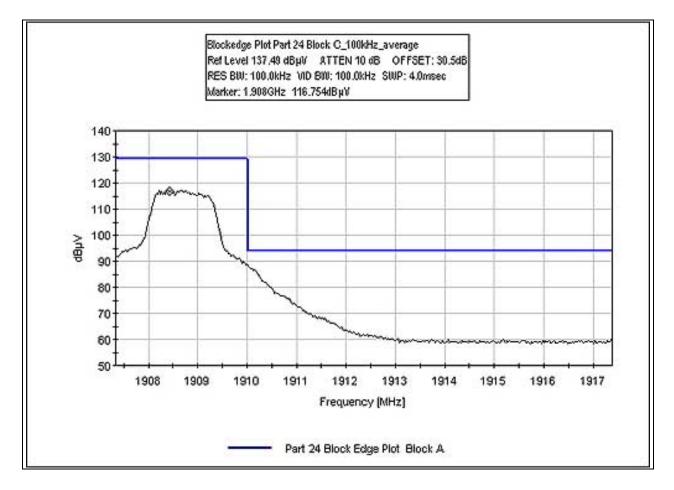
Page 17 of 93 Report No.: FC04-054A



BLOCKEDGE PLOT PART 22 BLOCK A



BLOCKEDGE PLOT PART 22 BLOCK C



BLOCKEDGE PLOT PART 24 BLOCK A

BLOCKEDGE PLOT PART 24 BLOCK C

Test Equipment						
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

Page 22 of 93 Report No.: FC04-054A

FCC 2.1033(c)(14)/2.1051/22.917(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

Limit line for Spurious Conducted Emission

Required Attenuation	=	43+10 Log P dB
Limit line (dBuV)	=	$V_{\ dBuv}$ - Attenuation
$V_{ m dBuV}$	=	20 Log $\frac{V}{1 \times 10^{-6}}$
	=	$20 \left(\text{Log V} - \text{Log 1 x } 10^{-6} \right)$
	=	$20 \text{ Log V} - 20 \text{ Log1 x} 10^{-6}$
	=	$20 \log V - 20 (-6)$
	=	20 Log V + 120
Attenuation	=	43 + 10 Log P
	=	$43 + 10 \operatorname{Log} \frac{\operatorname{V}^2}{\operatorname{R}}$
	=	$43+10\left(\operatorname{Log} V^{2}-\operatorname{Log} R\right)$
	=	43 + 10 (2 Log V - Log R)
	=	43 + 20 Log V - 10 Log R
Limit line	=	V _{dBuy} - Attenuation
	=	20 Log V + 120 - (43 + 20 Log V - 10 Log R)
	=	20 Log V + 120 – 43 – 20 Log V + 10Log R
	=	20 Log V + 120 - 43 - 20 Log V + 10 Log R
	=	$120 - 43 + 10 \text{ Log } 50$ Note : R = 50 Ω
	=	120 - 43 + 16.897
	=	94 dBuV at any power level

TEST LOCATION:	C	(C LABORATORIES, INC. •1	IIO <u>N.</u> Olinda Place	• BREA. CA 92823	· (714) 993-6112						
CUSTOMER; Specification; Work Order #; Test Type; Equipment; Manufacturer; Model; S/N;	1 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANYDATA FCC PART B1938 CONDUC CDMA DA BAND) WORT CORPORTION (V-DURL WOLT - CORPORTION (V-DURL WOLT - CORPORTION (V-DURL WOLT - CORPORTION	` 22.917 TED E	'(A) CO MISSIC	NDUC DNS	TED SP	SEQUEN	DATE: 06/29/2 TIME: 16:20:11	004 NG		
Equip		ler Test		T):							
FUNCTION Power Supply CDMA Data Modem	I ([JUAL BAND]*	ORIEN	FACTURER TAL HERO ELECTRII 17A Corporation	CAL COMPANY		MODEL # OH-48052DT EMIV-DUAL			S/N NA ESN6C1A8BF2		
Suppo: [UNCTION	rt Devic		FACTURER			Model #			S/N		
LAPTOP		(OMP)				EVO N150			PP2110		
RECEIVE MODE DUR KHZ, VBW=120 KH	ING THE TEST. [X [REQ 1. 1000 MHZ - 9000 MH ducer Le	= 848.97 MHZ. FREQUE Z: RBW=1 MHZ. VBW=1 N	NCY RANGE OF MEI	RSUREMENT = 9 K	HZ – 9 GHZ, 9 KH	T PROGRAM TO SET ! - 150 KHZ: RBW=2	THE TRANSMITTI 00 HZ. VBW=21	ING AND RECEIVING Oo HZ: 150 KHZ – 3	CHANNEL, POWER LEVEL OI D MHZ: RBW=9 KHZ, VBW	* THE EUT . THE EUT I =9 KHZ: 30 MHZ - 10	S IN TRANSMIT AND 100 MHZ: RBW=120
						T2=HPF ANO211	6 1,56HZ	060605			
Measur Data:	ement		READING LIS	TED BY MARGIN.		T2=HPF ANO211	6 1 <u>.</u> 56HZ I		LEAD, ANTENNA TERMINAL		
Measur Data: #	FREQ	RDNG	[]	2	nQ	· · · · · · · · · · · · · · · · · · ·	lisi	Test Corr	SPEC	MARGIN	Polar ant
Data:		05	READING LIS	-	D	T2=HPF AN0211 DB		TEST	SPEC DB· V/M 94.0		Polar Ant Anten
Data: #	FREQ MHZ	Nong Hong DB· V	1 DB	[2 D]}	08	· · · · · · · · · · · · · · · · · · ·	UIST TABLE	Test Corr DB· V/M	SPEC DB· V/M	Margin DB	ANT
Data: #	FREQ MHZ 848.900M	105 Hong DB· V 129,2	1 08 +0,0	2 D} +0,0	DB	· · · · · · · · · · · · · · · · · · ·	UIST Table +0.0	[CORR DB• V/M 129,2	SPEC DB· V/M 94.0 Fundamental	MARGIN DB + 35,2	ANT Anten
Data: # 1 2	FREQ MHZ 848,900M 2547,000M	105 Hong DB∙ V 129,2 85,3	1 0 +0,0 +0,5	2 0 <u>8</u> +0.0 +0.3	DB	· · · · · · · · · · · · · · · · · · ·	DIST TABLE +0.0 +0.0	[CORR 08: V/M 129:2 86,1	SPEC DB: V/M 94,0 Fundamental 94,0	MARGIN DB +35,2 -7,9	ANT Anten Anten
Data: # 1 2 3	FREQ MHZ 848.900M 2547.000M 3396.500M	105 {DNG DB∙V 129,2 85,3 62,8	11 18 +0.0 +0.5 +0.6	2 <u>DB</u> +0.0 +0.3 +0.2	08	· · · · · · · · · · · · · · · · · · ·	UIST TABLE +0,0 +0,0	[CORR 08: V/M 129:2 86:1 63:6	SPEC DB- V/M 940 Fundamental 940 940	MARGIN DB +35.2 -7.9 -30.4	ANT Anten Anten Anten
Data: # 1 2 3 4	FREQ MHZ 848.900M 2547.000M 3396.500M 162.000M	105 HONG 08∙V 129,2 85,3 62,8 55,3	11 08 +0.0 +0.5 +0.6 +0.0	2 08 +0.0 +0.3 +0.2 +0.0		· · · · · · · · · · · · · · · · · · ·	12 ABLE ADL0 + 0.0 + 0.0 + 0.0 + 0.0	[CORR DB- V/M 129,2 86,1 63,6 55,3	SPEC DB· V/M 94,0 Fundamental 94,0 94,0 94,0	MARGIN DB +35.2 -7.9 -30.4 -30.7	ANT Anten Anten Anten Anten

TEST LOCATION:		CKC LABORATORIES, INC. •	110 N. OLINDA PLACE	E • BREA. CA 92823	· (714) 993-6112						
CUSTOMER: Specification: Work (Roder #: Test Type: Equipment:		ANYDATA FCC PART 81938 CONDUC CDMA DA BAND)	Г 22.917 Стеd е	7(A) CO MISSIC	NDUC DNS		[DATE: 06/29/2 TIME: 16:13:26			
MANUFACTURER: Model: S/N:		ANYDATA CORPORATION EMIV-Dual ESNGC1A80F2					TESTE	D BY: EDDIE WO 110V GOH			
Equip: FUNCTION	ment Un	ider Test Man	(* EU UFACTURER	T):		Model #			S/N		
POWER SUPPLY COMA DATA MODEM	M (DUAL BAND)*	ÛRIEI	NTAL HERO ELECTRI)ATA Corporation	CAL COMPANY		MUDEL # OH-48052DT EMIV-DUAL			071 NA ESN6C1A8BF2		
	rt Devi					Hoper #			0.00		
FUNCTION Laptop		MHNI Comp	UFACTURER Dao			Model # EVO N150			S/N PP2110		
HE HILL IS PLACED	N ON THE TERI RENCH	I IIVK KORI IZ CONNECIED I	IO H ZOPPOKI THA	TOP THE SUPPORT	THAIDA ROUZ IF:	ST PROGRAM TO SET TH	IE IRHNSMITTN	NG HNU KECEIVING	CHHNNEL PUWER LEVEL U	r IAE FILL IAE FILLI	S IN IRHNSMII HND
RECEIVE MODE DUR KHZ_VBW=120 KH Transc	RING THE TEST [X [R Z_1000 MHZ - 9000 ducer L	REQ = 836,52 MHZ [REQUE MHZ: RBW=1 MHZ VBW=1 Gegend :	ENCY RANGE OF MER	ASUREMENT = 9 K	12 – 9 GHZ, 9 KH		0 HZ. VBW=20	0 HZ: 150 KHZ - 31	CHHNNEL, PUWEH LEVEL U D MHZ: RBW=9 KHZ, VBW=	+ THE EUT . THE EUT T =9 KHZ: 30 MHZ - 10	S IN IKHNSMIT HNU 100 MHZ: RBW=120
RECEIVE MODE DUR KHZ, VBW=120 KH	RING THE TEST [X [R Z_1000 MHZ - 9000 ducer L	REQ = 836,52 MHZ FREQUE MHZ: RBW=1 MHZ, VBW=1	ENCY RANGE OF MER	ASUREMENT = 9 K	12 – 9 GHZ, 9 KH	ST PROGRAM TO SET TH z - 150 kHz; RBW=20 <u>T2=HPF AN02116</u>	0 HZ. VBW=20	NG HNU KELEIVING 0 HZ: 150 KHZ - 31 160605	CHHNNEL, PUWEH LEVEL U D MHZ: RBW=9 KHZ, VBW:	F THE EUT . THE EUT T =9 KHZ: 30 MHZ − 10	S IN IRHNSMII HNU 100 MHZ: RBW=120
RECEIVE MODE DUR KHZ_VBW=120 KH Transc	aing the test X fA Z_1000 MHZ - 9000 <u>ducer L</u> 40GHZ AN2604 01	REQ = 836,52 MHZ [REQUE MHZ: RBW=1 MHZ VBW=1 Gegend :	ENCY RANGE OF MEA MHZ. 110VAC, 60	ASUREMENT = 9 K	12 – 9 GHZ, 9 KH	Z - 150 KHZ; RBW = 20	0 HZ. VBW=20	0 HZ: 150 KHZ - 31 160605	CHANAL, POWER LEVEL U D MHZ: BBW=9 KHZ, VBW Lead: Antenna Terminal	=9 KHZ; 30 MHZ - 10	S IN IRHNSMIT HAU Ood MHZ: HBW=120
RECEIVE MODE DUR KHZ, VBW=120 KH Transo [1=SMA CABLE 1-4 Measur	NING THE TEST [X FA {z, 1000 MHZ - 9000 ducer L 40GHZ HN2604 01 cement REQ	EQ = 836 52 MHZ [REQUE MHZ: RBW=1 MHZ YBW=1 Gegend: 12305 HDN6	ENCY RANGE OF MEI MHZ. 110VAC, 60 Reading Lis	RSUREMENT = 9 KH HZ, 23°C, 47% Rei Sted by Margin 12	IZ – 9 GHZ, 9 KH Irtive humidity,	z – 150 KHz. RBW=20 T2=HPF AN02116	0 HZ, VBW=20 1.56HZ 0 UIST	o HZ; 150 KHZ - 31 160605 [EST [ORR	D MHZ: RBW=9 KHZ. VBM: Lead: Antenna Terminai Spec	=9 KHZ; 30 MHZ - 10	100 MHZ; RBW=120
RECEIVE MODE DUR KHZ. VBW=120 KH Transo []=SWA CABLE 1-4 Measur Data:	81NG THE TEST X FA Z.1000 MHZ - 9000 ducer L 40GHZ AN2604 01 cement	EQ = 83652 MHZ [REQUE MHZ: RBW=1 MHZ YBW=1 Gegend: 12305	ENCY RANGE OF MEA MHZ. 110VAC, 60	ASUREMENT = 9 K↓ Hz, 23°C, 47% Ref	12 – 9 GHZ, 9 KH	Z - 150 KHZ; RBW = 20	0 HZ, VBW=20	o Hz _: 150 KHz – 31 160605 Test	D MHZ: RBN=9 KHZ, VBN:	=9 KHZ; 30 MHZ - 10	100 MHZ: RBW=120
RECEIVE MODE DUR K 1, 3 =120 K Transo [1=SM [ABLE 1-4 Measur Data: #	NING THE TEST TX FA 12. 1000 MHZ - 9000 ducer L 40GHZ HN2604 01 cement HREQ MHZ	EQ = 836 52 MHZ [REQUE MHZ: RBW=1 MHZ YBW=1 Gegend: 12305 HDN6 DB: V	ENCY RANGE OF MEN MHZ. 110VAC, 60 Beading Lis 1 DB	RSUREMENT = 9 KH HZ, 23°C, 47% Rei Sted by Margin 12 DB	IZ – 9 GHZ, 9 KH Irtive humidity,	z – 150 KHz. RBW=20 T2=HPF AN02116	D HZ. VBW=20 1.56HZ o Uist Table	o Hz, 150 KHz - 31 160605 Test DB- V/M	D MHZ: RBW=9 KHZ. VBM: Lead: Antenna Terminan Spec DB: V/M 94 0	=9 KHZ; 30 MHZ - 10	Polar Ant
RECEIVE MODE DUR K 1, 3 =120 K Transo [1=SM [ABLE -4 Measur Data: # 1	NING THE TEST TX FA {z. 1000 MHZ - 9000 ducer L 40GHZ AN2604 01 cement FREQ HHZ 836 220M	EQ = 836 52 MHZ [REQUE MHZ: RBW=1 MHZ VBW=1 Gegend: 12305 HONG OB: V 128 3	HCV RANGE OF MEN MHZ. 110VAC, 60 Reading Lis 1 DB +0.0	RSUREMENT = 9 KH HZ, 23°C, 47% REI Sted by Margin 12 DB +0.0	IZ – 9 GHZ, 9 KH Irtive humidity,	z – 150 KHz. RBW=20 T2=HPF AN02116	UIST TABLE +0,0	0 HZ; 150 KHZ - 31 160605 Test Corr 08· V/M 128,3	D MHZ: RBW=9 KHZ, VBM Lead: Antenna Terminan Spec <u>DB: V/M</u> 94.0 Fundamental	=9 KHZ; 30 MHZ - 10 	IOO MHZ, RBW=120 Polar Ant Anten
RECEIVE MODE DUR K 1, 1 =120 K Transo [1=SM [ABLE 1-4 Measur Data: # 1 2	RING THE TEST TX FA [2, 1000 MHZ - 9000 ducer L 40GHZ AN2604 01 cement FREQ HREQ HHZ 836,220M 2510,070M	EQ = 836 52 MHZ [REQUE MHZ: RBW=1 MHZ VBW=1 Gegend: 12305 HONG OB: V 128 3 85 9	ENCY RANGE OF MEN MHZ. 110VAC, 60 Reading Lis 1 08 +0,0 +0,5	RSUREMENT = 9 K¦ HZ, 23 °C, 47% REI Sted by Margin. 12 08 +0.0 +0.3	IZ – 9 GHZ, 9 KH Irtive humidity,	z – 150 KHz. RBW=20 T2=HPF AN02116	D HZ, YBW=20 <u>1,56Hz o</u> UIST [ABLE +0,0 +0,0	0 HZ; 150 KHZ - 31 160605 Test 08: V/M 128,3 86,7	D MHZ: RBW=9 KHZ, VBM Lead: Antenna Terminan Spec DB- V/M 94.0 Fundamental 94.0	=9 KHZ, 30 MHZ - 10 MARGIN 0} +34,3 -7,3	IOO MHZ, RBW=120
RECEIVE MODE DUR K 1, 1 =120 K Transo [1=SM [ABLE 1-4 Measur Data: # 1 2 3	NING THE TEST TX FA {z, 1000 MHZ - 9000 ducer L 40GHZ HN2604 01 cement FREQ HREQ MHZ 836,220M 2510,070M 3345,300M	EQ = 836 52 MHZ [REQUE MHZ: RBW=1 MHZ VBW=1 Gegend: 12305 HONG OB: V 128 3 85 9 62 3	ENCY RANGE OF MEN MHZ. 110VAC, 60 Reading Lis 1 08 +0,0 +0,5 +0,6	RSUREMENT = 9 KH HZ, 23°C, 47% REI Sted by Margin, 12 DB +0.0 +0.3 +0.2	IZ – 9 GHZ, 9 KH Irtive humidity,	z – 150 KHz. RBW=20 T2=HPF AN02116	DHZ, YBW=20 <u>1,56Hz o</u> <u>1,56Hz o</u> <u>1,56Hz o</u> +0,0 +0,0 +0,0	0 HZ; 150 KHZ - 31 160605 [Corr [Corr 08: V/M 128,3 86,7 63,1	D MHZ: RBW=9 KHZ. VBM Lead. Antenna Terminan Spec <u>DB: V/M</u> 94,0 Fundamental 94,0 94,0	=9 KHZ, 30 MHZ - 10 MARGIN DB +34,3 -7,3 -30,9	VOU MHZ, RBW=120

TEST LOCATION:	CKC LABORATORIES. INC.	• 110 N. OLINDA PLACI	E • BREA, CA 92823	· (714) 993-6112	2					
CUSTOMER: Specification: Work Order #: Test Type: Equipment:	ANYDATA FCC PAR 81938 CONDUC CDMA DA BAND)	Г 22.917 Стер е	7(A) CO MISSIC	NDU ONS			D US EM ATE: 06/29/2 IME: 15,59,38 ENCE#: 1	004		
Manufacturer: Model: S/N:	ANYDATA CORPORATION EMIV-Dual ESN6C1A8BF2	<i>/.</i>				ŢES	TED BY: EDDIE WO 110V GOH			
Equipment Un		(* EU IUFACTURER	T):		MODEL #			S/N		
POWER SUPPLY CDMA DATA MODEM (DUAL BAND)*	ÛRIE	INTAL HERO ELECTRI DATA CORPORATION			MUUCL # 0H-480520T EMIV-DUAL			57 M NA ESN6C1A8BF2		
Support Dev										
FUNCTION Aptop		IUFACTURER IPAQ			Model # EVO N150			S/N PP2110		
Toot Condit										
Test Condit. [He EU] IS PLACED ON THE TEST BENC RECEIVE MODE DURING THE TEST. [X] KH1, YBW=120 KH2, 1000 MH2 - 900 Transducer [1, 000 Memorial 400H2 During	ch, USB port is connected [Rea = 824.04 MHZ, [Real DO MHZ: RBW=1 MHZ, VBW=1 Legend :	TO A SUPPORT LAP Jency Range of Me	ASUREMENT = 9 K	HZ – 9 GHZ, 9 K	HZ - 150 KHZ; RBW: '.	=200 HZ, VBW='	200 HZ; 150 KHZ - 3	CHANNEL, POWER LEVEL (o MHz: BBW=9 KHz. VBV	DF THE EUT . THE EUT I Y=9 KHZ; 30 MHZ − 10	S IN TRANSMIT AND 100 MHZ: RBW=120
THE EUT IS PLACED ON THE TEST BENC Receive mode during the test. TX KHZ, YBW=120 KHZ, 1000 MHZ - 900	ch, USB port is connected [Rea = 824.04 MHZ, [Real DO MHZ: RBW=1 MHZ, VBW=1 Legend :	TO A SUPPORT LAP Jency Range of Me	ASUREMENT = 9 K	HZ – 9 GHZ, 9 K	HZ - 150 KHZ; RBW: '.	=200 HZ, VBW='	TING AND RECEIVING 200 HZ: 150 KHZ - 3 060605	CHANNEL, POWER LEVEL (o MHZ: BBW=9 KHZ, VBV	DF THE EUT . THE EUT I I=9 KHZ; 80 MHZ − 10	S IN TRANSMIT AND 100 MHZ: RBW—120
THE EUT IS PLACED ON THE TEST BENC RECEIVE MODE DUBING THE TEST. TX KHZ, YBW=120 KHZ, 1000 MHZ - 900 Transducer	ch, USB port is connected [Rea = 824.04 MHZ, [Real DO MHZ: RBW=1 MHZ, VBW=1 Legend :	TO A SUPPORT LAP Jency Range of Me I MHZ. 110VAC, 60	ASUREMENT = 9 K	HZ – 9 GHZ, 9 K	HZ - 150 KHZ; RBW: '.	=200 HZ, VBW='	200 HZ; 150 KHZ - 3 060605	CHANNEL POWER LEVEL (o MHZ; BBW=9 KHZ, VBV Lead; Antenna Terminf	¥=9 K₩Z; 30 ₩₩Z - 10	S IN TRANSMIT AND Doo MHz; RBW=120
THE EUT IS PLACED ON THE TEST BENC RECEIVE MODE DUBING THE TEST. [X.] KHI, YBW=120 KHI, 1000 MHI - 900 Transducer I [1=SMA CABLE 1-40GHI AN2604 Measurement Data: #	CH. USB PORT IS CONNECTED FREQ = 824.04 MHZ. FREQ 10 MHZ: BBW=1 MHZ. VBW=1 Legend: 012305	TO A SUPPORT LAP Jency Range of Me I MHZ. 110VAC.60 Reading Lis Ti	ASURËMENT = 9 K Hz, 23°C, 47% Rei Sted by Margin 12	HZ – 9 GHZ, 9 K Lative humidity	HZ - 150 KHZ; BBW; '. <u>12=HPF AN</u> 0	=200 HZ, YBW= 12116 1.56HZ UIST	200 HZ; 150 KHZ - 3 060605 [EST CORR	o MHZ: RBW=9 KHZ, VBY Lerd: Antenna Termina Spec	=9 K Ž; 30 M Ž - 10	100 MHZ; RBW=120
THE EUT IS PLACED ON THE TEST BENC RECEIVE MODE OURING THE TEST, TX KHI, YBW=120 KHI, 1000 MHI - 900 Transducer I TI=SMA CABLE 1-40GHI AM2604 Measurement Data:	ch. USB port is convected frea = 824.04 MHz. freat io MHz. RBW=1 MHz. VBW=1 Legend: D12305	TO A SUPPORT LAP Jency Range of Me I MHZ. 110VAC, 60	HSUREMENT = 9 K) HZ, 23°C, 47% Rel Sted by Margin.	HZ – 9 GHZ, 9 K	HZ - 150 KHZ; RBW: '.	=200 HZ, YBW= 12116 1,56HZ	200 HZ, ISO KHZ - 3 060605 [EST	O MHZ: RBW=9 KHZ. VBV Lead: Antenna Terming Spec DB+ V/M 94.0	=9 K Ž; 30 M Ž - 10	120 MHZ; RBW=120
THE EUT IS PLACED ON THE TEST BENC RECEIVE MODE DURING THE TEST. TX KHZ, YBW=120 KHZ, 1000 MHZ - 900 Transducer Transducer Ti=SMA CABLE 1-40GHZ AN2604 Measurement Data: # HEQ MHZ	CH. USB PORT IS CONNECTED FREQ = 824,04 MHZ, FREQ 10 MHZ; RBW=1 MHZ, VBW=1 Legend: 012305 RDNG 08. V	TO A SUPPORT LAP Jency Range of Me I MHz. 110VAC, 60 Reading Lis 1 DB	ASURËMENT = 9 K Hz, 23°C, 47% Rei Sted by Margin 12	HZ – 9 GHZ, 9 K Lative humidity	HZ - 150 KHZ; BBW; '. <u>12=HPF AN</u> 0	=200 HZ. YBW= 12116 1.56HZ UIST TABLE	200 HZ; 150 KHZ - 3 060605 [EST CORR 06: V/M	o MHZ: RBW=9 KHZ. VBY Lead: Antenna Termina Spec DB• V/M	=9 K Ž; 30 M Ž - 10 	POLAR Ant
THE EUT IS PLACED ON THE TEST BENC RECEIVE MODE DURING THE TEST. TX KHZ, YBW=120 KHZ, 1000 MHZ - 900 Transducer Transducer Ti=SMA CABLE 1-406HZ AN2604 Measurement Data: # TREQ HIZ 1 824,000M	CH. USB PORT IS CONVECTED FRED = 824.04 MHZ. FRED 10 MHZ: RBW = 1 MHZ. VBW = 1 Legend: 012305 HDNG 08. V 118.0	TO A SUPPORT LAP JENCY RANGE OF ME I MHZ, 110VAC, 60 Reading Lis I I DB +0,0	ASURËMENT = 9 K Hz, 23°C, 47% ree Sted by Margin, 12 DB	HZ – 9 GHZ, 9 K Lative humidity	HZ - 150 KHZ; BBW; '. <u>12=HPF AN</u> 0	=200 HZ, YBW= 12116 1,56HZ 12116 1,56HZ 12116 1,56HZ 166HZ 1	200 HZ; 150 KHZ - 3 060605 [est Corr 08: V/m 118,0	o WHZ: RBW=9 KHZ. VBY Lead: Antenna Terminf Spec DB+ V/M 94.0 Fundamental	=9 K Ž; 30 M Ž - 10 	IOO MHZ; RBW=120
THE EUT IS PLACED ON THE TEST BENC RECEIVE MODE DUBING THE TEST. IX KHZ, YBW=120 KHZ. 1000 MHZ - 900 Transducer Transducer The SMA CABLE 1-406HZ AN2604 Measurement Data: # HEQ MHZ 1 824,000M 2 2 2 2 2 2 2 2 2 2 2 2 2471,400M	CH, USB PORT IS CONVECTED FREQ = 824,04 MHZ, FREQ IO MHZ, RBW=1 MHZ, YBW=1 Legend: 012305 RDNG 0B·V 118,0 84,1	TO A SUPPORT LAP JENCY RANGE OF ME IMHZ. 110VAC, 60 Reading Lis In DB +0,0 +0,5	ASUBÈMENT = 9 K Hz, 23°C, 47% Rei Sted by Margin 12 DB +0,3	HZ – 9 GHZ, 9 K Lative humidity	HZ - 150 KHZ; BBW; '. <u>12=HPF AN</u> 0	=200 HZ. YBW= 12116 1.56HZ UIST TABLE +0.0 +0.0	200 HZ; ISO KHZ - 3 060605 [EST CORR 00: V/M 118,0 84,9	o WHZ: RBW=9 KHZ. VBY Lead: Antenna Terminf Spec DB· V/M 94.0 Fundamental 94.0	N=9 KHŽ; 30 MHŽ - 10 NARGIN 08 +24,0 -9,1	IOO MHZ; RBW=120
THE EUT IS PLACED ON THE TEST BENC RECEIVE MODE DURING THE TEST. TX KHZ, YBW=120 KHZ, 1000 MHZ - 900 Transducer Transducer The SMA CABLE 1-40GHZ AN2604 Measurement Data: # HEQ NHZ 1 824,000M 2 2 3 3 3 3 3 3	CH, USB PORT IS CONVECTED FREQ = 824,04 MHZ, FREQ IDO MHZ, BBW=1 MHZ, YBW=1 Legend: D12305 HDNG D8-V 118,0 84,1 61,6	TO A SUPPORT LAP JENCY RANGE OF ME IMHZ. 110VAC, 60 Reading Lis 1 1 bB +0,0 +0,5 +0,6	ASUBEMENT = 9 K Hz. 23°C. 47% Rei Sted by Margin. 12 DB +0.3 +0.2	HZ – 9 GHZ, 9 K Lative humidity	HZ - 150 KHZ; BBW; '. <u>12=HPF AN</u> 0	=200 HZ. YBW= 12116 1.56HZ UIST TABLE +0.0 +0.0 +0.0	200 HZ: ISO KHZ - 3 060605 [EST UORR 08: V/M 118,0 84,9 62,4	o WHZ: RBW=9 KHZ. VBV Lead: Antenna Terminf Spec DB· V/M 94.0 Fundamental 94.0 94.0	¥=9 K¥Ž; 30 M¥Ž - 10 NARGIN UL +24,0 -9,1 -31,6	VOLAR Holar Anten Anten Anten

Test Equipment						
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

Page 27 of 93 Report No.: FC04-054A

FCC 2.1033(c)(14)/2.1051/24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINAL

TEST LOCATION:	CKC LABORATORIES, INC. • 110 N. OLINDA PLACE • BREA, CA 92823 • (714) 993-6112		
CUSTOMER:	ANYDATA CORPORATION		
SPECIFICATION:	FCC 24.238 (A) CONDUCTED SPUR	RIOUS EMISSION	S
WORK ()RDER #:	81938	DATE: 06/29/2004	
TEST TYPE:	CONDUCTED EMISSIONS	TIME: 16,33,09	
Equipment:	CDMA DATA MODEM (DUAL	SEQUENCE#: 4	
Manufacturer: Model: S/N:	BAND) AnyUATA Corporation EMIV-Duri ESNGC1A8BF2	TESTED BY: EDDIE WONG 110V GoHz	

Equipment Under Test (* EUT):

FUNCTION	MANUFACTURER	Model #	SVN	
Power Supply	Oriental Hero Electrical Company	0H-48052DT	NA	
COMA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	[MIV-DUAL	ESN6C1A8BF2	

Support Devices:

FUNCTION	MANUFACTURER	Model #	S/N
LAPTOP	Çompaq	EVO N150	PP2110

Test Conditions / Notes:

THE EUT IS PLACED ON THE TEST BENCH, USB PORT IS CONNECTED TO A SUPPORT LAPTOP. THE SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUT. THE EUT IS IN TRANSMIT AND RECEIVE MODE DURING THE TEST. TX FREQ = 1851,25 MHz, FREQUENCY RANGE OF MERSUREMENT = 9 KHz - 20 GHz, 9 KHz - 150 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=200 Hz, 150 KHz - 30 MHz, 8BW=9 KHz, 30 MHz - 1000 MHz, 8BW=120 KHz, 9BW=120 KHz, 1000 MHz, 8BW=120 KHz, 9BW=9 KHz, 9BW=120 KHz, 9BW=9 KHz, 9BW=120 KHz, 9BW=9 KHz, 9BW=120 KHz, 9BW=120 KHz, 1000 MHz, 8BW=120 KHz, 9BW=9 KHz, 9BW=120 KHz, 9BW=9 KHz, 9BW=120 KHz, 9BW=9 KHz, 9BW=120 KHz, 9BW=120 KHz, 1000 MHz, 8BW=120 KHz, 9BW=120 KHz, 1000 MHz, 8BW=120 KHz, 9BW=9 KHz, 9BW=120 KHz, 9BW=9 KHz, 9BW=120 KHz, 9B

Transducer Legend: [1=SMA CABLE 1-40GHZ AN2604 012305

T2=HPF 2,4GHZ HIGH PASS 022005

Measui	rement		READING LIS	TED BY MARGIN.				TEST LE	AD: ANTENNA TERMINA	ll	
Data: #	FREQ MHZ	Rong dB· V	[1 D{}	⊺2 D}	08	08	DIST Table	Corr d₿∙ V/m	Spec dB· V/m	MARGIN DR	Polar Ant
1	1851 <u>.</u> 350M	133,9	+0,5	+0,0	50	50	+0,0	134,4	94.0 Fundamental	+40.4	ANTEN
2	3703 _. 000M	78,1	+0,6	+0.7			+0,0	79 _. 4	94.0	-14.6	ANTEN
3	5553 _. 500M	74,1	+0,8	+2.4			+0,0	77,3	94.0	-16,7	ANTEN
4	7405 _. 000M	65.4	+1,0	+5,1			+0,0	71,5	94.0	-22,5	ANTEN
5	14812 _. 500M	53,5	+ 1,5	+ 3.8			+0.0	58,8	94.0	-35,2	ANTEN
6	9255,999M	50,8	+]]	+5.3			+0,0	57,2	94.0	-36,8	ANTEN
1	11107 <u>.</u> 500M	50,1	+1,2	+4.7			+0,0	56,0	94.0	-38,0	ANTEN
8	12958,500M	43,5	+ 13	+5,0			+ 0,0	4 9,8	94.0	-44,2	ANTEN

TEST LOCATION:	I	CKC LABORATORIES, INC. •1	10 N. OLINDA PLACE	• BREA, CA 92823	· (714) 993-6112	1					
CUSTOMER: Specification; Work Order #; Test Type; Equipment;		ANYDATA FCC 24.23 81938 Conduc Cdma Da Band)	8 (A) C TED E	CONDU MISSIC	CTED		OUS EN (A Tiv Sequence	TE: 06/29/2 NE: 16:38:33			
MANUFACTURER: Model: S/N:		ANYDATA CORPORATION EMIV-Dual ESN6C1A8BF2					[ESTED	}Y: EDDIE WO 110V GOH			
Equip FUNCTION	oment Un	der Test MANUE	<u>(* EU</u> Facturer	T):		MODEL #			S/N		
POWER SUPPLY COMA DATA MODE	EM (DUAL BAND)*	ORIEN	TAL HERO [LECTRI 17A Corporation			0H-480520) [MIV-DUAL			NA ESN6C1A8BF2		
	ort Devi								0.00		
FUNCTION Laptop		MHNUF Compe	FACTURER 10			Model # EVO N150			S/N PP2110		
THE ENT IS DIAPE	ED ON THE TECT DENCH	ΠΟΠ ΠΟΡΤ ΤΟ ΟΟΝΝΓΟΤΕΡ ΤΟ		T			T THE TROUGHUTTING			s rus fill Tus fill u	
RECEIVE MODE DU KHZ_VBW=120 K Trans	JRING THE TEST X FREG (2_1000 2 - 20000 2 - 20000 2 - 20000	Q = 1880,00 MHZ FREQUEN MHZ: BBW=1 MHZ_VBW=1 egend :	ICY RANGE OF MEA	ISUREMENT = 9 K∦	2 – 20 GHZ, 9 K	HZ – 150 KHZ; RBW = 11TY _.	=200 HZ, VBW = 200	HND RECEIVING HZ: 150 KHZ – 3	CHANNEL, POWER LEVEL O O MHZ: BBW=9 KHZ, VBW	F THE EUT , THE EUT I =9 KHZ; 30 MHZ - 10	S IN TRANSMIT AND 100 MHZ: RBW=120
RECEIVE MODE DU KHZ, VBW=120 K Trans	IRING THE TEST TX FREG KHZ, 1000 MHZ - 20000	Q = 1880,00 MHZ FREQUEN MHZ: BBW=1 MHZ_VBW=1 egend :	ICY RANGE OF MEA	ISUREMENT = 9 K∦	2 – 20 GHZ, 9 K	HZ – 150 KHZ; RBW = 11TY _.	T THE TRHNSMITTING =200 Hz, VBW=200 Z High Pass 022005	HND KECEIVING HZ: 150 KHZ – 3	CHHNNEL, PUWER LEVEL U O MHZ: RBW—9 KHZ, VBW	F THE EUT , THE EUT T =9 KHZ; 30 MHZ - 10	S IN TRANSMIT AND 100 MHZ: RBW=120
RECEIVE MODE DUI KHZ, VBW=120 K Trans T1=SMA GABLE 1-	JRING THE TEST X FREG (2_1000 2 - 20000 2 - 20000 2 - 20000	Q = 1880,00 MHZ FREQUEN MHZ: BBW=1 MHZ_VBW=1 egend :	ICY RANGE OF MEA MHZ. 110VAC.61	ISUREMENT = 9 K∦	2 – 20 GHZ, 9 K	HZ – 150 KHZ; RBW = 11TY _.	=200 HZ, VBW = 200	HZ: 150 KHZ - 3	CHHNAL, PUWEH LEVEL U D MHZ: RBW=9 KHZ, VBW 	=9 KHZ; 30 MHZ - 10	S IN TRANSMIT AND OO MHZ, RBW = 120
RECEIVE MODE DU KHZ_VBW=120 K Trans TI=SMA CABLE I Measus	JRING THE TEST X FREU K 12, 1000 M 12 - 20000 S ducer Lo S ducer S duc	1 = 1880 OO MHZ FREQUEN MHZ: 88W =1 MHZ VBW =1 egend: caos	ICY RANGE OF MEA MHZIOVAC, 6 MHZ Reading Lis	ISUREMENT = 9 KH 0 Hz, 23()EGC, 47% 	Z – 20 GHZ. 9 K Relative humid	H2 - 150 KH2; RBW= 11TY. 12=HPF 2.46H	=200 HZ, YBM=200 7 High Pass 022005 Dist	HZ: 150 KHZ - 3 Test	O MHZ: RBW=9 KHZ, VBW Lead: Antenna Termina Spec	=9 K Z; 80 W Z - 10	100 MHz; RBW=120
RECEIVE WOOD OU K 1, YBN=120 K Trans [1=SM1 CABLE 1 Measu1 Data:	JRING THE TEST X FREI K 12, 1000 M 12 - 20000 S ducer Lu I-40GH7 A \2604 012 rement	1 = 1880,00 <u>MH</u> Z [REQUEN MHZ:RBW=1 MHZ VBW=1 <i>egend:</i> 2305	ICY RANGE OF MEA MHZ. 110VAC.61	ISUREMENT = 9 KH 0 Hz, 23)EGC, 47% KTED BY MARGIN.	2 – 20 GHZ, 9 K	HZ – 150 KHZ; RBW = 11TY _.	=200 HZ, YBW=200 7 High Pass 022005	HZ; 150 KHZ - 3	O MHZ: RBW=9 KHZ, VBW	=9 KHZ; 30 MHZ - 10	120 MHZ: RBW=120
RECEIVE WOOD OU K 1, YBN=120 K Trans [1=SM1 CABLE 1 Measu1 Data:	JRING THE TEST X FREU K 12, 1000 MH2 - 20000 S ducer Lo S ducer S duce	A = 1880 OO MHZ FREQUEN MHZ: 88W =1 MHZ V8W =1 egend: auss Bong DB: V	ICY RANGE OF MEA MHZ. 110VAC, 61 Reading Lis T1 DB	ISUREMENT = 9 KH 0 Hz, 23()EGC, 47% Sted by Margin, 12 08	Z – 20 GHZ. 9 K Relative humid	H2 - 150 KH2; RBW= 11TY. 12=HPF 2.46H	=200 HZ, YBM=200 7 High Pass 022005 Dist Table	HZ: 150 KHZ - 3 Test Corr DB· V/M	O MHZ; BBW=9 KHZ, VBW Lead; Antenna Termina Spec db: V/m 94 0	=9 K Z; 80 W Z - 10	POLAR Ant
RECEIVE MODE DUI KH2, YBW=120 K Trans [1=SWH (ABLE 1) Measur Data: # 1	JRING THE TEST X FREU K HZ 1000 MHZ - 20000 S ducer L I 40GHZ AN2604 012 rement FREU HHZ 1879 650M	Rong Barten Rong Rong Bong Bong Bong Bong Bong Bong Bong B	ICY RANGE OF MEA MHZ. 110VAC, 61 Reading Lis T1 DB +0,5	ISUREMENT = 9 KH 0 Hz, 23()EGC, 47% Sted by Margin 12 08 +0,0	Z – 20 GHZ. 9 K Relative humid	H2 - 150 KH2; RBW= 11TY. 12=HPF 2.46H	-200 HZ, VBM=200 Z High Pass 022005 Dist Table +0.0	Hz, 150 KHZ - 3 [Est Corr 06: V/m 134.8	O MHZ; BBW=9 KHZ, VBW Lead; Antenna Termina Spec DB: V/M 94.0 Fundamental	=9 K Z; 80 W Z - 10 	Polar Ant Ant
RECEIVE MODE DUI KH2 YBW=120 K Trans [1=SWH (ABLE I) Measur Data: # 1 2	JRING THE TEST X FREU K 12, 1000 M 12 - 20000 S ducer L 1 40GHZ N 2604 012 Rement REU 1879,650M 3760,500M	Rong Barten Rong Rong Bong Bong Bong Bong Bong Bong Bong B	ICY RANGE OF MEA MHZ. 110VAC, 61 Reading Lis T1 D8 +0,5 +0,7	ISUREMENT = 9 KH 0 Hz, 230EGC, 47% 5ted by Margin 12 08 +0.0 +0.8	Z – 20 GHZ. 9 K Relative humid	H2 - 150 KH2; RBW= 11TY. 12=HPF 2.46H	=200 HZ, VBM==200 Z HIGH PASS 022005 01ST 1ABLE +0.0 +0.0	Hz, 150 KHZ - 3 [EST [ORR 08: V/M 134,8 75,1	O MHZ; BBW=9 KHZ, VBW Lead; Antenna Termina Spec <u>DB: V/M</u> 94.0 Fundamental 94.0	=9 K Z; 80 W Z - 10 	DO MHZ; RBW=120
RECEIVE MODE DUI KH2 YBW=120 K Trans [1=SWH (ABLE 1) Measur Data: # 1 2 3	JRING THE TEST X FREU (HZ 1000 MHZ - 20000 S ducer Lo 1-406HZ HN2604 012 rement [REU MHZ 1879 650M 3760 500M 5641,000M	A = 1880 00 MHZ FREQUEN MHZ: RBW=1 MHZ VBW=1 egend: 3005 RDNG DB·V 134,3 73,6 71,2	ICY RANGE OF MEA MHZ. 110VAC, 61 Reading Lis 11 DB +0.5 +0.7 +0.8	ISUREMENT = 9 KH 0 Hz, 23)E6C, 47% Sted by Margin 12 DB +0.0 +0.8 +2.0	Z – 20 GHZ. 9 K Relative humid	H2 - 150 KH2; RBW= 11TY. 12=HPF 2.46H	200 HZ, VBM=200 Z High Pass 022005 Dist Table +0.0 +0.0 +0.0	Hz, 150 KHZ - 3 [EST [CORR 0]0 V/M 134,0 75,1 74,0	O MHZ; BBW=9 KHZ, VBW Lead; Antenna Termina Spec DB: V/M 94 0 Fundamental 94 0 94 0 94 0	=9 K Z; 30 W Z - 10 	DO MHZ; RBW=120

TEST LOCATION:	ß	(C LABORATORIES, INC.	110 N. Ni inna Diari	• RRFA (°A 92823	· (714) 993-61	119					
CUSTOMER: Specification: Work Order #: Test Type: Equipment: Manufacturer: Model: S/N:	A H S C C H H M	ANYDAT FCC 24.23 31938 CONDUC CDMA D 3AND) WORTA CORPORTION AV-DURL XIGCT REF2	A CORI 88 (A) C CTED E	PORATI CONDU MISSIC	ION JCTEI DNS	O SPURI	[ATE: 06/29/200 IME: 16:48:34 XE#: 6	4		
<i>Test E</i> Function HP8568B	Equipmen	n t: S/N US40240225			BRATION DATE 1/2003		CAL DUE DA 03/11/200		ASSE 2472		
Equipm Function Power Supply CDMA Data Modem		ORIE	(* EU UFACTURER NTAL HERO [LECTRI)ATA CORPORATION	CAL COMPANY		MODEL # 0H-4805201 EMIV-DUAL			S/N NA ESN6C1A8BF2		
Suppor [UNCTION [APTOP	t Devic		VFACTURER PAQ			Model # EVO N150			S/N PP2110		
THE EUT IS PLACED I Receive mode durin	DN THE TEST BENCH [] 16 The Test Tx Fre	ons / No ⁻ SB port is connected Q = 1908,75 MHZ, [RI - 20000 MHZ, BBW=1)	TO A SUPPORT LAP Equency range of	MEASUREMENT =	9 KHZ - 20 G	HZ. 9 KHZ – 150 KHZ	T THE TRANSMITTIN 4: RBW=200 HZ, V	G AND RECEIVING CH BW=200 HZ: 150 KH	ANNEL. POWER LEVEL O 1z – 30 MHZ: RBW=9	IF THE EUT . THE EUT IS KHZ, VBW=9 KHZ; 30	S IN TRANSMIT AND 1 MHZ – 1000 MHZ;
Transd	lucer Le 1642 AN2604 0123	egend:			0, 17/1 1221		z High Pass 02200	5			
<i>Measur</i> Data:	ement		READING LIS	STED BY MARGIN.				TEST LEI	AD: ANTENNA TERMINA	l	
#	FREQ MHZ	RDNG DB• V	[] D}	[2 D]}	08	08	DIST TABLE	CORR DB· V/M	Spec dB· V/m	MARGIN DB	Polar Ant
2	1908,510M 3818,500M	133 _. 3 78 _. 6	+0,5	+0,0			+0,0	133 <u>,</u> 8 80 1	94,0 Fundamental 94 0	+39,8	ANTEN Anten
ц 	5725,500M	70,0	+0.7	+0,0 +1,6			+0,0 +0,0	75,1	94.0	-18,9	ANTEN
4	3817,550M	70,2	+0.7	+0,8			+0,0	71,7	94,0	-22,3	ANTEN
AVE	3817_550M	79,1	+0.7	+0.8			+0.0	80,6	94,0	-13.4	ANTEN
6	7634 <u>.</u> 500M	57,1	+1.0	+5.7			+0,0	63,8	94 <u>.</u> 0	-30,2	ANTEN

1	11452 _. 000M	58,2	+1.2	+4.0	+0.0	<u>63</u> .4	94 _. 0	-30,6	ANTEN
8	17177 _. 500M	55,7	+1,5	+5.7	+0.0	62,9	94,0	-31,1	ANTEN
g	15269,000M	43,8	+1,5	+3.6	+0.0	48.9	94.0	-45,1	ANTEN

Test Equipment						
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

FCC 2.1033(c)(14)/2.1053/22.917(a) - FIELD STRENGTH OF SPURIOUS RADIATION

Test Conditions: The EUT is placed on the test bench. RS232 is connected to a remotely located support laptop via UTP. The support laptop runs test program to set the transmitting and receiving channel, power level of the EUT. The EUT is in transmit and receive mode during the test All other ports are left unterminated. Tx Freq = 824.04 MHz, 836.52 MHz and 848.97 MHz.. Frequency range of measurement = 9 kHz - 9 GHz. 9 kHz - 150 kHz; RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz; RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz; RBW=120 kHz, VBW=120 kHz, 1000 MHz - 9000 MHz; RBW=1 MHz, VBW=1 MHz. 110VAC, 60 Hz, 23°C, 47 % relative humidity.

Operating Frequency: 824.02 MHz Channels: Low Highest Measured Output Power: 25.00 ERP(dBm)= 0.3162 ERP(Watts) Distance: 3 meters Limit: 43+10Log(P) 38.00 dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
2,471.60	-26.8	Vert	51.80
1,647.45	-31.5	Vert	56.50
3,295.30	-32.8	Vert	57.80
2,473.05	-33.3	Vert	58.30
2,473.05	-24.7	Vert	49.70
2,471.80	-33.8	Horiz	58.80
1,648.00	-34	Horiz	59.00
3,295.60	-34.5	Horiz	59.50
3,295.60	-34.5	Horiz	59.50
2,471.65	-34.6	Horiz	59.60
3,296.00	-42.3	Vert	67.30
4,945.00	-42.4	Horiz	67.40
4,945.00	-43.4	Vert	68.40
3,295.30	-44.7	Horiz	69.70
1,647.60	-50.6	Vert	75.60
1,647.60	-50.8	Horiz	75.80
3,476.00	-52.8	Vert	77.80

Operating Frequency: <u>836.52 MHz</u> Channels: <u>Mid</u> Highest Measured Output Power: <u>26.10</u> ERP(dBm)= <u>0.4074</u> ERP(Watts) Distance: <u>3</u> meters Limit: <u>43+10Log(P)</u> <u>39.10</u> dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
2,480.30	-26.6	Vert	52.70
2,479.00	-27.1	Horiz	53.20
3,305.13	-33.4	Horiz	59.50
3,307.00	-33.4	Vert	59.50
2,479.55	-33.8	Vert	59.90
4,133.00	-48.6	Horiz	74.70
1,653.00	-52.4	Horiz	78.50
1,653.00	-54	Vert	80.10

Operating Frequency: <u>848.97 MHz</u> Channels: <u>High</u> Highest Measured Output Power: <u>24.40</u> ERP(dBm)= <u>0.2754</u> ERP(Watts) Distance: <u>3</u> meters Limit: <u>43+10Log(P)</u> <u>37.40</u> dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
2,547.00	-33.4	Vert	57.80
2,547.00	-25.3	Vert	49.70
2,546.00	-34	Horiz	58.40
3,395.00	-37.4	Vert	61.80
3,395.03	-42.6	Horiz	67.00
1,697.90	-46	Vert	70.40
1,697.00	-49.1	Horiz	73.50
4,248.00	-49.4	Vert	73.80

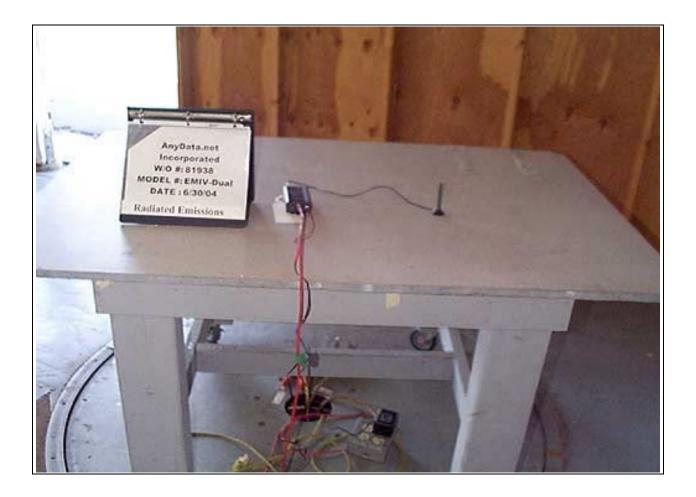
Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer RF Section	02462	HP	8568B	2928A04874	031103	031105
Spectrum Analyzer Display Section	02472	HP	85662A	3001A18430	031103	031105
QP Adapter	01437	HP	85650A	3303A01884	092702	092704
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105
30-1000MHz	•	·	•			•
biconilog Antenna	01995	Chase	CBL6111C	2451	040804	040806
Pre-amp	00309	HP	8447D	1937A02548	082303	082304
Antenna cable	NA	NA	RG214	Cable#15	123003	123004
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable#10	070802	070804
1000-1800 MHz		•				
Horn Antenna	0849	EMCO	3115	6246	091002	091004
Microwave Pre-amp	00786	HP	83017A	3123A00281	091102	091104
¹ /4" Heliax Coaxial Cable	NA	Andrew	FSJ-50A-4	Cable#7 (6 ft)	073103	073104
Heliax Antenna cable	NA	Andrew	LDF1-50	Cable#20	101303	101304
24" SMA Cable	2604	Argosy	UFA147A	0-0360-200200	012304	012305
2.4 GHz HPF	01440	K&L	91H31-3000	001	022003	022005
1.5 GHz HPF	02116	HP	84300- 80037	3643A00027	060603	060605
9kHz-30 MHz	•	·	•			•
Loop Antenna	00314	EMCO	6502	2014	062804	062806
1800-20000MHz						
18-26.5 GHz Horn Antenna	02112	HP	84125-8008	3643A00027	070103	070105

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

Page 35 of 93 Report No.: FC04-054A


PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View - Horn Antenna

Page 36 of 93 Report No.: FC04-054A

Radiated Emissions - Back View

Radiated Emissions - Loop Antenna

Page 38 of 93 Report No.: FC04-054A

FCC 2.1033(c)(14)/2.1053/24.238(a) - FIELD STRENGTH OF SPURIOUS RADIATION

Test Conditions: The EUT is placed on the test bench. RS232 is connected to a remotely located support laptop via UTP. The Support laptop runs test program to set the Transmitting and receiving channel, power level of the EUT. The EUT is in transmit and receive mode during the test All other ports are let unterminated. Tx Freq = 1851.25 MHz, 1880.00 MHz and 1908.75 MHz. Frequency range of measurement = 9 kHz- 20 GHz. 9 kHz - 150 kHz; RBW=200 Hz, VBW=200 Hz; 150 kHz - 30 MHz; RBW=9 kHz, VBW=9 kHz; 30 MHz - 1000 MHz; RBW=120 kHz, VBW=120 kHz ,1000 MHz - 20000 MHz; RBW=1 MHz, VBW=1 MHz. 110VAC, 60 Hz, 23°C, 47 % relative humidity.

Operating Frequency: <u>1851.25 MHz</u> Channels: <u>Low</u> Highest Measured Output Power: <u>26.53</u> ERP(dBm)= <u>0.4498</u> ERP(Watts) Distance: <u>3</u> meters Limit: <u>43+10Log(P)</u> <u>39.53</u> dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
5,553.00	-20.7	Vert	47.23
7,404.90	-20.8	Vert	47.33
7,405.08	-26.9	Horiz	53.43
5,552.95	-32.2	Horiz	58.73
9,255.00	-33	Vert	59.53
14,809.00	-33.3	Vert	59.83
3,702.00	-34.4	Vert	60.93
3,702.13	-38.5	Horiz	65.03

Operating Frequency: <u>1880 MHz</u> Channels: <u>Mid</u> Highest Measured Output Power: <u>28.32</u> EIRP(dBm)= <u>0.6792</u> EIRP(Watts) Distance: <u>3</u> meters Limit: <u>43+10Log(P)</u> <u>41.32</u> dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
5,640.76	-20.6	Vert	48.92
7,520.00	-23.3	Vert	51.62
7,519.05	-24.5	Horiz	52.82
5,640.00	-32.9	Horiz	61.22
3,760.00	-34.3	Vert	62.62
3,759.00	-40.3	Horiz	68.62
3,485.00	-49.3	Vert	77.62

Operating Frequency: <u>1908.75 MHz</u> Channels: <u>High</u> Highest Measured Output Power: <u>25.31</u> ERP(dBm)= <u>0.3396</u> ERP(Watts) Distance: <u>3</u> meters Limit: <u>43+10Log(P)</u> <u>38.31</u> dBc

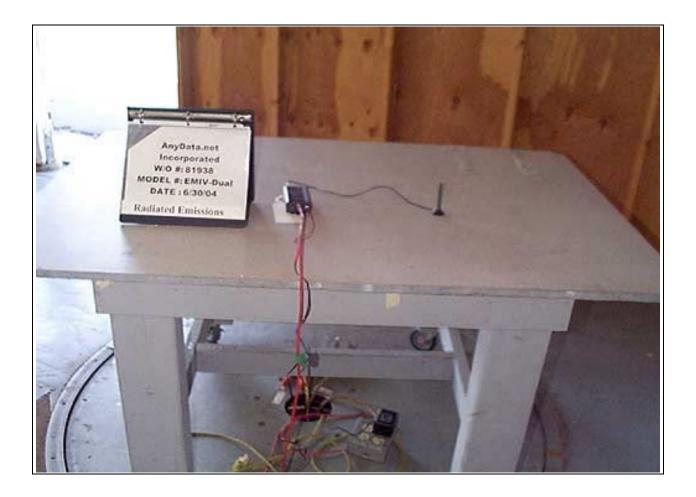
Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
5,726.60	-19.5	Vert	44.81
3,818.15	-21	Vert	46.31
7,634.98	-21.1	Vert	46.41
7,636.00	-24	Horiz	49.31
15,270.18	-24.1	Vert	49.41
17,179.00	-24.5	Vert	49.81
5,726.90	-25.7	Horiz	51.01
3,818.00	-28.6	Horiz	53.91
15,271.00	-29	Horiz	54.31
3,818.03	-29.3	Vert	54.61
9,543.00	-31.5	Vert	56.81

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02462	HP	8568B	2928A04874	031103	031105
RF Section	02.472	LID	05((2))	2001 4 10 420	021102	021105
Spectrum Analyzer	02472	HP	85662A	3001A18430	031103	031105
Display Section QP Adapter	01437	HP	85650A	3303A01884	092702	092704
Spectrum Analyzer	01437	Agilent	E7405A	US40240225	033103	032704
30-1000MHz	02407	Agnent	E/403A	0340240223	033103	055105
biconilog Antenna	01995	Chase	CBL6111C	2451	040804	040806
Pre-amp	01993	HP	8447D	1937A02548	040804	040800
Antenna cable	NA	NA	RG214	Cable#15	123003	123004
	NA NA			Cable#13 Cable#10	070802	
Pre-amp to SA cable	INA	Harbour	RG223/U	Cable#10	070802	070804
1000-1800 MHz	0040	EL (CO	2115	(24)	001000	001004
Horn Antenna	0849	EMCO	3115	6246	091002	091004
Microwave Pre-amp	00786	HP	83017A	3123A00281	091102	091104
¹ / ₄ " Heliax Coaxial	NA	Andrew	FSJ-50A-4	Cable#7	073103	073104
Cable				(6 ft)		
Heliax Antenna cable	NA	Andrew	LDF1-50	Cable#20	101303	101304
24" SMA Cable	2604	Argosy	UFA147A	0-0360-200200	012304	012305
2.4 GHz HPF	01440	K&L	91H31-3000	001	022003	022005
1.5 GHz HPF	02116	HP	84300- 80037	3643A00027	060603	060605
9kHz-30 MHz	•					
Loop Antenna	00314	EMCO	6502	2014	062804	062806
1800-20000MHz	•	•	•			
18-26.5 GHz Horn Antenna	02112	HP	84125-8008	3643A00027	070103	070105

Radiated Emissions - Front View

Page 41 of 93 Report No.: FC04-054A



Radiated Emissions - Front View - Horn Antenna

Page 42 of 93 Report No.: FC04-054A

Radiated Emissions - Back View

Page 43 of 93 Report No.: FC04-054A

Radiated Emissions - Loop Antenna

Page 44 of 93 Report No.: FC04-054A

FCC 2.1033(c)(14)/2.1055/22.355(a)(d)- FREQUENCY STABILITY

Test Conditions: The EUT is placed in the temperature chamber. RF signal is monitored from the antenna port. A spectrum analyzer is employed to measure the frequency stability of the EUT.

Customer:	AnyData.net
WO#:	81938
Test Engineer:	E. Wong

Device Model #:	EMIV Dual
Operating Voltage:	110 Vac
Frequency Limit:	2.50E+00 ppm

Temperature Variations

		Channel 1 (MHz)	Dev. (MHz)	Channel 2 (MHz)	Dev. (MHz)	Channel 3 (MHz)	Dev. (MHz)
Channel F	requency:	824.043100		836.5226		848.97281	
Temp (C)	Voltage						
-30	110	824.042280	0.000820	836.522180	0.000420	848.972230	0.000580
-20	110	824.042280	0.000820	836.522230	0.000370	848.971960	0.000850
-10	110	824.042230	0.000870	836.522230	0.000370	848.972280	0.000530
0	110	824.042180	0.000920	836.522230	0.000370	848.972120	0.000690
10	110	824.042280	0.000820	836.522490	0.000110	848.972170	0.000640
20	110	824.043100	0.000000	836.522600	0.000000	848.972810	0.000000
30	110	824.042600	0.000500	836.522120	0.000480	848.972120	0.000690
40	110	824.042700	0.000400	836.522650	0.000050	848.973350	0.000540
50	110	824.042100	0.001000	836.523750	0.001150	848.974150	0.001340

Voltage Variations (±15%)

Temp (C)	Voltage	Channel 1 (MHz)	Dev. (MHz)	Channel 2 (MHz)	Dev. (MHz)	Channel 3 (MHz)	Dev. (MHz)
20	93.5	824.042330	0.000770	836.522440	0.000160	848.972870	0.000060
20	110.0	824.043100	0.000000	836.522600	0.000000	848.972810	0.000000
20	126.5	824.042550	0.000550	836.522650	0.000050	848.973020	0.000210

Max Deviation (MHz)	0.00100	0.00115	0.00134
Max Deviation (%)	0.00012	0.00014	0.00016
	PASS	 PASS	 PASS

FCC 2.1033(c)(14)/2.1055/24.235(a)(d)- FREQUENCY STABILITY

Test Conditions: The EUT is placed in the temperature chamber. RF signal is monitored from the antenna port. A spectrum analyzer is employed to measure the frequency stability of the EUT Note Limit not defined : FCC 24.235 Frequency stability. - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Customer:	AnyDATA.net Inc.
WO#:	81938
Test Engineer:	E. wong

Device Model #:	EMIV Dual
Operating Voltage:	110 Vac
Frequency Limit:	2.50 ppm

Temperature Variations

		Channel 1 (MHz)	Dev. (MHz)	Channel 2 (MHz)	Dev. (MHz)	Channel 3 (MHz)	Dev. (MHz)
Channel F	requency:	1851.252810000		1880.002810000		1908.752650000	
Temp (C)	Voltage						
-30	110	1851.252230000	0.000580	1880.001540000	0.001270	1908.752920000	0.000270
-20	110	1851.252070000	0.000740	1880.002120000	0.000690	1908.752230000	0.000420
-10	110	1851.252330000	0.000480	1880.002440000	0.000370	1908.751640000	0.001010
0	110	1851.252180000	0.000630	1880.002230000	0.000580	1908.752180000	0.000470
10	110	1851.252390000	0.000420	1880.002280000	0.000530	1908.752440000	0.000210
20	110	1851.252810000	0.000000	1880.002810000	0.000000	1908.752650000	0.000000
30	110	1851.253180000	0.000370	1880.003180000	0.000370	1908.759210000	0.006560
40	110	1851.253400000	0.000590	1880.002750000	0.000060	1908.752210000	0.000440
50	110	1851.253650000	0.000840	1880.003450000	0.000640	1908.752200000	0.000450

Voltage Variations (±15%)

Temp	C) Voltage	Channel 1 (MHz)	Dev. (MHz)	Channel 2 (MHz)	Dev. (MHz)	Channel 3 (MHz)	Dev. (MHz)
20	93.5	1851.252970000	0.000160	1880.006570000	0.003760	1908.754990000	0.002340
20	110.0	1851.252810000	0.000000	1880.002810000	0.000000	1908.752650000	0.000000
20	126.5	1851.256500000	0.003690	1880.000318000	0.002492	1908.752810000	0.000160

Max Deviation (MHz)	0.00369	0.00376	0.00656
Max Deviation (%)	0.00020	0.00020	0.00034
	PASS	PASS	PASS

Test Equipment

Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105
Temp Chamber	01878	Thermotron	S1.2 Mini	NA	NA	NA
			Max			
Temp Data	NA	Agilent	34970A	US37031892	040203	040205
Acquisition unit						
Programmable	01695/	Pacific Power	345AMX /	250 / 245	052203	052205
Power Source	01696		UPC32			

PHOTOGRAPH SHOWING TEMPERATURE TESTING

FCC 15.107 – AC CONDUCTED EMISSIONS

TEST LOCATION: CKC LABORATORIES, INC. • 110 N. OLIMDA PLACE • BREA, CA 92823 • (714) 993-6112

CUSTOMER:	ANYDATA CORPORATION		
Specification:	FCC 15.107 CLASS B COND [AVE]		
Work Order #:	81938	DATE:	07/02/2004
TEST TYPE:	CONDUCTED EMISSIONS	TIME;	11;26;32 AM
EQUIPMENT:	CDMA DATA MODEM (DUAL	SEQUENCE#:	40
	BAND)		
MANUFACTURER:	ANYDATA CORPORATION	TESTED BY:	EDDIE WONG
Model:	[MIV-DUAL		110V 60HZ
S/N:	ESN6C1A8BF2		

Equipment Under Test (* EUT):

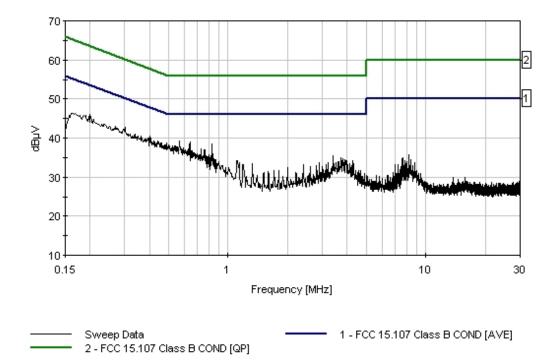
FUNCTION	MANUFACTURER	MODEL #	S/N	
Power Supply	Oriental Hero Electrical Company	0H-48052DT	NA	
CDMA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	[MIV-DUAL	[SN6C1A8BF2	

Support Devices:

Support Devices.			
FUNCTION	MANUFACTURER	Model #	S/N
LAPTOP	Compaq	EVO N150	PP2110

Test Conditions / Notes:

THE EUT IS PLACED ON THE TEST BEACH. BS232 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP VIA UTP. THE SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUT. THE EUT IS IN RECEIVE MODE DURING THE TEST. ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 824,04 MHZ. FREQUENCY RANGE OF MERSUREMENT = 150 KHZ - 30 MHZ. 150 KHZ - 30 MHZ. BBW=9 KHZ. YBW=9 KHZ. 10VAC, 60 HZ. 23°C, 47% RELITIVE HUMIDITY.


Transducer Legend:

Measur Data:	ement		READING LIS	STED BY MARGIN				TERT FE	ID: BLACK		
#	FREQ MHZ	Rdng dB• V	[1 D{}	08	DB	08	()IST Table	Corr d8∙ V	Spec dB· V	Margin DB	Polar Ant
1	566 <u>.</u> 325K	<u>39</u> 1	+0,1				+0,0	39 _. 2	46 <u>.</u> 0	-6,8	BLACK
2	640 _. 864K	38,9	+0,1				+0,0	39 _. 0	46 <u>.</u> 0	-7.0	BLACK
3	829 _. 937K	38,3	+ 0,1				+0,0	38.4	46 <u>.</u> 0	-7.6	BLACK
4	168 <u>.</u> 180K	46.4	+0,0				+ 0,0	46.4	55 <u>.</u> 0	-8,6	BLACK
5	3.404M	35 <u>.</u> 3	+0,2				+0,0	35,5	46 <u>.</u> 0	-10,5	BLACK
6	3.714M	34.8	+0,2				+0,0	35,0	46 <u>.</u> 0	-11,0	BLACK
1	3 _. 815M	34,6	+0.2				+0.0	34.8	46 <u>.</u> 0	-11,2	BLACK

8	1,118M	34,2	+ 0 <u>1</u>	+0	0 34	3 46 _. 0	-11,7	BLACK
g	3.203M	33 _. 5	+0.2	+0	0 33	7 46.0	-12,3	BLACK
10	2,902M	<u>33</u> .4	+0.2	+0	0 33	6 46.0	-12.4	BLACK
11	1,328M	33'3	+0,1	 +0	0 33.	4 46.0	-12,6	B LACK
12	1,198M	33 _. 2	+0.1	 +0	0 33.	3 46 _. 0	-12,7	B LACK
13	2,401M	33 <u>.</u> 0	+0.2	+0	0 33.	2 46.0	-12,8	BLACK
14	3 _. 143M	33 _. 0	+0.2	+0	0 33.	2 46.0	-12,8	BLACK
15	2,802M	32,7	+0.2	+0	0 32.	9 46.0	-13,1	BLACK

CKC Laboratories, Inc. Date: 07/02/2004 Time: 11:26:32 AM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 40

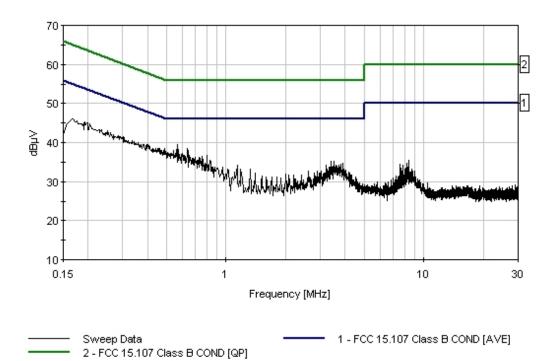
TEST LOCATION:	CKC LABORATORIES, INC. • 110 N. OLINOR PLACE • BREA, CA 92823 • (714) 993-6112			
CUSTOMER:	ANYDATA CORPORATION			
Specification:	FCC 15.107 CLASS B COND [A	VE]		
WORK ()RDER #:	81938	- Dat	TE: 07/02/2004	
TEST TYPE:	CONDUCTED EMISSIONS	Ţim	11:37:12 AM	
EQUIPMENT:	CDMA DATA MODEM (DUAI	SEQUENCE	# _: 41	
	BAND)			
MANUFACTURER:	ANYDATA CORPORATION	TESTED B		
MODEL:	EWIA-DAU Enveryoute		110¥ 60HZ	
S/N:	ESN6C1A80F2			
	nder Test (* EUT):			
FUNCTION	MANUFACTURER	Model #		S/N
Power Supply CDMA Data Modem (Dual Band)*	(briental Hero Electrical Company AnyDATA Corporation	0H-48052DT EMIV-DUAL		NH ESN6C1A8BF2
POMU Duru Wonew (Dour Duun)	UutAUIV Pousouuinu	[WIA.Dour		[?]InfilloDL?

Support Devices:

LAPTOP COMPAQ EVO NISO PP2110	FUNCTION	MANUFACTURER	Model #	S/N
	LAPTOP		EVO N150	PP2110

Test Conditions / Notes: The EUT is placed on the test bench. 18232 is connected to a remotely located support laptop via UTP. The support laptop runs test program to set the transmitting and receiving channel, power level of the EUT. The EUT IS IN RECEIVE MODE DURING THE TEST, ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 824.04 WHZ, FREQUENCY RANGE OF MERSUREMENT = 150 KHZ - 30 WHZ, 150 KHZ - 30 WHZ, 180 HZ, 28 HZ, 110 VAC, 60 HZ, 23 °C, 47 K RELATIVE HUMIDITY.

Transducer Legend:


T1=CABLE #21 CONDUCTED SITE A

Measur Data:	ement		READING LIS	STED BY MARGIN	l.			TEST LE	RD _: WHITE		
#	FREQ MHZ	RDNG DB∙ V	[1 D}	08	DB	08	()IST Table	(¦ORR D₿∙ V	SPEC DB• V	MARGIN DB	Polar Ant
1	569,961K	39,3	+0,1	-	-		+0,0	39.4	46.0	-6,6	WHITE
2	166 <u>.</u> 362K	46.0	+0,0				+0,0	46.0	55,1	-9,1	WHITE
3	3,504M	35,0	+0.2				+0,0	35,2	46 <u>.</u> 0	-10,8	WHITE
4	3.404M	34,9	+0.2				+0,0	35,1	46.0	-10,9	WHITE
5	1,138M	34,2	+0,1				+0,0	34.3	46.0	-11,7	WHITE
6	3,203M	34,1	+0.2				+0,0	34.3	46.0	-11,7	WHITE
1	957 _. 404K	33 _. 5	+0,1				+0,0	33,6	46.0	-12,4	WHITE
8	1,188M	33,2	+0,1				+0,0	33 _. 3	46.0	-12,7	WHITE
9	1,318M	33,1	+0,1				+0.0	33 _. 2	46 _. 0	-12,8	WHITE

10	1,399M	32,1	+0 <u>,</u> 1	+0,0	32 _. 2	46,0	-13,8	WHITE
11	2,010M	31,8	+0,1	+0.0	31 <u>.</u> 9	46,0	-14,1	WHITE
12	2.080M	31,7	+0,1	+0,0	31 <u>.</u> 8	46.0	-14,2	WHITE
13	2,201M	31,5	+0.1	+0.0	31,6	46.0	-14.4	WHITE
14	1,519M	31,4	+ 0,1	+0.0	31,5	46,0	-14,5	WHITE
15	8.416M	35_1	+ 0.3	 +0,0	35 _. 4	50 <u>,</u> 0	-14.6	WHITE

CKC Laboratories, Inc. Date: 07/02/2004 Time: 11:37:12 AM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE] Test Lead: White 110V 60Hz Sequence#: 41

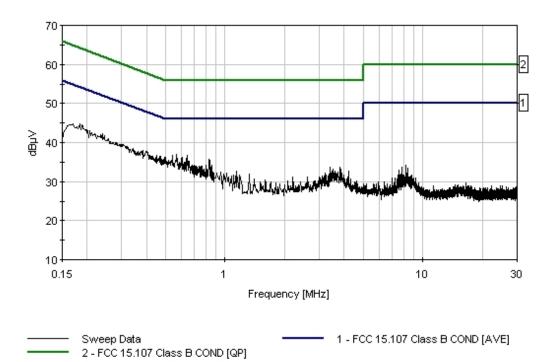
Page 51 of 93 Report No.: FC04-054A

TEST LOCATION:	CXC LABORATORIES, INC. • 110 N. OLINDA PLACE • BREA, CA 92823 • (714) 993	-6112		
CUSTOMER:	ANYDATA CORPORATION			
Specification:	FCC 15.107 CLASS B COND	[AVE]		
WORK ()RDER #:	81938	DATE:	07/02/2004	
TEST TYPE:	CONDUCTED EMISSIONS	Ţime;	11,52,05 AM	
{QUIPMENT:	CDMA DATA MODEM (DUA	AL SEQUENCE#:	43	
	BAND)			
MANUFACTURER:	ANYDATA CORPORATION	TESTED BY:	EDDIE WONG	
Model:	[MIV-]UAL		110V 60HZ	
S/N:	ESN6C1A8BF2			
Equipment Un	nder Test (* EUT):			
FUNCTION	MANUFACTURER	Model #	S/N	
POWER SUPPLY	Oriental Hero Electrical Company	0H-48052DT	NA	0.0.Pr
CDMA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	EWIA-DAHT	FRUE	C1A88F2
Support Devi	ices:			
FUNCTION	MANUFACTURER	Model #	S/N	
LAPTOP	Çompaq	EVO N150	PP211	0

Test Conditions / Notes:

THE EUT IS PLACED ON THE TEST BENCH. IS 232 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP VIA UTP. THE SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUT. THE EUT IS IN RECEIVE MODE DURING THE TEST, ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 836,52 MHZ, FREQUENCY RANGE OF MERSUREMENT = 150 KHZ - 30 MHZ, 150 KHZ - 30 MHZ, IBW=9 KHZ, VBW=9 KHZ, 110VAC, 60 HZ, 23°C, 47% RELITIVE HUMIDITY.

Transducer Legend:


T1=CABLE #21 CONDUCTED SITE A

Measur Data:	ement		READING LIS	STED BY MARGIN				TEST LE	AD _: Black		
#	FREQ MHZ	RDNG DB• V	[1 D{}	08	08	08	UIST Table	(¦orr d8∙ V	SPEC DB• V	Margin DR	Polar Ant
1	184,542K	44.8	+0,0	-			+0.0	44.8	54.3	-9.5	BLACK
2	831,755K	35,5	+0,1				+0,0	35,6	46.0	-10,4	BLACK
3	3.404M	33,5	+0.2				+0,0	33 _. 7	46.0	-12,3	BLACK
4	1,138M	32,6	+0,1				+0,0	32,7	46.0	-13,3	BLACK
5	947 _. 379K	32,3	+0.1				+0,0	32.4	46 _. 0	-13,6	BLACK
6	1,328M	31,9	+0,1				+0,0	32,0	46.0	-14.0	BLACK
7	2,201M	31,0	+0,1				+0,0	31,1	46.0	-14,9	BLACK
8	2,602M	30,9	+0.2				+ 0,0	31,1	46.0	-14,9	BLACK
9	1.399M	30,5	+0,1				+0,0	30,6	46,0	-15.4	BLACK

10	8,216M	33,9	+0,3	+0.0	34,2	50 <u>,</u> 0	-15,8	8LACK
11	7.013M	30,8	+0,2	+0,0	31 <u>.</u> 0	50 <u>.</u> 0	-19,0	8LACK
12	9.018M	30,7	+0.3	+0.0	<u>31</u> 0	50,0	-19,0	B LACK
13	7 <u>.</u> 213M	30,6	+0.3	+0.0	30,9	50,0	-19,1	B LACK
14	16,586M	29.4	+0.3	+ 0 <u>.</u> 0	29 _. 7	50 <u>.</u> 0	-20,3	BLACK
15	22,220M	28,6	+0.4	+0.0	29 <u>.</u> 0	50 <u>.</u> 0	-21,0	BLACK

CKC Laboratories, Inc. Date: 07/02/2004 Time: 11:52:05 AM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 43

Page 53 of 93 Report No.: FC04-054A

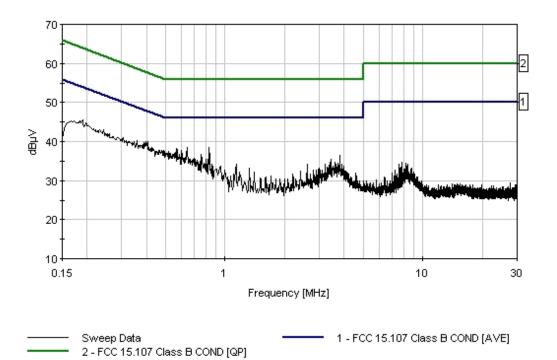
TEST LOCATION:	CKC LABORATORIES, INC. • 110 N. QUINDA PLACE • BREA, CA 92823 • (714) 993-6112			
CUSTOMER:	ANYDATA CORPORATION			
SPECIFICATION:	FCC 15.107 CLASS B COND [AVE]			
WORK ORDER #:	81938	DATE:	07/02/2004	
TEST TYPE:	CONDUCTED EMISSIONS	Time:	11;46;53 AM	
EQUIPMENT:	CDMA DATA MODEM (DUAL	SEQUENCE#:	42	
	BAND)			
MANUFACTURER:	ANYDATA CORPORATION	TESTED BY:	EDDIE WONG	
Model:	EMIY-DUAL		110V 60HZ	
S/N:	ESNeC1AeBF2			
Equipment	Under Test (* EUT):			
FUNCTION	MANUFACTURER MODEL #		S/N	
POWER SUPPLY	QRIENTAL HERD ELECTRICAL COMPANY OH-48052DT		NA 500-0-05-	
CDMA DATA MODEM (DUAL BAND)	ANYDATA CORPORATION EMIV-DUAL		ESN6C1A8BF2	

Support Devices:

	MANUFACTURER	Model #	S/N
LAPTOP	Compaq	EVO N150	PP2110

Test Conditions / Notes: [The EUT is placed on the test bench. 18232 is connected to a remotely located support laptop via UTP. The support laptop buns test program to set the transmitting and receiving channel, power level of the EUT. The EUT IS IN RECEIVE MODE DURING THE TEST, ALL OTHER PORTS ARE LET UNTERMINATED. TX FREQ = 836.52 MHZ. FREQUENCY RANGE OF MERSUREMENT = 150 KHZ - 30 MHZ. 150 KHZ - 30 MHZ. 1804. 9 KHZ. 110/10, 60 HZ. 23 °C, 47% RELATIVE HUMIDITY.

Transducer Legend:


T1=CABLE #21 CONDUCTED SITE A

Measur Data:	ement		READING LIS	STED BY MARGIN	l.			TEST LE	RD _: WHITE		
#	FREQ MHZ	RDNG dB• V	[1 D}	08	DB	08	()IST Table	(¦orr d8∙ V	SPEC DB• V	MARGIN DB	Polar Ant
1	642 <u>.</u> 682K	38,5	+0,1				+0,0	38,6	46 _. 0	-7.4	WHITE
2	829 _. 937K	38,3	+ 0,1				+0,0	38.4	46 _. 0	-7,6	WHITE
3	602 _. 685K	37,6	+0,1				+ 0,0	37,7	46 <u>.</u> 0	-8,3	WHITE
4	189 <u>.</u> 996K	45.5	+ 0,0				+0.0	45,5	54,0	-8,5	WHITE
5	599.049K	37.4	+0,1				+0,0	37,5	46.0	-8,5	WHITE
6	3.805M	36,3	+0.2				+0,0	36,5	46.0	-9,5	WHITE
1	1,138M	34,1	+0,1				+0,0	34.2	46.0	-11,8	WHITE
8	2,602M	34.0	+0.2				+0,0	34.2	46.0	-11,8	WHITE
9	947 <u>.</u> 379K	33,7	+0,1				+0,0	33 _. 8	46.0	-12,2	WHITE

10	4.005M	33.4	+0,2	+0,0	33 <u>.</u> 6	46.0	-12.4	WHITE
11	1,328M	33,2	+0,1	+0.0	33 _. 3	46 <u>.</u> 0	-12,7	WHITE
12	3,003M	33,0	+0.2	+0.0	33,2	46,0	-12,8	WHITE
13	2,942M	32,7	+0.2	+0.0	32,9	46,0	-13,1	WHITE
14	2,902M	32,6	+0.2	+0.0	32,8	46,0	-13,2	WHITE
15	2,802M	32.4	+ 0,2	+0.0	32,6	46.0	-13.4	WHITE

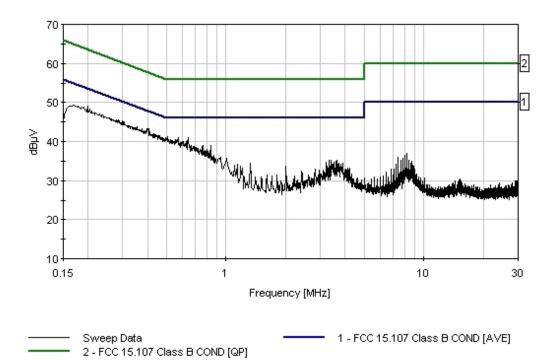
CKC Laboratories, Inc. Date: 07/02/2004 Time: 11:46:53 AM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE] Test Lead: White 110V 60Hz Sequence#: 42

Page 55 of 93 Report No.: FC04-054A

TEST LOCATION:	CKC LABORATORIES.	NC. • 110 N. OLINDA PLACE • BREA. CA 92823 • (714) 993-61	12			
CUSTOMER:	ANYDA	TA CORPORATION				
SPECIFICATION	FCC 15.	107 CLASS B COND [A	AVE]			
WORK ()RDER #:	81938	-	-	DATE:	07/02/2004	
TEST TYPE:	COND	UCTED EMISSIONS		TIME:	11:59:42 AM	
EQUIPMENT:	CDMA	DATA MODEM (DUA	L	SEQUENCE#:	44	
	BAND)					
MANUFACTURER:	ANYDATA CORPORAT	ION		TESTED BY:	EDDIE WONG	
MODEL:	ENIN-DUAL				110V 60HZ	
S/N:	ESN6C1A8BF2					
Equipment U	nder Tea	st (* EUT):				
FUNCTION		MANUFACTURER	Model #			S/N
POWER SUPPLY		ORIENTAL HERO ELECTRICAL COMPANY	0H-48052DT			NH an pr
(DMA DATA MODEM (DUAL BAND)*		ANYDATA CORPORATION	EMIV-Dual			E\$N6C1A8BF2
Support Dev	ices:					
FUNCTION		MANUFACTURER	Model #			SVN
LAPTOP		Compaq	EVO N150			PP2110

Test Conditions / Notes: IS IN RECEIVE MODE DURING THE TEST. ALL OTHER PORTS ARE LEFT UNTERMINATED. TX [REQ = 848,97 MHz, [REQUENCY RANGE OF WEASUREMENT = 150 KHz - 30 MHz, 150 KHz - 30 MHz, 1884=9 KHz, 1804AC, 60 Hz, 23°C, 47% RELATIVE HUMIDITY.

Transducer Legend:


T1=CABLE #21 CONDUCTED SITE A

Measur Data:	ement		READING LI	STED BY MARGIN				TEST LE	AD _: Black		
#	FREQ MHZ	RDNG DB• V	[1 DR	08	DB	DB	()IST Table	(¦orr d8∙ V	SPEC DB• V	MARGIN DR	Polar Ant
1	169,998K	49,4	+ 0,0				+0.0	49,4	55,0	-5,6	BLACK
2	937 _. 354K	35,8	+ 0,1				+ 0,0	35,9	46 _. 0	-10,1	BLACK
3	3 <u>.</u> 303)	35,0	+0.2				+0,0	35,2	46.0	-10,8	BLACK
4	1,328M	34.4	+0,1				+0,0	34.5	46.0	-11,5	BLACK
5	2.010M	33 _. 6	+0,1				+0,0	33 _. 7	46 _. 0	-12,3	BLACK
6	4,226M	32,9	+0.2				+0,0	33 _. 1	46.0	-12,9	BLACK
7	2,812M	32,7	+0.2				+0,0	32,9	46.0	-13,1	BLACK
8	8.246M	36 _. 6	+0.3				+0,0	36,9	50 _. 0	-13,1	BLACK
9	2.962M	32,6	+0.2				+ 0,0	32,8	46.0	-13,2	BLACK

10	2.411M	32,2	+0,2	+0,0	32,4	46,0	-13,6	Black
11	8.045M	36 _. 1	+0.3	 +0,0	36.4	50,0	-13,6	BLACK
12	7.434M	35,7	+0.3	+0,0	36 _. 0	50,0	-14.0	BLACK
13	7.845M	35.4	+0.3	+0,0	35.7	50 <u>.</u> 0	-14,3	BLACK
14	1.609M	31,3	+0,1	 +0.0	31.4	46.0	-14,6	BLACK
15	1,810M	31,3	+0,1	+0.0	31_4	46_0	-14,6	BLACK

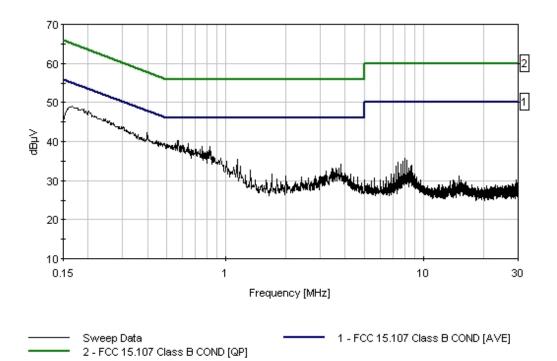
CKC Laboratories, Inc. Date: 07/02/2004 Time: 11:59:42 AM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE] Test Lead: Black 110V 60Hz Sequence#: 44

Page 57 of 93 Report No.: FC04-054A

TEST LOCATION:	CKC LABORATORIES, INC. \cdot 110 N. QLINDA PLACE \cdot Brea. CA 92823 \cdot (714) 993-6112			
CUSTOMER:	ANYDATA CORPORATION			
SPECIFICATION:	FCC 15.107 CLASS B COND [A	VE]		
Work Order #:	81938	DATE:	07/02/2004	
TEST TYPE:	CONDUCTED EMISSIONS	TIME:	12:04:58 PM	
EQUIPMENT:	CDMA DATA MODEM (DUAL	SEQUENCE#:	45	
	BAND)			
MANUFACTURER:	ANYDATA CORPORATION	TESTED BY:	EDDIE WONG	
MODEL:	[MIV-]UAL		110V 60HZ	
S/N:	E\$N6C1A8BF2			
Equipment U	nder Test (* EUT):			
FUNCTION	MANUFACTURER	Model #		S/N
POWER SUPPLY	Oriental Hero Electrical Company	0H-48052DT		NH and pr
CDMA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	EMIV-DUAL		ESN6C1A8BF2
Support Dev:	ices:			

FUNCTION	MANUFACTURER	Model #	S/N
LAPTOP	Compaq	EVO N150	PP2110

Test Conditions / Notes: [The EUT is placed on the test bench. 18232 is connected to a remotely located support laptop via UTP. The support laptop buns test program to set the transmitting and receiving channel, power level of the EUT. The EUT IS IN RECEIVE MODE DURING THE TEST, ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 848.97 WHZ, FREQUENCY RANGE OF MERSUREMENT = 150 KHZ - 30 WHZ, 150 KHZ - 30 WHZ, 180 HZ, 28 HZ, 110 VAC, 60 HZ, 23 °C, 47 K RELATIVE HUMIDITY.


Transducer Legend: [1=[ABLE #21[ONDUCTED \$ITE]]

Measur Data:	ement		READING LIS	STED BY MARGIN				TEST LE	AD _: WHITE		
#	FREQ MHZ	RDNG DB• V	[1 D8	08	DB	0}	UIST Table	¦orr d8∙ V	SPEC DB• V	Margin DR	Polar Ant
1	166 <u>.</u> 362K	49,1	+ 0,0	-			+0.0	49,1	55,1	-6,0	WHITE
2	829 _. 937K	38,6	+0,1				+ 0,0	38,7	46 <u>.</u> 0	-7.3	WHITE
3	937 _. 354K	35,6	+0,1				+0,0	35.7	46.0	-10,3	WHITE
4	1,138M	35,3	+0,1				+0,0	35.4	46.0	-10,6	WHITE
5	3.825M	34.0	+0.2				+0,0	34,2	46.0	-11,8	WHITE
6	1.328M	32,6	+0,1				+0,0	32.7	46.0	-13,3	WHITE
1	3,213M	32,2	+0.2				+0,0	32.4	46.0	-13,6	WHITE
8	8.035M	35.4	+0.3				+0,0	35.7	50 _. 0	-14.3	WHITE
9	8.236M	35.0	+0,3				+ 0,0	35,3	50,0	-14,7	WHITE

10	7.835M	34.7	+0.3	+ 0,0	35 <u>.</u> 0	50 _. 0	-15 <u>.</u> 0	WHITE
11	7.444M	34 <u>.</u> 4	+ 0 <u>.</u> 3	+0,0	34,7	50,0	-15,3	WHITE
12	7.634M	33,8	+0.3	+0,0	34.1	50,0	-15,9	WHITE
13	8.647M	33,7	+0,3	+0,0	34,0	50,0	-16,0	WHITE
14	7.233M	33.4	+0.3	+0.0	<u>33.</u> 7	50,0	-16,3	WHITE
15	7.985M	33,3	+0.3	+0.0	33.6	50,0	-16.4	WHITE

CKC Laboratories, Inc. Date: 07/02/2004 Time: 12:04:58 PM_AnyDATA.net Incorporated WO#: 81938 FCC 15:107 Class B COND [AVE]_Test Lead: White 110V 60Hz Sequence#: 45

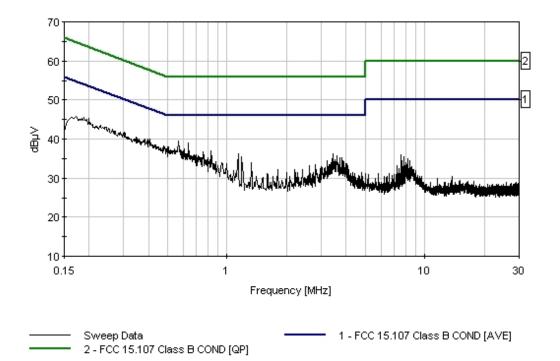
TEST LOCATION:	CKC LABORATORIES. INC. • 110 N. OLINDA PLACE • BREA. CA 92823 • (714) 993–6112	2		
CUSTOMER:	ANYDATA CORPORATION			
Specification:	FCC 15.107 CLASS B COND [A	VE]		
Work Order #:	81938	_ Date:	07/02/2004	
TEST TYPE:	CONDUCTED EMISSIONS	Time:	1:51:49 PM	
EQUIPMENT:	CDMA DATA MODEM (DUAI	SEQUENCE#:	47	
	BAND)			
MANUFACTURER:	ANYDATA CORPORATION	TESTED BY:	EDDIE WONG	
MODEL:	EMIX-DUAL		110V 60HZ	
S/N:	ESN6C1A8BF2			
Equipment U	nder Test (* EUT):			
FUNCTION	MANUFACTURER	MODEL #		S/N
POWER SUPPLY	ORIENTAL HERO ELECTRICAL COMPANY	0H-480520T		
())MA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	EMIV-DUAL		ESN6C1A8BF2

Support Devices:

Function	MANUFACTURER	MODEL #	S/N
LAPTOP	Compaq	EVO N150	PP2110

Test Conditions / Notes: [The EUT is placed on the test bench, IS232 is connected to a remotely located support laptop via UTP. The support laptop buns test program to set the transmitting and receiving channel, power level of the EUT. The EUT IS IN RECEIVE MODE DURING THE TEST, ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FRED = 1851,25 MHZ, FREDUENCY RANGE OF MERSUREMENT = 150 KHZ - 30 MHZ, 150 KHZ - 30 MHZ, BBN=9 KHZ, YBN=9 KHZ, 110VAC, 60 HZ, 23 °C, 47% RELATIVE HUMIDITY.

Transducer Legend:


T1=CABLE #21 CONDUCTED SITE A

Measur Data:	ement		READING LIS	STED BY MARGIN				TEST LEI	AD _: Black		
#	FREQ MHZ	RDNG DB• V	[1 D}	08	DB	0}	()IST Table	ÇORR DR∙ V	SPEC DB• V	MARGIN DR	Polar Ant
1	637 _. 228K	38,9	+ 0,1	-		-	+0,0	39,0	46.0	-7.0	BLACK
2	828 <u>.</u> 119K	36,9	+0,1				+ 0,0	37.0	46 <u>.</u> 0	-9,0	BLACK
3	171 <u>.</u> 816K	4 5 <u>.</u> 8	+0.0				+0,0	45,8	54,9	-9 _. 1	BLACK
4	1,138M	36,1	+0,1				+0,0	36,2	46.0	-9.8	BLACK
5	3 <u>.</u> 444≬	35,9	+0.2				+0.0	36,1	46.0	-9,9	BLACK
6	1,188M	35,3	+0,1				+0,0	35.4	46.0	-10,6	BLACK
1	3.714M	35,0	+0.2				+0,0	35,2	46.0	-10,8	BLACK
8	3.815M	35,0	+0.2				+0,0	35,2	46.0	-10,8	BLACK
9	3.203M	34.3	+0.2				+ 0,0	34,5	46.0	-11,5	BLACK

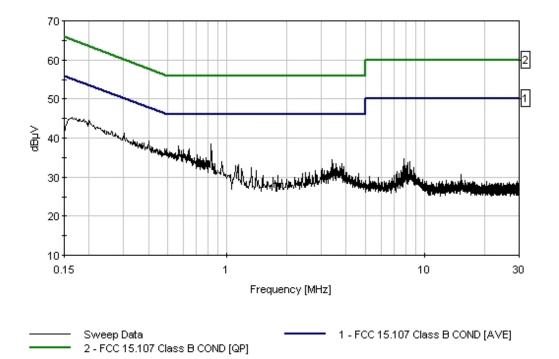
10	3,845	34,2	+0.2	+0,0	34,4	46.0	-11,6	BLACK
11	10001	00.0		 0.0	00.0	10.0	10.1	Плек
11	1 <u>.</u> 328M	33,8	+0,1	+0.0	33 <u>.</u> 9	46.0	-12,1	BLACK
12	2,802M	33,2	+0,2	+0.0	33 _. 4	46,0	-12,6	BLACK
13	1,800M	32,0	+0,1	+0.0	32,1	46,0	-13,9	BLACK
14							14.0	
14	7.614M	35,7	+0.3	+0,0	36.0	50,0	-14.0	BLACK
15	4 _. 807M	31,3	+0.2	+0,0	31,5	46 _. 0	-14,5	BLACK

CKC Laboratories, Inc._Date:_07/02/2004_Time: 1:51:49 PM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE]_Test Lead: Black 110V 60Hz Sequence#: 47

TEST LOCATION:	CKC LABORATORIES, INC. \cdot 110 N. QLINDA PLACE \cdot Brea. CA 92823 \cdot (714) 993-6112				
CUSTOMER:	ANYDATA CORPORATION				
Specification:	FCC 15.107 CLASS B COND [A	VE]			
Work Order #:	81938]	ATE: 07/02/2004		
TEST TYPE:	CONDUCTED EMISSIONS	I	ME: 1:46:57 PM		
EQUIPMENT:	CDMA DATA MODEM (DUAL	. SEQUENC	E#: 46		
	BAND)				
MANUFACTURER:	ANYDATA CORPORATION	TESTED			
MODEL:	EMIV-DUAL		110V 60HZ		
S/N:	E\$N6C1A8Bf2				
	nder Test (* EUT):				
FUNCTION	MANUFACTURER	Model #		SVN	
POWER SUPPLY	Oriental Hero Electrical Company	()H-48052()]			
CDMA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	EMIV-DUAL		ESN6C1A8BF2	
C	• • • • • •				

Support Devices	:			
FUNCTION	MANUFACTURER	Model #	SVN	
LAPTOP	Çompaq	EVO N150	PP2110	

Test Conditions / Notes: The EUT is placed on the test bench. 18232 is connected to a remotely located support laptop via UTP. The support laptop runs test program to set the transmitting and receiving channel, power level of the EUT. The EUT IS IN RECEIVE MODE DURING THE TEST, ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 1851,25 WHz, FREQUENCY RANGE OF WEASUREMENT = 150 KHz - 30 WHz, 150 KHz - 30 WHz, 180 Hz, 28 Hz, 110 VAC, 60 Hz, 23 °C, 47 % RELATIVE HUMIDITY.


Transducer Legend: [1=[ABLE #21[ONDUCTED \$ITE]]

Measur Data:	ement		READING LIS	STED BY MARGIN				TEST LE	RD _: WHITE		
#	FREQ MHZ	RDNG DB• V	[1 D{}	08	08	DB	()IST Table	(¦orr d8∙ V	SPEC DB• V	Margin DR	Polar Ant
1	831,755K	38,4	+0,1	- 0	- 0	- 0	+0,0	38,5	46,0	-7,5	WHITE
2	566 <u>.</u> 325K	37,9	+0,1				+0,0	38 _. 0	46 <u>.</u> 0	-8,0	WHITE
3	640 <u>.</u> 864K	37,2	+0,1				+0,0	37.3	46,0	-8,7	WHITE
4	164 <u>.</u> 544K	45,4	+0,0				+0,0	45.4	55,2	-9,8	WHITE
5	3.404M	34,2	+0.2				+0,0	34 _. 4	46,0	-11,6	WHITE
6	937 <u>.</u> 354K	33,8	+0,1				+0,0	33 _. 9	46,0	-12,1	WHITE
1	1,138M	33 _. 0	+0.1				+0,0	<u>33</u> 1	46.0	-12,9	WHITE
8	1,328M	32,3	+0.1				+0,0	32,4	46.0	-13,6	WHITE
9	3.043M	32,0	+0.2				+ 0,0	32,2	46.0	-13,8	WHITE

10	2,802M	31,6	+0.2	+0.0	31,8	46.0	-14_2	WHITE
11	3,203M	31,6	+0.2	+ 0,0	31,8	46.0	-14,2	WHITE
12	1,399M	31,6	+0,1	+ 0,0	31,7	46,0	-14,3	WHITE
13	3,113M	31,5	+0,2	+ 0,0	31,7	46.0	-14,3	WHITE
14	2,501M	30,9	+0,2	+0,0	31,1	46,0	-14,9	WHITE
15	2,602M	30,9	+0.2	+ 0.0	31,1	46.0	-14,9	WHITE

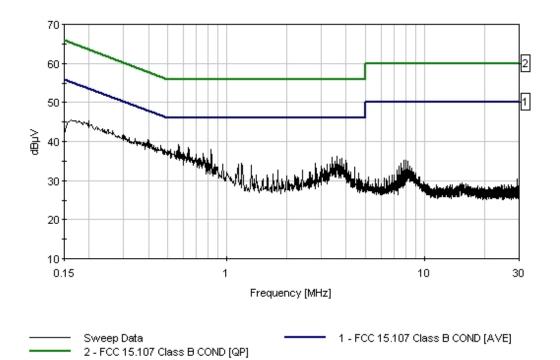
CKC Laboratories, Inc._Date:_07/02/2004_Time: 1:46:57 PM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE]_Test Lead: White 110V 60Hz Sequence#: 46

TEST LOCATION:	CKC LABORATORIES	, INC. + 110 N. OLINDA PLACE + BREA, CA 92823 + (714) 993	3-6112			
CUSTOMER:	ANYDA	TA CORPORATION				
Specification:	FCC 15.	107 CLASS B COND	[AVE]			
WORK ()RDER #:	81938			DATE:	07/02/2004	
TEST TYPE:	COND	UCTED EMISSIONS		TIME:	2:00:35 PM	
EQUIPMENT:		DATA MODEM (DU	AL	SEQUENCE#:	48	
	BAND)	•				
MANUFACTURER:	ANYDATA CORPORAT	TION		TESTED BY:		
MODEL:	EWIN-DAU EUNODIOODEO				110V 60HZ	
S/N:	ESN6C1A8BF2					
Equipment U	nder Te	st (* EUT):				
FUNCTION		MANUFACTURER	Model #			<u>S/N</u>
POWER SUPPLY ODNO Data Martin (Dugi Dong)*		ORIENTAL HERO ELECTRICAL COMPANY	0H-48052DT			NH F0No010oDFo
CDMA DATA MODEM (DUAL BAND)*		ANYDATA CORPORATION	EMIV-DUAL			[\$N6[1H8BF2
Support Dev	ices:					
FUNCTION		MANUFACTURER	Model #			<u>s/N</u>
LAPTOP		Çompaq	EVO N150			PP2110

Test Conditions / Notes:

THE EUT IS PLACED ON THE TEST BEACH. IS 232 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP VIA UTP. THE SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUT. THE EUT IS IN RECEIVE MODE DUBING THE TEST. ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 1880,00 MHZ, FREQUENCY RANGE OF MERSUREMENT = 150 KHZ - 30 MHZ, ISO KHZ - 30 MHZ - 30 MHZ, ISO KHZ - 30 MHZ - 30

Transducer Legend:


T1=CABLE #21 CONDUCTED SITE A

Measur Data:	ement		READING LIS	STED BY MARGIN				TEST LE	AD _: Black		
#	FREQ MHZ	RDNG dB• V	[1 DB	08	DB	DB	()IST Table	(¦orr d8∙ V	SPEC DB• V	MARGIN DR	Polar Ant
1	637 _. 228K	38,5	+ 0,1	-		_	+0,0	38,6	46.0	-7.4	BLACK
2	829 _. 937K	37.8	+ 0,1				+ 0,0	37,9	46 _. 0	-8,1	BLACK
3	757 <u>.</u> 217K	37.0	+0,1				+0,0	37.1	46.0	-8,9	BLACK
4	162 <u>.</u> 726K	45,6	+0.0				+0.0	45,6	55,3	-9.7	BLACK
5	3.614M	35,9	+0.2				+0,0	36,1	46.0	-9,9	BLACK
6	3.404M	35,7	+0.2				+0,0	35,9	46.0	-10,1	BLACK
7	3.815M	35 _. 4	+0.2				+0,0	35,6	46.0	-10,4	BLACK
8	3.704M	35,3	+0.2				+0,0	35,5	46.0	-10,5	BLACK
9	4.005M	34,9	+0.2				+ 0,0	35,1	46.0	-10,9	BLACK

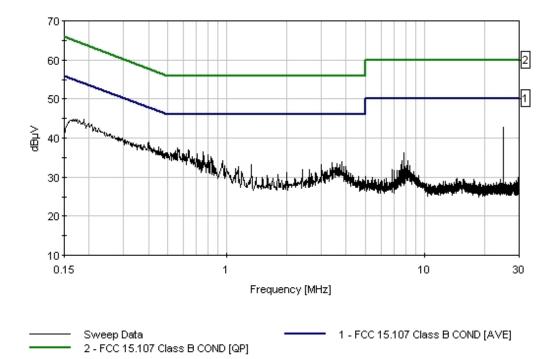
10	1,188M	34.4	+ 0 <u> </u> 1	+0,0	34 <u>.</u> 5	46.0	-11,5	<u>B</u> lack
11	2,802M	34,2	+0.2	+ 0,0	34.4	46,0	-11,6	BLACK
12	947 _. 379K	34,2	+0,1	+0.0	34,3	46,0	-11,7	BLACK
13	3.303M	34,1	+0.2	+ 0,0	34 <u>.</u> 3	46.0	-11,7	BLACK
14	3,203M	34 <u>.</u> 0	+0.2	+0.0	34,2	46,0	-11,8	BLACK
15	1,328M	33,8	+0,1	+0,0	33.9	46 <u>.</u> 0	-12,1	BLACK

CKC Laboratories, Inc. Date: 07/02/2004 Time: 2:00:35 PM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE]_Test Lead: Black 110V 60Hz Sequence#: 48

TEST LOCATION:	CKC LABORATORIES, INC. \cdot 110 N. QLINDA PLACE \cdot Brea, CA 92823 \cdot (714) 993-6112			
CUSTOMER:	ANYDATA CORPORATION			
Specification:	FCC 15.107 CLASS B COND [A	VE]		
Work Order #:	81938	DATE:	07/02/2004	
TEST TYPE:	CONDUCTED EMISSIONS	TIME:	2;06;21 PM	
EQUIPMENT:	CDMA DATA MODEM (DUAL	SEQUENCE#:	49	
	BAND)			
MANUFACTURER:	ANYDATA CORPORATION	TESTED BY:	EDDIE WONG	
MODEL:	EMIX-DUAL		110V 60HZ	
S/N:	ESN6C1A8BF2			
Equipment U	nder Test (* EUT):			
FUNCTION	MANUFACTURER	Model #	SVN	
POWER SUPPLY	ORIENTAL HERO ELECTRICAL COMPANY	0H-480520T	NH FON-O-O-	010
CDMA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	EWIV-DUAL	ESN6C1A8	litte 2
Support Dev	ices:			

FUNCTION	MANUFACTURER	Model #	S/N
LAPTOP	Çompaq	EVO N150	PP2110

Test Conditions / Notes: [The EUT is placed on the test bench. 18232 is connected to a remotely located support laptop via UTP. The Support laptop runs test program to set the Transmitting and receiving channel, power level of the EUT. The EUT IS IN RECEIVE MODE DURING THE TEST ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 1880.00 MHz. FREQUENCY RANGE OF MEASUREMENT = 150 KHz - 30 MHz. 150 KHz - 30 MHz. BBM-9 KHz. YBM-9 KHz. 110VAc. 60 Hz. 23°C. 47% RELATIVE HUMIDITY.


Transducer Legend: [1=[ABLE #21[ONDUCTED \$ITE]]

Measur Data:	rement		READING LIS	STED BY MARGIN				TEST LE	AD _: WHITE		
#	FREQ MHZ	RDNG DB• V	[1 D}	08	DB	08	()IST Table	(¦orr d8∙ V	SPEC DB• V	MARGIN DB	Polar Ant
1	24 _. 857M	42,3	+0.4				+0.0	42,7	50,0	-7.3	WHITE
2	635 _. 410K	36,8	+0,1				+0,0	36,9	46.0	-9,1	WHITE
3	173 <u>.</u> 634K	44.8	+0,0				+ 0,0	44.8	54.8	-10,0	WHITE
4	947 _. 379K	34.0	+0,1				+0.0	34,1	46.0	-11,9	WHITE
5	3.805M	33,8	+0.2				+0,0	34.0	46.0	-12,0	WHITE
6	1,328M	<u>33</u> 1	+0,1				+0,0	33 _. 2	46.0	-12,8	WHITE
1	7.815M	36.0	+0.3				+0,0	36 _. 3	50 _. 0	-13,7	WHITE
8	2.401M	31,8	+0.2				+0,0	32,0	46.0	-14.0	WHITE
9	2,602M	31,7	+0.2				+ 0,0	31,9	46.0	-14,1	WHITE

10	1,188M	<u>31</u> ,4	+0.1	+0.0	31,5	46.0	-14,5	WHITE
11	2,000M	31,2	+0,1	+0,0	31,3	46,0	-14.7	WHITE
12	2,672M	30,7	+0.2	+ 0,0	30,9	46,0	-15,1	WHITE
13	7,624M	33 <u>.</u> 9	+0.3	+ 0,0	34,2	50,0	-15,8	WHITE
14	8,216M	33 _. 8	+0.3	+ 0,0	34,1	50,0	-15.9	WHITE
15	6.812M	31,7	+0.2	+0.0	31,9	50,0	-18,1	WHITE

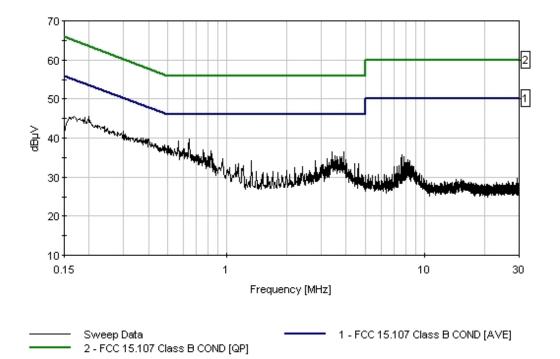
CKC Laboratories, Inc._Date:_07/02/2004_Time: 2:06:21 PM_AnyDATA.net Incorporated WO#: 81938 FCC 15:107 Class B COND [AVE]_Test Lead: White 110V 60Hz Sequence#: 49

TEST LOCATION:	CKC LABORATORIES, INC. • 110 N. DLINDA PLACE • BREA, CA 92823 • (714) 993-6112			
CUSTOMER:	ANYDATA CORPORATION			
Specification:	FCC 15.107 CLASS B COND [A	VE]		
WORK ()RDER #:	81938	DATE:	07/02/2004	
TEST TYPE:	CONDUCTED EMISSIONS	TIME:	2;16;45 PM	
EQUIPMENT:	CDMA DATA MODEM (DUAL	SEQUENCE#:	51	
	BAND)			
MANUFACTURER:	ANYDATA CORPORATION	TESTED BY:	EDDIE WONG	
MODEL:	EWIA-DAU		110V 60HZ	
S/N:	ESN6C1A8BF2			
	nder Test (* EUT):			
FUNCTION	MANUFACTURER	Model #		S/N
POWER SUPPLY CDNO Doto Nodem (Duoi Dond)*	Oriental Hero Electrical Company Onvoloto Congogation	()H-48052()] [WIV Duoi		NH FCNcCidoDFo
CDMA DATA MODEM (DUAL BAND)*	AnyDATA Corporation	EMIY-DUAL		ESN6C1A8BF2

Support Devices:

FUNCTION	MANUFACTURER	MODEL #	S/N
LAPTOP	Compaq	EVO N150	PP2110

Test Conditions / Notes: [The EUT is placed on the test bench. 18232 is connected to a remotely located support laptop via UTP. The support laptop buns test program to set the transmitting and receiving channel, power level of the EUT. The EUT IS IN RECEIVE MODE DURING THE TEST, ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 1908,75 MHz, FREQUENCY RANGE OF MEASUREMENT = 150 KHz - 30 MHz, 150 KHz - 30 MHz, 180 Hz, 28 Hz, 110 Hz, 60 Hz, 23 °C, 47 K RELATIVE HUMIDITY.


Transducer Legend: [1=[ABLE #21[ONDUCTED \$ITE]]

Measur Data:	ement		READING LIS	STED BY MARGIN	l.			TEST LE	AD _: Black		
#	FREQ MHZ	RDNG DB∙ V	[1 D}	08	08	08	()IST Table	(¦orr d8∙ V	SPEC DB• V	MARGIN DR	Polar Ant
1	640 <u>.</u> 864K	39,6	+0,1				+0,0	39,7	46,0	-6,3	BLACK
2	200 <u>.</u> 904K	45,6	+0.0				+0,0	45,6	53,6	-8,0	BLACK
ŋ	3 _. 414M	36,3	+0,2				+0,0	36 _. 5	46.0	-9,5	BLACK
4	3,905M	36,2	+0.2				+0,0	36.4	46.0	-9,6	BLACK
5	947 _. 379K	34,6	+0.1				+0,0	34.7	46 <u>.</u> 0	-11,3	BLACK
6	3 _. 203M	34,5	+0.2				+0,0	34.7	46.0	-11,3	BLACK
1	1,328	34.1	+0,1				+0,0	34.2	46.0	-11,8	BLACK
8	2 _. 802M	34,0	+0.2				+ 0,0	34.2	46.0	-11,8	BLACK
9	3,263M	33,6	+0.2				+ 0,0	33 <u>.</u> 8	46.0	-12,2	BLACK

10	4.607M	<u>33</u> .3	+0.2	+0.0	33 _. 5	46.0	-12,5	BLACK
11	4.406M	33,2	+0.2	+ 0,0	33 _. 4	46,0	-12,6	BLACK
12	2.401M	32,4	+0.2	+ 0,0	32,6	46.0	-13,4	BLACK
13	2,201M	32,4	+0,1	+ 0.0	32,5	46.0	-13,5	BLACK
14	2,010M	31,7	+0,1	+ 0,0	31,8	46.0	-14,2	BLACK
15	7.624M	35,4	+0.3	+ 0.0	35,7	50,0	-14,3	BLACK

CKC Laboratories, Inc._Date:_07/02/2004_Time: 2:16:45 PM_AnyDATA.net Incorporated WO#: 81938 FCC 15:107 Class B COND [AVE]_Test Lead: Black 110V 60Hz Sequence#: 51

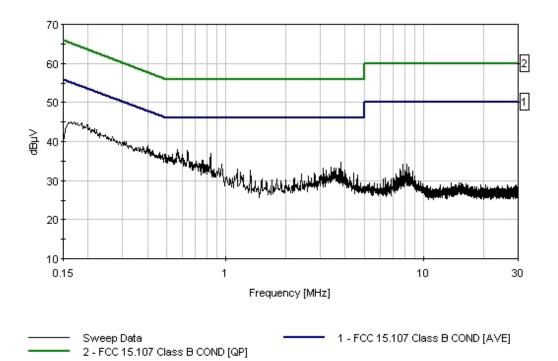
EQUIPMENT:	CDMA DATA MODEM (DUAL BAND)	SEQUENCE#:	50	
MANUFACTURER:	BAND) ANYONTA CORPORATION	Tested By:	Eddie Wong	
MODEL:	EMIV-DUAL	Irourn Au	110¥ 60HZ	
S/N:	ESN6C1A8BF2			
	der Test (* EUT):	Norr #	0.00	
FUNCTION	MANUFACTURER	Model #	SVN	
POWER SUPPLY	ORIENTAL HERO FLECTRICAL GOMPANY	NH-48052NT	NA	
COMA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	EMIX-DUAL	ESN6C1A8BF2	

Support Devices:

Function	MANUFACTURER	MODEL #	S/N
LAPTOP	Compha	EVO N150	PP2110

Test Conditions / Notes: [The EUT is placed on the test bench. 18232 is connected to a remotely located support laptop via UTP. The support laptop buns test program to set the transmitting and receiving channel, power level of the EUT. The EUT IS IN RECEIVE MODE DURING THE TEST, ALL OTHER PORTS ARE LEFT UNTERMINATED. TX FREQ = 1908,75 MHz, FREQUENCY RANGE OF MEASUREMENT = 150 KHz - 30 MHz, 150 KHz - 30 MHz, 180 Hz, 28 Hz, 110 Hz, 60 Hz, 23 °C, 47 K RELATIVE HUMIDITY.

Transducer Legend:


T1=CABLE #21 CONDUCTED SITE A

Measur Data:	ement		READING LIS	STED BY MARGIN				TEST LE	RD _: WHITE		
#	FREQ MHZ	RDNG DB∙ V	[1 D}	08	DB	0}	()IST Table	(¦orr dR∙ V	SPEC DB• V	MARGIN DR	Polar Ant
1	639 _. 046K	37,7	+ 0,1	-		-	+0,0	37.8	46.0	-8,2	WHITE
2	833 _. 573K	36,9	+0,1				+ 0,0	37.0	46 <u>.</u> 0	-9.0	WHITE
3	169 _. 998K	45,1	+0.0				+0,0	45_1	55,0	-9,9	WHITE
4	3.805M	34.4	+0.2				+0,0	34.6	46.0	-11.4	WHITE
5	947 <u>.</u> 379K	34,0	+0.1				+0,0	34,1	46 _. 0	-11,9	WHITE
6	1 _. 138M	32,9	+0,1				+0,0	33 _. 0	46.0	-13,0	WHITE
1	1.328M	32,6	+0,1				+0,0	32.7	46.0	-13,3	WHITE
8	1,188M	32,0	+0.1				+0,0	32,1	46.0	-13,9	WHITE
g	2,802M	31,7	+0.2				+0,0	31,9	46.0	-14,1	WHITE

10	2,401M	31,4	+0.2	+ 0,0	31,6	46,0	-14.4	WHITE
11	4.607M	31,2	+0.2	+0.0	31,4	46,0	-14,6	WHITE
12	1,800M	30 _. 3	+0,1	+0.0	30,4	46 <u>.</u> 0	-15,6	WHITE
13	1,519M	30,2	+0,1	+0.0	30,3	46 <u>.</u> 0	-15,7	WHITE
14	8,216M	34.0	+ 0.3	+ 0,0	34,3	50 <u>.</u> 0	-15,7	WHITE
15	7 _. 815M	33,9	+0,3	+0.0	34,2	50 _. 0	-15,8	WHITE

CKC Laboratories, Inc._Date:_07/02/2004_Time: 2:12:11 PM_AnyDATA.net Incorporated WO#: 81938 FCC 15.107 Class B COND [AVE]_Test Lead: White 110V 60Hz Sequence#: 50

Page 71 of 93 Report No.: FC04-054A

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105
Conducted Cable	NA	Harbour Ind	RG142	Cable # 21	070204	070205
150kHZ HPF	02610	TTE	HB9615-	07766	041604	041605
			150k-50-720			
LISN	00847	EMCO	3816/2NM	1104	010403	010405

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS



Mains Conducted Emissions - Front View

Page 72 of 93 Report No.: FC04-054A

PHOTOGRAPH SHOWING MAINS CONDUCTED EMISSIONS

Mains Conducted Emissions - Side View

Page 73 of 93 Report No.: FC04-054A

FCC 15.109 – RADIATED EMISSIONS

Test Location: Customer: Specification:	(KC LABORATORIES_INC_+TO N_QUINDA PLACE + BREA (A 92823 + [714] 993-6112 ANYDATA CORPORATION		
VORK ()RDER #: Test Type:	FCC 15.109 CLASS B 81938 MAXIMIZED EMISSION	Date: Time:	07/01/2004 12:36:32
EQUIPMENT	CDMA DATA MODEM (DUAL BAND)	SEQUENCE#:	8
Manufacturer: Model: S/N:	BAIND) AnyDATA Corporation EMIV-Dual ESNGC188BF2	TESTED BY:	EDDIE WONG

Equipment Under Test (* EUT):

FUNCTION	MANUFACTURER	Model #	S/N
Power Supply	Oriental Hero Electrical Company	(H-48052))T	NA
CDMA DATA MODEM (DUAL BAND)*	ANYDATA CORPORATION	EMIV-DUAL	ESN6C1A8BF2

Support Devices:			
FUNCTION	MANUFACTURER	Model #	S/N
LAPTOP	Çompaq	EVO N150	PP2110

Test Conditions / Notes:

THE EUT IS PLACED ON THE TEST BENCH. AS232 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP VIA UTP. THE SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUT. THE EUT IS IN RECEIVE MODE DURING THE TEST. BLIC THER PORTS ARE LEFT UNTERMINATED. TX FREQ = 824,04 MHZ, FREQUENCY RANGE OF MEASUREMENT = 30 MHZ - 5 GHZ, 30 MHZ - 1000 MHZ, BBM=120 KHZ, VBM=120 KHZ, 1000 MHZ - 5000 MHZ - 5000 MHZ.

Transducer Legend:

0	
T1=BICONALOG, SN 2451 040806	[2=€ABLE #10_051305
T3=CABLE# 15 123004	[4=PREAMP 8447]) 082304
T5=	[6 = ∦0RN 6246 091004
T7=SMA CABLE 1–40GHZ AN2604 012305	T8=H₽83017Ĥ ₽REAMP 091104
T9=CABLE#20	

Measu: Data:	rement		READING LIS	TED BY MARGIN <u>.</u>				TEST DISTAN	CE: 3 METERS		
#	FREQ	RDNG	1 5 9	T2 T6	[3 [7	[4 [8)IST	CORR	Spec	MARGIN	Polar
	MHZ	DB• V	13 DB	08	08	DB	TABLE	d₿• V/m	dB• V/m	DB	ANT
1	3571 <u>.</u> 020M	49 _. 4	+0.0 +0.0 +4.2	+0,0 +32,3	+0,0 +0,6	+ 0,0 -39,9	+0.0	46,6	54 <u>.</u> 0	-7.4	HORIZ
2	3572 _. 000M	48.7	+0.0 +0.0 +4.2	+0,0 +32,3	+0.0 +0.6	+ 0,0 -39,9	+0,0	45 _. 9	54,0	-8,1	VERT
3	952,633M	32,2	+261	+0.7	+6.3	-27,5	+ 0,0	37 _. 8	46 <u>.</u> 0	-8,2	Vert
4	400 <u>.</u> 014M	41,1	+ 16.4	+ 0,4	+3.9	-28,2	+0.0	33 _. 6	46 _. 0	-12.4	HORIZ

5	593 _. 981M	34,2	+19.7	+0,5	+4.9	-27,7	+0,0	31,6	46.0	-14.4	HORIZ
6	300 _. 009M	42,3	+14.0	+0,3	+3,3	-28,3	+0,0	31,6	46.0	-14_4	HORIZ
1	240 _. 018M	43,6	+12.8	+0,3	+2.9	-28,3	+0,0	31,3	46.0	-14,7	VERT
8	349 _. 993M	<u>39</u> .3	+ 15.4	+0,4	+3,5	-28.3	+ 0,0	30,3	46.0	-15 <u>.</u> 7	HORIZ
g	288.039M	41.0	+13,9	+0.3	+3,3	-28.3	+0,0	30,2	46,0	-15,8	HORIZ
10	444 <u>.</u> 440M	35 _. 6	+ 18,1	+0.4	+4.0	-28,3	+0.0	29,8	46.0	-16,2	HORIZ
11	84 _. 017M	41,1	+8.6	+0,1	+ 1 <u>8</u>	-28,5	+0,0	23,1	40,0	-16,9	HORIZ
12	262 _. 494M	40,2	+ 13,6	+0,3	+ 3]	-28,2	+ 0,0	29,0	46 <u>.</u> 0	-17 <u>.</u> 0	HORIZ
13	250 _. 001M	40,5	+ 13,5	+0.3	+3,0	-28,3	+ 0,0	29 _. 0	46.0	-17.0	HORIZ
14	299 _. 992M	39 _. 6	+14 <u>.</u> 0	+0,3	+3,3	-28,3	+0.0	28,9	46 _. 0	-17,1	VERT
15	499 _. 991M	33 <u>.</u> 0	+19,0	+0,4	+4.5	-28,1	+0.0	28,8	46 _. 0	-17,2	VERT
16	336 _. 020M	38,3	+ 15,0	+0.4	+3.4	-28,3	+0.0	28,8	46 _. 0	-17,2	VERT
17	480.042M	33 <u>.</u> 5	+18.7	+0.4	+4.3	-28,2	+0,0	28.7	46.0	-17.3	VERT
18	110.578M	40 <u>.</u> 4	+11,5	+0.2	+ 1 <u>8</u>	-28.4	+ 0,0	25,5	43,5	-18,0	VERT
19	349.974M	35,2	+15.4	+0.4	+3,5	-28,3	+0,0	26,2	46,0	-19,8	VERT
20	320,028M	35 _. 7	+14.6	+0.3	+3.4	-28,3	+0,0	25.7	46,0	-20,3	VERT
21	220 _. 431M	36,2	+11.4	+0.3	+2.8	-28.3	+0,0	22.4	46.0	-23,6	HORIZ

TEST LOCATION:		CKC LABORATORIES, INC.	110 N. OLINDA PLACE	E • BREA, CA 92823	· (714) 993-6112						
CUSTOMER: Specification; Work (Rober #; Test Type; Equipment; Manufacturer; Model;		ANYDATA FCC 15.10 81938 MAXIMIZ CDMA DA BAND) MYIIIA (DAPORTION MYIIIA (DAPORTION	9 CLAS CED EM	S B	N		5		ł		
S/N:		ESN6C1A8BF2	<i>(</i> * EI]	ጥ).							
FUNCTION FUNCTION Power Supply COMA Data Mode		ORIE	(* EU UFACTURER NTAL HERO ELECTRI NATA CORPORATION	CAL COMPANY		Model # OH-48052DT EMIV-Dual			S/N NA ESN6C1A8BF2		
Suppo Function Laptop	rt Devi		VFACTURER DAQ			MODEL # EVO N150			S/N PP2110		
THE EUT IS PLACE IS IN RECEIVE MOD RBW=1 MHZ. VBW	D ON THE TEST BENCH. De during the test. {	ons / No: RS232 IS CONNECTED TO R LL OTHER PORTS ARE LEFT H2.23°(, 47% RELATIVE I Regend:	REMOTELY LOCATE UNTERMINATED. [X	D SUPPORT LAPTOP (FREQ =836.52 M	VIA UTP. THE SUPF Hz. Frequency Rf	PORT LAPTOP BUNS Inge of Mersurem	TEST PROGRAM TO ENT = 30 MHZ - 3	SET THE TRANSMITT 5 GHz. 30 MHz – 100	ING AND RECEIVING CH 10 MHZ: RBW=120 KH	IANNEL, POWER LEVEL (Z, VBW=120 KHZ, 100	IF THE EUT . THE EUT 0 MHz – 5000 MHz:
T1=BICONALOG, S T3=Cable# 15 1 T5= T7=SMA Cable 1	N 2451 040806 23004					T2=GABLE #10 0: T4=PREAMP 8447 T6=Horn 6246 T8=HP83017A PR	() 082304 091004				
Measui	rement		READING LIS	STED BY MARGIN.				TEST DISTANC	CE: 3 METERS		
Data: #	FREQ	Rong	[1 [5 [9	T2 T6]3]7	[4 [8	[]IST	ÇORR	Spec	MARGIN	Polar
	MHZ	DB• V	13 DB	DB	DR	Dß	TABLE	d₿• V/m	dB• V/m	08	ANT
1	3572.000M	48.4	+0,0 +0,0 +4,2	+0,0 +32,3	+0,0 +0,6	+0,0 -39,9	+0,0	45,6	54,0	-8.4	VERT
2	3572 _. 000M	47_0	+0.0 +0.0 +0.0 +4.2	+0.0 +32.3	+0,0 +0,6	+ 0.0 -39.9	+ 0,0	44,2	54 <u>.</u> 0	-9.8	HORIZ
3	1763 _. 100M	52,1	+0.0 +0.0 +2.5	+0.0 +26.7	+0.0 +0.5	+0.0 -38.2	+0.0	43 <u>.</u> 6	54 <u>.</u> 0	-10.4	VERT

4	1763 _. 000M	49.7	+0.0	+0.0	+0,0	+0,0	+0.0	41,2	54.0	-12.8	HORIZ
			+0,0 +2,5	+26.7	+0.5	-38,2					
5	3751,900M	41,5	+0,0	+0,0	+0.0	+0,0	+ 0,0	39,9	54.0	-14.1	HORIZ
			+0.0	+32.8	+0.7	-39,6					
ß	3572,800M	42,6	+4,5 +0,0	+0,0	+0,0	+0,0	+0,0	39,8	54.0	-14.2	VERT
U	0078,00014	TU _. U	+0,0	+32,3	+0.0 +0.6	-39,9	+ 0,0	00,0	04,0	11,0	¥1.11
-			+4.2								11
1	300.002M	40,3	+14.0	+0.3	+3.3	-28,3	+0,0	29,6	46.0	-16.4	VERT

TEST LOCATION:		CKC LABORATORIES, INC. •	110 N. QLINDA PLACE	E • BREA <u>.</u> CA 92823	· (714) 993-6112						
CUSTOMER: Specification, Work Order #; Test Type: Equipment; Manufacturer; Model; S/N;		ANYDATA FCC 15.10 81938 MAXIMIZ CDMA DA BAND) MY JURI (DUPUBRITION MY JURI ENGCIMENT2	9 CLAS	S B	N						
Equip Function Power Supply CDMA Data Mode		(RIEI	(* EU IFACTURER ITAL HERO [LECTRI ATA CORPORATION	CAL COMPANY		Model # OH-48052DT EMIV-Dual			S/N NA ESN6C1A8BF2		
Suppo FUNCTION LAPTOP	ert Devi		IFACTURER Aq			MODEL # EVO N150			S/N PP2110		
THE EUT IS PLACED IS IN RECEIVE MOD RBW=1 MHZ, VBW	D ON THE TEST BENCH. De during the test. Ai	ons / Not RS232 IS CONNECTED TO A LL OTHER PORTS ARE LEFT L HZ_23°(, 47% RELATIVE H egend:	REMOTELY LOCATE Interminated.	D SUPPORT LAPTOP [REQ =848.97 M	VIA UTP. THE SUPF Hz. Frequency Rf	PORT LAPTOP RUNS Inge of mensuremi	TEST PROGRAM TO Int = 30 MHZ -	I SET THE TRANSMITT 5 GHz. 30 MHz - 100	NG AND RECEIVING CH o MHz: RBW=120 KH	IANNEL, POWER LEVEL C Z. VBW=120 KHZ, 100	IF THE EUT . THE EUT 0 MHz – 5000 MHz:
T1=BICONALOG, S T3=CABLE# 15 13 T5= T7=SMA CABLE 1	\$N 2451 040806 23004					T2=CABLE #10 03 T4=PREAMP 8447 T6=Horn 6246 T8=HP83017A PR	() 082304 091004				
Measuı Data:	rement		READING LIS	STED BY MARGIN.				TEST DISTANC	E: 3 METERS		
#	FREQ	RDNG	1 5 9	T2 T6	[3 [7	[4 [8	[]IST	CORR	Spec	MARGIN	Polar
	MHZ	DB• V	08	08	08	DB	TABLE	d₿∙ V/m	dB∙ V/m	08	Ant
1	1787 <u>.</u> 600M	51,4	+0,0 +0,0 +2,5	+0,0 +26,9	+0.0 +0.5	+0.0 -38.3	+0,0	43.0	54.0	-11,0	VERT
2	3575 _. 800M	45 <u>.</u> 6	+00 +00 +42	+0.0 +32.3	+0.0 +0.6	+ 0.0 -39.9	+0.0	42,8	54.0	-11,2	HORIZ
3	1788 _. 000M	50 _. 5	+0,0 +0,0 +2,5	+0,0 +26,9	+0,0 +0,5	+0.0 -38,3	+ 0 <u>,</u> 0	42_1	54 _. 0	-11.9	HORIZ

4	3575 _. 800M	44.8	+0.0 +0.0 +4.2	+0,0 +32,3	+0,0 +0,6	+0,0 -39,9	+ 0 <u>,</u> 0	42_0	54 <u>,</u> 0	-12 <u>.</u> 0	VERT
5	907 _. 630M	25,3	+242	+0 <u>.</u> 7	+6,2	-27,4	+0 <u>,</u> 0	29 _. 0	46.0	-17 <u>.</u> 0	VERT
6	731 <u>.</u> 820M	26,8	+ 21,5	+ 0,6	+5.4	-27 _. 5	+0,0	26,8	46 <u>.</u> 0	-19 <u>.</u> 2	HORIZ

CUSTOMER: ANYDATA CORPORATION Specification: FCC 15.109 CLASS B Work (Brder #: 81938 [EST [VPE: MAXIMIZED EMISSION [IMIDATION CONTINUED EMISSION [IMIE: 145,1]4	
EQUIPMENT: CDMA DATA MODEM (DUAL SEQUENCE#: 11 BAND Image: State of the state	
Equipment Under Test (* EUT):	
FUNCTION MANUFACTURER MODEL# S/N Power Supply Oriental Hero Electrical Company OH-48052DT NA COMA Data Modem (Qual Band)* AnyDATA Corporation EMIV-Dual ESN6C1#80F2	
Support Devices:	
Function Manufacturer Model # S/N Laptop Compra EVO N150 PP2110	
Test Conditions / Notes:	
THE EUT IS PLACED ON THE TEST BENCH. ASS23 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP VIA UTP. THE SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUTING IN RECEIVE MODE DURING THE TEST BELOCH. ASS23 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP VIA UTP. THE SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUTING IN RECEIVE MODE DURING THE TEST BELOCH. ASS23 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP VIA UTP. THE SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUTING IN RECEIVE MODE DURING THE TEST BELOCH. ASS23 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUTING IN RECEIVE MODE DURING THE TEST BELOCH. ASS23 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUTING IN RECEIVE MODE DURING THE TEST BELOCH. ASS23 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUTING AND RECEIVE ASS23 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUTING AND RECEIVE MODE DURING THE ASS23 IS CONNECTED TO A REMOTELY LOCATED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTING AND RECEIVING CHANNEL, POWER LEVEL OF THE EUTING AND RECEIVE ASS23 IS CONNECTED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTATE AND RECEIVE ASS24 IS CONNECTED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE TRANSMITTATION AND RECEIVED AND RUNS TEST PROGRAM TO SET THE ASS24 IS CONNECTED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE ASS24 IS CONNECTED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE ASS24 IS CONNECTED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE ASS24 IS CONNECTED SUPPORT LAPTOP RUNS TEST PROGRAM TO SET THE ASS24 IS CONNECTED SUPPORT LAPTOP	. THE EUT Z - 10000
Transducer Legend:	I
T1=BICONALOG, \$\ 2451 040806 [2=CABLE #10 051305	
[3=_GRBLE# 15 123004 [4=_PREAMP 8447]) 082304 [5= [6=_H0RN 6246091004	
[7=s]MA CRBLE 1-40GHZ AN2604 012305 [8=H]Pa3017A [REEMMP 091104 [9=CRBLE#20 HELIAX 48FT 101304 [10=H]PF AN02116 1.5GHZ 060605	
Measurement READING LISTED BY MARGIN Test Distance: 3 Meters Data: Data:	
# FRED RONG TI T2 T3 T4 DIST CORR SPEC MARGIN P	DLAR
15 16 17 18 19 110	
	INT ERT
1 1716,700M 53.0 +0.0 +0.0 +0.0 +0.0 +0.0 44.3 54.0 −9.7 +0.0 +26.5 +0.4 −38.1	261
<u>+2.5 +0.0</u> 2 1716,700M 49.6 +0.0 +0.0 +0.0 +0.0 40.9 54.0 -13.1	DRIZ
+0.0 +26.5 +0.4 -38.1	III L
+2.5 +0.0 3 240,100M 40.3 +12.8 +0.3 +2.9 -28.3 +0.0 28.0 46.0 -18.0	ERT

TEST LOCATION:		CKC LABORATORIES, INC.	• 110 N. OLINDA PLAC	E • BREA, CA 92823	· (714) 993-6112						
CUSTOMER: Specification; Work Order #; Test Type; Eauipment; Manufacturer; Model; S/N;		ANYDAT FCC 15.10 81938 MAXIMIZ CDMA D BAND) hyvAtta (corporation HVV-[uni ESN6(c)1808[2	9 CLAS ZED EM	S B	J		-				
Equip	oment Un	nder Test		T):		Monte II			0./W		
FUNCTION Power Supply CDMA Data Model	EM (DUAL BAND)*	 ()RI	IUFACTURER Ental Hero Electri DATA Corporation	CAL COMPANY		MODEL # 0H-480520T EMIV-DUAL			S/N NA ESN6C1A8BF2		
	ort Devi					Hoors #			0./11		
FUNCTION Laptop			UFACTURER IPAQ			Model # EVO N150			S/N PP2110		
THE FIIT IS PLACED		Cons / No RS232 IS CONNECTED TO I ALL OTHER DOD'TS ARE LEE	I REMOTELY LOCATE	D SUPPORT LAPTOP	VIA UTP. THE SUPP	ORT LAPTOP RUNS	TEST PROGRAM TO	SET THE TRANSMITT	ING AND RECEIVING CH	ANNEL, POWER LEVEL (F THE EUT THE EUT
		IC, 60 HZ, 23°C, 47% REL		X THEM = 1990'NN	MAZ. FREQUENCY	NUNDE OL WEUJON	EWENT = OO MUT	- IO PUT' ON WUT .	IUUU MUT: UDM=19	N KHT' ARM=ISN KHT'	. INAN WHT - INANA
MHZ: RBW=1 MHZ	Z.YBW=1 MHZ. 110YA <i>ducer L</i> (N 2451 040806 (23004 091004	C. 60 Z. 23°C. 47% REL				T2=CABLE #10 0 T2=CABLE #10 0 T4=PREAMP 8447 T6=SMA CABLE 1- T8=CABLE #20 HI	51305 D 082304 40GHZ AN2604	012305	1000 MUT: UDM=19	U KHZ, YUW=12U KHZ,	1000 MUT - 10000
MHZ: BBW=1 MHZ Trans [1=Biconalog S [3=Cable 15 Hz [5= [7=HORN 6246 [9=HP83017H P	Z. YBW=1 MHZ. 110YA aducer L SN 2451 040806 123004 091004 DREMMP 091104	C. 60 Z. 23°C. 47% REL	ATIVE HUMIDITY.	X FREU = 1880.00		T2=CABLE #10 03 T4=PREAMP 8447 T6=SMA CABLE 1-	51305 D 082304 40GHZ AN2604	012305 ;	IUUU MILE, IDM=14	U KUY, ARM=150 KUY	1000 MHT - 10000
MHZ: BBW =1 MHZ Trans [1=Biconalog S [3=Cable # 15 Hz [5= [7=HORN 6246 [9=HP83017H P	Z. YBW=1 MHZ. 110YA aducer L SN 2451 040806 123004 091004 DREMMP 091104	C. 60 Z. 23°C. 47% REL	ATIVE HUMIDITY.			T2=CABLE #10 03 T4=PREAMP 8447 T6=SMA CABLE 1-	51305 D 082304 40GHZ AN2604	012305 ;		MARGIN	, 1000 MHZ - 10000
MHZ: BBW=1 MHZ Trans [1=BICONALOG \$ [3=CABLE# 15 1% [5=	Z.YBW=1 MHZ. 110YA zducer L SN 2451 040806 123004 091004 091004 rement FREQ MHZ	<u>(, 60 7, 23°(, 47% HEL</u> 5.egend: 0N6 0N6	ATIVE HUMIDITY. Reading Lis Ts T9 DB	STED BY MARGIN [2 [6 D]	13 17 DB	12=CABLE #10 0: 14=PREAMP 8447 16=SMA CABLE 1- 18=CABLE#20 HI 18=CABLE#20 HI 18=C	51305 () 082304 406Hz AN2604 () 11AX 48FT 101304 () 11AX 48FT 101304 () 11AX 48FT 101304	O12305 Test ()istri ()orr DB: V/M	:e: 3 Meters Spec DB: V/M	MARGIN	Polar
MHZ: BBW=1 MHZ Trans [1=BICONALOG § [3=CABLE# 15 1% [5=	Z.YBW=1 MHZ. 110YA aducer L SN 2451 040806 123004 091004 D966MP 091104 rement FREQ	<u>(, 60 7, 23°(, 47% REL</u> 5.egend: 	ATIVE HUMIDITY. READING LIS 15 19 08 +0,0 +0,0 +0,0	STED BY MARGIN. [2] [6]	[3]7	12=CABLE #10 0: 14=PAEAMP 8447 16=SMA CABLE 1- 18=CABLE#20 HI 18=CABLE#20 HI 14 14	51305 () 082304 40GHZ AN2604 () 1AX 48FT 101304 () IST	O12305 Test Distriki Çorr	ie, 3 Meters Spec	MARGIN	Polar
MHZ: BBW=1 MHZ Trans [1=BICONALOG § [3=CABLE# 15 1% [5=	Z.YBW=1 MHZ. 110YA zducer L SN 2451 040806 123004 091004 091004 rement FREQ MHZ	<u>(, 60 7, 23°(, 47% HEL</u> 5.egend: 0N6 0N6	ATIVE HUMIDITY. Reading Lis Ts T9 D8 +0,0	STED BY MARGIN. 12 16 08 +0.0	13 17 08 +0,0	12=CABLE #10 0: 14=PBEAMP 8447 16=SMA CABLE 1- 18=CABLE#20 HI 18=CABLE#20 HI 18=C	51305 () 082304 406Hz AN2604 () 11AX 48FT 101304 () 11AX 48FT 101304 () 11AX 48FT 101304	O12305 Test ()istri ()orr DB: V/M	:e: 3 Meters Spec DB: V/M	MARGIN	Polar

TEST LOCATION:		CKC LABORATORIES, INC.	• 110 N. QLINDA PLAC	E • BREA <u>.</u> CA 92823	· (714) 993-6112						
CUSTOMER: Specification; Work (Rober #; Test Type; Eauipment; Manufacturer; Model; S/N;		ANYDAT FCC 15.10 81938 MAXIMIZ CDMA D BAND) AVIATA (CORPORATION MV-[URL ESNG) (ABB)[2)9 CLAS ZED EM	S B	J		Dai Tim Sequence Tested B	E. 08:31:38 ¥. 13			
<i>Equip</i> Function	oment Ui	nder Test Ma	(* EU Nufacturer	T):		Model #			S/N		
Power Supply					Muucu # 57M 0H-480528]] NA EMIV-Duni						
Suppo	ort Dev	ices:									
FUNCTION Laptop	UNCTION MANUFACTURER					MODEL # S/N EVD NISO PP2110					
THE EUT IS PLACE IS IN RECEIVE MOI MHZ: RBW=1 MHZ	D ON THE TEST BENCI De during the test	ions / No 1. <u>R\$232 IS CONNECTED TO</u> ALL OTHER PORTS ARE LEFT AC. 60 H2. 23°C, 47% REL Legend:	A REMOTELY LOCATE Tunterminated, []	D SUPPORT LAPTOP (VIA UTP. THE SUPF MHz. Frequency	PORT LAPTOP RUNS Range of Measure	TEST PROGRAM TO S Ement = 30 MHZ -	ET THE TRANSMITTIN 10 GHz, 30 MHz - '	IG AND RECEIVING CH 1000 MHZ: RBW=120	ANNEL _. POWER LEVEL O) KHZ, VBW=120 KHZ.	F THE EUT . THE EUT 1000 MHZ – 10000
T1=BICONALOG S T3=CABLE# 15 1 T5= T7=SMA CABLE 1	SN 2451040806 23004					T2=CABLE #10 03 T4=PREAMP 8447 T6=HORN 6246 T8=HP83017A PR	() 082304 091004				
Measu	rement		Reading Li	STED BY MARGIN.				TEST DISTANCE	: 3 METERS		
Data: #	FREQ	RDNG	1 5 9	T2 T6	[3 [7	[4 [8	[]IST	CORR	Spec	MARGIN	Polar
	MHZ	DB• V	D8 19	08	08	DB	TABLE	dB∙ V/m	d8∙ V/m	DB	
1											ANT
	1767 _. 730M	55,3	+0.0 +0.0 +2.5	+0.0 +26.8	+0.0 +0.5	+0.0 -38,2	+0,0	46,9	54.0	-7,1	Ant Vert
2	1767,730M 1767,790M							46 <u>.</u> 9 44 <u>.</u> 6	54,0 54,0		

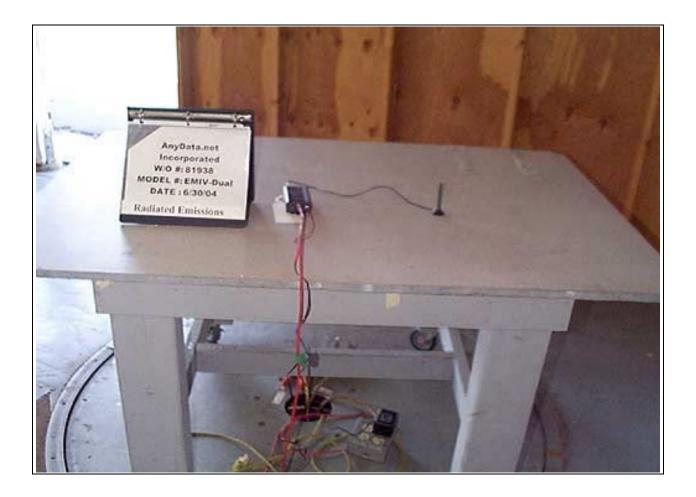
Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due	
Spectrum Analyzer RF Section	02462	HP	8568B	2928A04874	031103	031105	
Spectrum Analyzer Display Section	02472	HP	85662A	3001A18430	031103	031105	
QP Adapter	01437	HP	85650A	3303A01884	092702	092704	
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105	
30-1000MHz		·					
biconilog Antenna	01995	Chase	CBL6111C	2451	040804	040806	
Pre-amp	00309	HP	8447D	1937A02548	082303	082304	
Antenna cable	NA	NA	RG214	Cable#15	123003	123004	
Pre-amp to SA cable	NA	Harbour	RG223/U	Cable#10	070802	070804	
1000-1800 MHz		•					
Horn Antenna	0849	EMCO	3115	6246	091002	091004	
Microwave Pre-amp	00786	HP	83017A	3123A00281	091102	091104	
¹ /4" Heliax Coaxial Cable	NA	Andrew	FSJ-50A-4	Cable#7 (6 ft)	073103	073104	
Heliax Antenna cable	NA	Andrew	LDF1-50	Cable#20	101303	101304	
24" SMA Cable	2604	Argosy	UFA147A	0-0360-200200	012304	012305	
2.4 GHz HPF	01440	K&L	91H31-3000	001	022003	022005	
1.5 GHz HPF	02116	HP	84300- 80037	3643A00027	060603	060605	
1800-20000MHz							
18-26.5 GHz Horn Antenna	02112	HP	84125-8008	3643A00027	070103	070105	

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

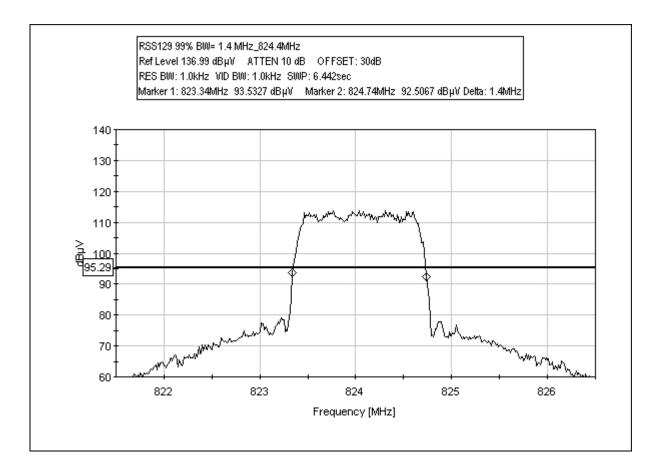
Page 84 of 93 Report No.: FC04-054A

PHOTOGRAPH SHOWING RADIATED EMISSIONS

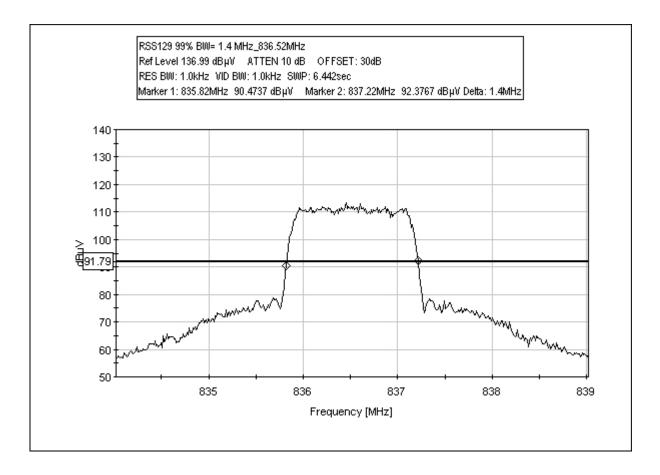


Radiated Emissions - Front View - Horn Antenna

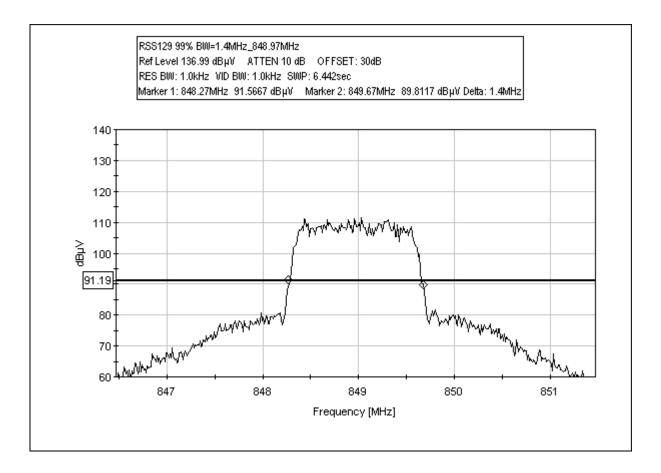
Page 85 of 93 Report No.: FC04-054A


PHOTOGRAPH SHOWING RADIATED EMISSIONS

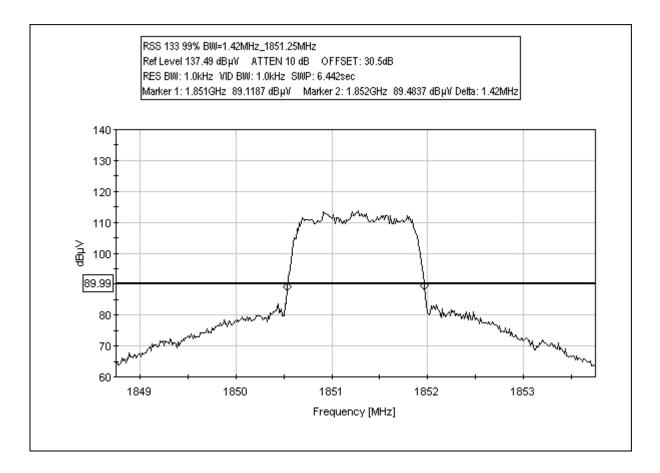
Radiated Emissions - Back View



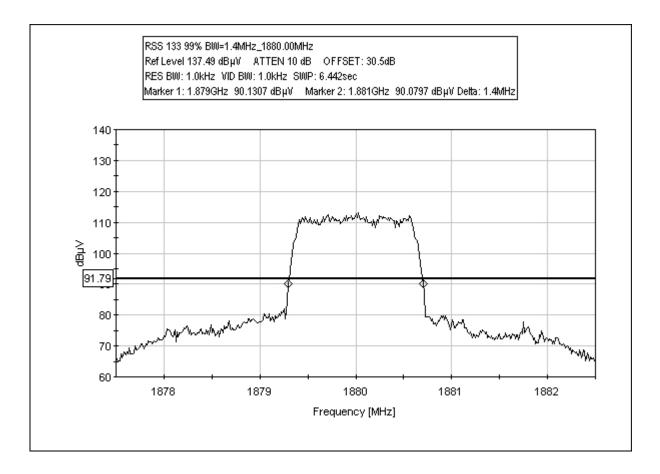
RSS-129 99% BANDWIDTH: 824.4 MHz



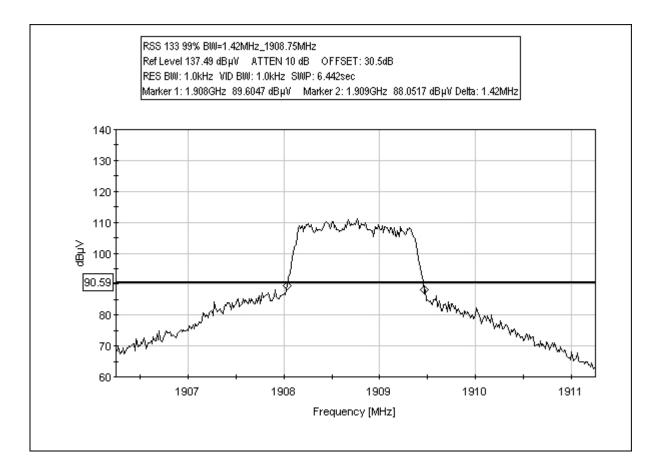
RSS-129 99% BANDWIDTH 836.52 MHz



RSS-129 99% BANDWIDTH: 848.97 MHz



RSS-133 99% BANDWIDTH: 1851.25 MHz



RSS-133 99% BANDWIDTH: 1880.00 MHz

RSS-133 99% BANDWIDTH: 1908.75 MHz

Test Equipment									
Spectrum Analyzer	02467	Agilent	E7405A	US40240225	033103	033105			

PHOTOGRAPH SHOWING DIRECT CONNECT TEST SETUP

Page 93 of 93 Report No.: FC04-054A