CDMA DATA TERMINAL

DTEV-Dual Reference Manual Application Information

November, 21, 2005 DTEV-Dual

AnyTime AnyPlace Any Wireless Data SolutionsTM

International Contact

AnyDATA Corp. 18902 Bardeen Ave Irvine, CA 92612-1522, U.S.A.

e-mail: johnkim@anydata.net

Korea Contact

AnyDATA.NET

Hanvit Bank Bldg. 6th Fl., 1-12

Byulyang-dong Kwachon,

Kyunggi-do, Korea

e-mail: info@anydata.net

Notice

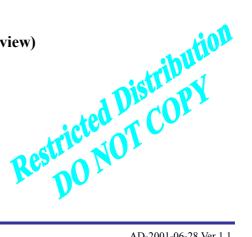
All data and information contained in or disclosed by this document are confidential and proprietary information of **AnyDATA.NET Inc.**, and all rights therein are expressly reserved. By accepting this material, the recipient agrees that this material and the information contained therein are held in confidence and in trust and will not be used, copied, reproduced, or distributed in whole or in part, nor its contents revealed in any manner to others without the express written permission of **AnyDATA.NET Inc.**

AnyDATA.NET Inc. does not assume any liability arising out of the application or use of its products. **AnyDATA.NET Inc.** assumes no responsibility for any damage or loss resulting from the misuse of its products. **AnyDATA.NET Inc.** assumes no responsibility for any loss or claims by third parties, which may arise through the use of its products. **AnyDATA.NET Inc.** assumes no responsibility for any damage or loss caused by the deletion or loss of data as a result of malfunctions or repairs.

The information contained in this document is subject to change without notice. Information contained herein is for reference only and does not constitute a commitment on the part of **AnyDATA.NET Inc.** Although the information in this document has been carefully reviewed and it's believed to be reliable, **AnyDATA.NET Inc.** assumes no responsibility or liability for any errors or inaccuracies that may appear in this document nor are they in anyway responsible for any loss or damage resulting from the use (or misuse) of this document.

It is advised for the customers to contact our engineers for more information with respect to Keypad, audio interface, RF interface and input power supply before they start an actual design.

OEM integrators and installers are instructed that the phrase 'This device contains transmitter FCC ID: P4M-DTEVDUAL must be placed on the outside of the host.



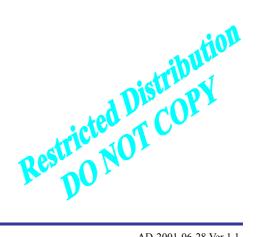
Warning: Exposure to Radio Frequency Radiation

The radiated output power of this device is far below the FCC radio frequency exposure limits. Nevertheless, the device should be used in such a manner that the potential for human contact during normal operation is minimized. In order to avoid the possibility of exceeding the FCC radio frequency exposure limits, human proximity to the antenna should not be less than 20cm during normal operation and the gain of the antenna must not exceed 1dBi

Contents

- 1 Introduction
 - 1.1 Purpose
 - 1.1.1 Features
 - 1.1.2 Applications
 - 1.2 Organization
 - 1.3 Revision History
 - 1.4 Reference
 - 1.5 Acronym List
- 2 Overview
 - 2.1 Application Description
 - 2.2 Technical Specifications
 - 2.2.1 General Specification
 - 2.2.2 Receive Specification
 - 2.2.3 Transmit Specification
 - 2.2.4 gpsOne Receiver Specification
 - 2.2.5 Standards
 - 2.3 Interface Diagram
- 3 PIN Description
 - 3.1 I/O Description Parameters
 - 3.2 PIN Names and Pin-outs
 - **3.2.1 100-PIN Connector**
 - 3.2.2 100-PIN Connector Pin-out (Top view)
- **4 Interface Descriptions**
 - 4.1 Overview
 - 4.2 Powering Up the Module
 - 4.2.1 External Supply

- 4.2.2 Keypad Power On and Supply Input to BATT INT
- 4.3 Power Down Registration Protocol for CDMA device
 - Using AT command (When Vcc is applied to VEXT DC
 - Using POWER ON (Only when Vcc is applied to VBATT INT) 4.3.2
- 4.4 Stereo Wideband CODEC Interface
 - 4.4.1 Microphone and Earphone Interface
 - 4.4.2 Stereo Headphone Interface
 - 4.4.3 Digital PCM Interface
 - 4.4.4 Stereo DAC Interface
- 4.5 UART Interface
 - 4.5.1 **UART1** Interface
 - 4.5.2 **UART2 R-UIM Interface**
 - 4.5.3 **UART3 Debug Port Interface**
 - 4.5.4 **USB** Interface
- 4.6 General Purpose Interface
- 4.7 User Interface
 - **4.7.1** Key Pad
 - 4.7.2 MultiMediaCard Controller
 - 4.7.3 Vibration Motor Driver
 - 4.7.4 LED Interface
- 4.8 External Bus Interface II (or LCD interface)
- 4.9 RF Interface
 - 4.9.1 Antenna for Primary RF Chain
 - 4.9.2 Antenna for Secondary RF Chain


- 5 Electrical Specifications
 - 5.1 DC Electrical Specifications
 - **5.1.1** Absolute Maximum Ratings
 - **5.1.2** Recommended Operating Conditions
 - **5.1.3** Power Consumption
 - **5.1.4** Serial Interface Electrical Specifications
 - 5.1.5 Multi-Purpose Pin Specifications
 - 5.1.5.1 Multi-Purpose Pin Configured
 - 5.1.5.2 Multi-Purpose Pin Configured as a Bidirectional I/O
 - 5.1.5.3 Multi-Purpose Pin Configured as an Analog
- 6 Mechanical Dimensions
 - 6.1 DTEV-1000 Outline
 - 6.2 100-Pin Connector Mechanical Dimension
 - 6.3 RF Connector
 - 6.3.1 Cable Assembly, Sunridge Corp Part
 - 6.3.1.1 Bulkhead SMA Type cable: MCB2G-RH-59-LLL-SMAJB101
 - 6.3.1.2 PCB mountable right angle SMA cable: MCB2G-RH-59-LLL-SMAJX103
 - 6.3.1.3 Contact Info.
 - 6.3.2 Murata Part
- 7 Application Schematic
- 8 Module Picture

Restricted Distribution

Restricted Distribution

Figures

Figure 2-1 Interface Block Diagram	17
Figure 3-1 100-PIN Connector Pinouts	22
Figure 4-7.1 Keypad Matrix	32
Figure 4-7.2 MMC Bus Circuitry Diagram	34
Figure 6-1 DTEV-Dual Outline	41
Figure 6-2 100-pin Connector	42
Figure 6-3.1.1 Bulkhead SMA Type cable	43
Figure 6-3.1.2 PCB mountable right angle SMA cable	43
Figure 7 Application Schematic.	45
Figure 8 Module Picture	46

Tables

Table 1-1 Revision History	9
Table 1-2 Acronym List.	10
Table 2-1 General Specifications	13
Table 2-2 Receiver specifications.	14
Table 2-3 Transmitter Specifications.	15
Table 2-4 gpsOne Receiver Specifications.	15
Table 3-1 I/O Description Parameters.	18
Table 3-2 100-PIN Connector Pinouts.	18
Table 4-1 Eternal Supply Pinouts	24
Table 4-2 Battery Supply Pinouts	24
Table 4-4.1 Analog Audio Pinouts	26
Table 4-4.1.1 Speaker Driver Performance Specifications	27
Table 4-4.2 Stereo Headphone Interface	28
Table 4-4.3 Digital CODEC Pinouts	28
Table 4-4.4 Stereo DAC Pinouts	29
Table 4-5.1 UART1 Interface Pinouts	29
Table 4-5.2 UART2 Interface Pinouts	30
Table 4-5.3 UART3 Interface Pinouts	30
Table 4-5.4 USB Interface Pinouts	31
Table 4-6 General Purpose Interface Pinouts	31
Table 4-7.1.1 Keysense GPIO Pinouts	32
Table 4-7.1.2 Keypad GPIO Pinouts	33
Table 4-7.2 MultiMediacatd Controller Pinouts	33
Table 4-7.3.1 Vibration Motor Driver Pinouts	34
Table 4-7.3.2 Vibration motor driver performance specifications	34
Table 4-7.4 LED Pinouts	35
Table 4-8 LCD Interface Pinouts	36
Table 4-9 Required Antenna Type	37
Table 5-1 Absolute Maximum Ratings	38
Table 5-1.2 Recommended Operating Conditions	38
Table 5-1.3 Power Consumption	38
Table 5-1.2 Recommended Operating Conditions Table 5-1.3 Power Consumption Table 5-1.4 Serial Interface Electrical Specifications Table 5-1.5.1 Multi-Purpose Pin Configured Table 5-1.5.2 Multi-Purpose Pin Configured as a Bidirectional I/O Table 5-1.5.3 Multi-Purpose Pin Configured as an analog	39
Table 5-1.5.1 Multi-Purpose Pin Configured	39
Table 5-1.5.2 Multi-Purpose Pin Configured as a Bidirectional I/O	39
Table 5-1.5.3 Multi-Purpose Pin Configured as an analog	39

1. Introduction

1.1 Purpose

This manual provides hardware interface and programming information for the DTEV-Dual CDMA Wireless Data Module.

1.1.1 Features

- 1. Support major air interfaces including CDMA2000® 1X, CDMA2000 1xEV-DO Rev. 0, cdmaOneTM IS-95A/B
- Support Release A of the CDMA2000 1X standard, for voice and multimedia data applications, with offering data transmission up to 153 kbps data in forward and reverse links simultaneously.
- 3. Support IS-856 1xEV-DO, high-speed peak data rates of 2.4 Mbps on forward link and 153 Kbps on reverse link.
- 4. Customized AT Command thru RS232
- 5. Universal serial bus (USB) for faster data transfers between wireless communicators and other data devices
- 6. Three universal asynchronous receiver transmitter (UART) serial ports
- 7. R-UIM/USIM controller (via second UART), SIM/R-UIM interface supports global roaming with multiple handsets, simplifying international business travel
- 8. Multimedia Card (MMC) support to enable the adFdition of high-capacity removable memory for storage of data, plus the transfer of data to and from PCs and wireless devices
- 9. Parallel LCD interface
- 10. General-purpose I/O pins
- 11. Mobile IP and Static IP
- 12. Secure Sockets Layer (SSL) software gives consumers the confidence of secure transactions and private data.
- 13. BREW® Binary Runtime Environment for Wireless platform, making it easier for users to find, select, purchase and download
- 14. Supports Antenna Diversity

1.1.2 Applications

- 1. 2-way Short Message Service (SMS) Reception and Transmission
- 2. Advanced wireless multimedia support for audio e-mail, still image email, video e-mail,...
- **3.** gpsOne® technology support for the mobile location applications and services, including points of local weather and traffic information, personal navigation, and Emergency mandates such as the United States FCC E911 mandate.

1.2 Organization

This manual will discuss the interface and operation of the module and is divided into the following subsections:

- Introduces users to the DTEV-Dual CDMA Wireless Data Module's basic features and general specifications.
- Lists each DTEV-Dual pin and its function within the device. The pinout for the module is listed in numeric sequence.
- Specifies the recommended operating conditions, DC voltage characteristics, I/O timing, and power estimations for the module. Timing diagrams are also included.
- Details each subsystem or block within the module and shows how the subsystem or block interfaces with external peripherals.
- Provides package dimensions for the module.

1.3 Revision History

The revision history for this document is shown in Table 1-1.

Table 1-1 Revision History

Version	Date	Description	
V1_X1	Dec. 2004	Initial Release. Internal Use Only	
V1_X2	Sep. 2005	2 nd Revision	

1.4 References

- 1. QUALCOMM Incorporated. MSM6500 Mobile Station Modem™: Component Supply Specification. 80-V5775-4 Rev. E, December 20, 2004.
- 2. QUALCOMM Incorporated. MSM6500™ Mobile Station Modem: Device Specification (Preliminary Information). 80-V5775-1 Rev. F, January 28, 2005.
- 3. QUALCOMM Incorporated. SURF6500 User Manual. 80-V6503-4, July 19, 2004.

1.5 Acronym List

Table 1-2 Acronym List

Term	Definition	
CDMA	Code-Division Multiple Access	
CODEC	Coder-Decoder	
GPIO	General-purpose Input/Output	
JTAG	Joint Test Action Group (ANSI/ICEEE Std. 1149.1-1990)	
LCD	Liquid Crystal Display	
LDO	Voltage Regulator	
LED	Light Emitting Diode	
PCB	Printed Circuit Board	
PCM	Pulse Coded Modulation	
PCS	Personal Communications Service	
RF	Radio Frequency	
Rx	Receive	
TCXO	Temperature-Controlled Crystal Oscillator	
Tx	Transmit	
UART	Universal Asynchronous Receiver Transmitter	

Restricted Distribution

Restricted Distribution

2. Overview

2.1 Application Descriptions

The CDMA Wireless Data Module is a complex consumer communications instrument that relies heavily on both digital signal and embedded processor technologies. The Wireless Data Modules manufactured by AnyDATA.NET support Code-Division Multiple Access (CDMA). This operates in both the cellular and PCS spectrum band.

In a continuing effort to simplify the design and to reduce the size and production cost of the Wireless Data Module, AnyDATA.NET has successfully developed the DTEV-series. The DTEV-Dual is AnyDATA.NET's latest compact Wireless Data Module operating in the Cellular and PCS spectrum band. DTEV-Dual contains not only a complete digital modulation and demodulation system for CDMA standards as specified in IS-95 A/B, IS-2000, IS-856 but also GPSOne position location solution which offers wireless callers their location wherever and whenever they need it.

GPSOne is QUALCOMM CDMA Technologies' position location solution. It offers the availability of position location determination in hostile environments (such as indoors) where conventional GPS receivers do not work well.

GPSOne uses a hybrid approach that utilizes signals from the GPS satellite constellation and from CDMA cell sites to determine location. Using the hybrid approach, GPSOne enhances location services availability, accelerates the location determination process, and provides improved accuracy.

The hybrid mode approach for position location uses signals from CDMA cell stations and GPS satellites to compute the user's location. This approach basically takes advantage of an accurate knowledge of GPS system timing on a CDMA mobile station. The knowledge of system timing allows the GPSOne solution to use both the CDMA signal measurements and GPS signal measurements collectively to compute the user's location. It also allows for a central entity, named Position Determination Entity (PDE), to send estimated signal phases to the mobile. This knowledge reduces the time to search the satellite pseudo ranges on the mobile, thus improving the time taken to determine the user's position.

The subsystem in DTEV-Dual includes a CDMA processor MSM6500[™] chipset's multimedia support for MP3 player and integrated stereo HiFi audio DAC, 64-polyphony MIDI sound synthesizer and PC-quality wavetable, MMC *Mobile*[™], USB-On-The-Go transceiver, Stereo Wireband Codec for digital music clips.

DTEV-Dual supports CDMA2000 1X, Release A standard, offering data rate of up to 153 kbps on both the forward and reverse links, along with simultaneous voice and data services, and IS-856 1xEV-DO for high speed data rate of 2.4Mbps on forward link and 153Kbps on reverse link.

The fast system in DTEV-Dual includes 256Mbytes NAND Flash Memory and 256Mbytes synchronous high data rate Dynamic RAM.

DTEV-Dual provides an external interface that includes the standard RS-232, Digital Audio, parallel LCD Display, Keypad, Multimedia Card, R-UIM/USIM, USB-OTG, GPIO.

DTEV-Dual has the capability to power down unused circuits in order to dynamically minimize power consumption.

Restricted Distribution

Restricted NOT COPY

2.2 Technical Specifications

2.2.1 General Specifications

Table 2-1 General Specifications

Parameters	Descriptions			
External Access	Code-Division-Multiple-Access (CDMA)			
CDMA Protocol	IS-95 A/B, IS-126, IS-637A, IS-707A, IS-2000,IS-856			
Data Rate				
CDMA2000 1X	153 Kbps on both the forward and reverse links			
1xEV-DO	Forward link: 2.4 Mbps			
	Reverse link: 153 Kbps			
System Memory	256Mbytes SDRAM and 256 Mbytes NAND Flash			
Transmit/Receive Frequency Interval	45MHz for Cellular and 80MHz for PCS			
Vocoder	EVRC, 13kQCELP			
RF technology	Zero Intermediate Frequency			
Number of Channel	832 for Cellular and 42 for PCS			
Operating Voltage	DC +3.3V ~ +4.5V BATT_INT (Pin88 and 90)			
	DC +4.0V to +5.25V VEXT_DC (Pin87 and Pin89)			
Current Consumption	1. VCC applied to VEXT_DC (Pin87 and Pin89)			
	Receive mode: 110mA			
	Sleep mode: less than 10mA			
	Busy mode: 900mA (Max)			
	2. VCC applied to BATT_INT (Pin88 and Pin90)			
	Receive mode: 110mA			
	Sleep mode: less than 1mA			
	Busy mode: 900mA (Max)			
Operating Temperature	-30°C ~ +60°C			
Frequency Stability	±300Hz for Cellular and ±150Hz for PCS			
Antenna GSC Connector, 50ohm				
Size	42mm(W) X 67mm(L) X 3.0mm(H) with case			
Weight	About 20g (0.7oz)			
External Interface	RS-232 UART, R-UIM, Parallel LCD, Keypad, MP3, MIDI, MMC			
	Mobile™, USB-On-The-Go, Stereo Wireband Codec, GPIO			
User Interface Software	BREW support			
Additional Function	gpsOne position location solution			

Restricted Distribution

Restricted Distribution

2.2.2 Receiver Specifications

Table 2-2 Receiver Specifications

Parameters	Descriptions
Frequency Range	
Cellular	869.04 ~ 893.97 MHz
PCS	1931.25 ~ 1988.75MHz
Sensitivity	
1xRTT	Below -104.0 dBm/1.23MHz
EVDO	Below –105.5 dBm/1.23MHz
Input Dynamic Range	
1xRTT	-25 dBm/1.23MHz ~ -104.0dBm/1.23MHz
EVDO	-25 dBm/1.23MHz ~ -105.5dBm/1.23MHz
	1xRTT
Single Tone Desensitization	Band Classes 0 (-30dBm @900KHz and -30dBm @-900KHz):
The FER in each test shall not	Below –101.0 dBm/1.23MHz
exceed 1.0% with 95% confidence	Band Classes 1 (-30dBm @1250KHz and -30dBm @-1250KHz):
	Below -101.0 dBm/1.23MHz
	EVDO
	Band Classes 0 (-30dBm @900KHz and -30dBm @-900KHz):
	Below –102.4 dBm/1.23MHz
	Band Classes 1 (-30dBm @1250KHz and -30dBm @-1250KHz):
	Below –102.4 dBm/1.23MHz 1xRTT
Intermodulation Spurious	Band Classes 0
Response Attenuation	Two tone (-43 dBm @900KHz and 1700KHz):
•	Below –101.0dBm/1.23MHz
(Two interfering CW tones)	Two tone (-32 dBm @900KHz and 1700KHz):
The FER in each test shall not	Below –90.0dBm/1.23MHz
exceed 1.0% with 95% confidence	Two tone (-21 dBm @900KHz and 1700KHz):
	Below -79.0dBm/1.23MHZ
	Band Classes 1
	Two tone (-43 dBm @1250KHz and 2050KHz):
	Below -101.0dBm/1.23MHz
	Two tone (-32 dBm @1250KHz and 2050KHz):
	Below –90.0dBm/1.23MHz
	Two tone (-21 dBm @1250KHz and 2050KHz):
	Below -79.0dBm/1.23MHZ
	EVDO
	Band Classes 0
	Two tone (-43 dBm @900KHz and 1700KHz):
	Below –102.4dBm/1.23MHz
	Two tone (-32 dBm @900KHz and 1700KHz):
	Below –91.4dBm/1.23MHz
	Palow 80 4dBm/1 22MH7
	Rand Classes 1
	Two tone (-43 dBm @1250KHz and 2050KHz):
	Below =102 4dBm/1 23MHz
	Two tone (-32 dBm @1250KHz and 2050KHz)
	Below –91 4dBm/1 23MHz
	Two tone (-21 dBm @1250KHz and 2050KHz)
	Below –80.4dBm/1.23MHZ
Spurious Wave Suppression	Below –80dBc
Spurious Wave Suppression	Below –91.4dBm/1.23MHz Two tone (-21 dBm @900KHz and 1700KHz): Below –80.4dBm/1.23MHZ Band Classes 1 Two tone (-43 dBm @1250KHz and 2050KHz): Below –102.4dBm/1.23MHz Two tone (-32 dBm @1250KHz and 2050KHz): Below –91.4dBm/1.23MHz Two tone (-21 dBm @1250KHz and 2050KHz): Below –80.4dBm/1.23MHZ Below –80.4dBm/1.23MHZ

2.2.3 Transmitter Specifications

Table 2-3 Transmitter Specifications

Parameters	Descriptions		
Frequency Range			
Cellular	824.04 ~ 848.97 MHz		
PCS	1851.25 ~ 1908.75MHz		
Nominal Max Power	0.32 W (24.7dBm)		
Peak Power in Operation Mode	400mW (26dBm)		
Minimum Controlled Output Power	Below –50dBm		
Max Power Spurious			
Cellular	900KHz: Below –42dBc/30KHz		
	1.98MHz: Below –54dBc/30KHz		
PCS	1.25MHz: Below –42dBc/30KHz		
	1.98MHz: Below –50dBc/30KHz		

2.2.4 gpsOne Receiver Specifications

Table 2-4 gpsOne Receiver Specifications

Parameters	Descriptions
Frequency Range	L1, 1575.42 MHz
C/A Code	1.023 MHz Chip Rate
Bandwidth	2.046 MHz
Modulation	BPSK
Receiver Sensitivity	
Without SA message	-149dBm
With SA message	-152dBm
Interference	
at Min At minimum C/N ₀ (17 dB-Hz)	
CW interference	-36dB
1kHz Bandwidth Interference	-17dB
10 ⁺ kHz Bandwidth Interference	-7dB
VCO Phase Noise	
at 100 Hz offset	-50 dBc/Hz
at 1 KHz offset	-70 dBc/Hz
at 10 KHz offset	-90 dBc/Hz
at 100 KHz offset	-115 dBc/Hz
at 2 MHz offset	-140 dBc/Hz
	-90 dBc/Hz -115 dBc/Hz -140 dBc/Hz Restricted Distribution

2.2.5 Standards

IS-95 A/B, IS-2000, IS-856: Protocol Between MS & BTS

IS-866: 3GPP2 C.S0033-0 Version 2.0: Recommended Minimum Performance Standards for CDMA2000 High

Rate Packet Data Access Terminal

IS-96A: Voice Signal Coding

IS-98A: Base MS Function

IS-98E: Recommended Minimum Performance Standards for cdma2000 Spread Spectrum Mobile Stations

IS-126: Voice Loop-Back

IS-637: Short Message Service

IS-707: Data Service


IS-657: packet data

USB 2.0 Specification and OTG Supplement: Exchanging data between a host and peripheral

MMC System Specification 1.4: MultiMediaCard standard

ITU-T G.712: Transmission systems and media, Digital systems and networks

Built-in TCP/IP: AnyDATA proprietary software

2.3 Interface Diagram

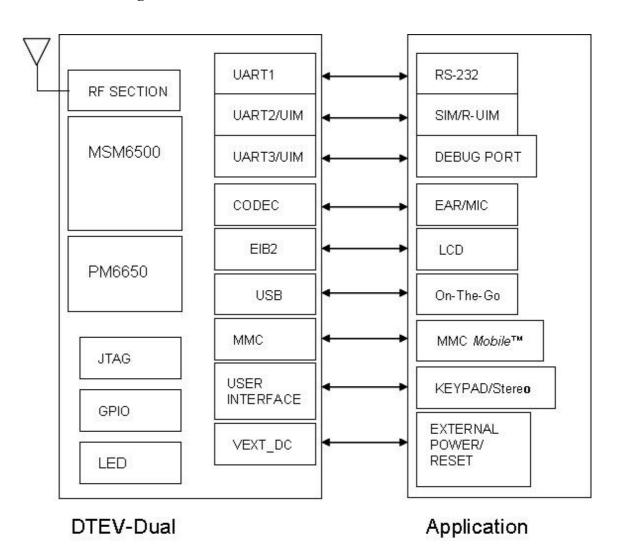


Figure 2-1 Interface Block Diagram

Restricted Distribution

Restricted Distribution

3. PIN Description

3.1 I/O Description Parameters

Table 3-1 I/O Description Parameters

Symbol	Description	
I	CMOS Input	
0	Output	
В	Bi-directional	
V	Power/Ground	
IS	Input with Schmitt Trigger	
BS	Bi-directional Schmitt Trigger	
PU	Internal Pull-Up	
PD	Internal Pull-Down	

3.2 PIN Names and Pinouts

3.2.1 100-Pin Connector

Table 3-2 100-PIN Connector Pinouts

Pin #	Name	Main Function	Dir- Pol	Description
1	D2[15]	EBI2_DATA15	В	peripheral data bus
2	GND	GROUND	V	Signal Ground
3	D2[14]	EBI2_DATA14	В	peripheral data bus
4	GND	GROUND	V	Analog Ground
5	D2[12]	EBI2_DATA12	В	peripheral data bus
6	D2[13]	EBI2_DATA13	В	peripheral data bus
7	D2[10]	EBI2_DATA10	В	peripheral data bus
8	D2[11]	EBI2_DATA11	В	peripheral data bus
9	D2[08]	EBI2_DATA08	В	peripheral data bus
10	D2[09]	EBI2_DATA09	В	peripheral data bus
11	GND	GROUND	V	Signal ground
12	GND	GROUND	V	Signal ground
13	GPIO_39	UART1_DCD_N	О	Data carrier detect (UART1)
14	GPIO_64	UART1_RI_N	О	Ring indicator (UART1)
15	GPIO_98	UART1_RFR_N	О	Ready for Receive (UART1) same as RTS
16	GPIO_95	UART1_TXD	О	Transmit data (UART1)
17	GPIO_44	UART1_DTR	I	Data terminal ready (UART1)
18	GPIO_96	UART1_RXD	I	Receive data (UART1)

19	GPIO 97	UART1_CTS_N	I	Clear to send (UART1)
20	VREG_UIM	VREG_RUIM	О	+3V power supply to RUIM caed
21	UIM_P_DATA	UIM_P_DATA	I	Data from RUIM card
22	UIM_P_RESET	UIM_P_RESET	О	RUIM card reset
23	UIM_P_CLK	UIM_P_CLK	О	RUIM clock
24	MMC_DATA	MMC_DATA	В	GPIO_32, MultiMediaCard data
25	MMC_CLK	MMC_CLK	В	GPIO_31, MMC clock
26	GPIO_84	UART3_TXD	О	transmit data, (UART3) DEBUG PORT
27	MMC_CMD	MMC_CMD	В	GPIO_30, MMC command
28	GPIO_85	UART3_RXD	I	receive data, (UART3) DEBUG PORT
				Linear regulator output intended to power
29	VREG_MMC	VREG_AUX1	О	MMC circuits
30	POWER_ON	POWER_ON	I	POWER ON used only when to use 3.6V 1cell battery. External pull-up required
31	GPIO 24	LCD LED CONT	О	General purpose input output, LCD LED
32	GPIO_13	FLASH_LED_CONT	О	General purpose input output, FLASH LED
33	GPIO_17	GPIO_17	В	General purpose input output
				Regulated output of the MSME buck (step-
34	VREG_MSME	VREG_MSME	О	down) SMPS
				Low dropout linear regulator output
35	VREG_AUX2	VREG_AUX2	О	intended to power WLAN
36	GND	GROUND	V	Signal ground
37	GND	GROUND	V	Signal ground
38	D2[00]	EBI2_DATA00	В	Data line
39	D2[01]	EBI2_DATA01	В	Data line
40	D2[02]	EBI2_DATA02	В	Data line
41	D2[03]	EBI2_DATA03	В	Data line
42	D2[04]	EBI2_DATA04	В	Data line
43	D2[05]	EBI2_DATA05	В	Data line
44	D2[06]	EBI2_DATA06	В	Data line Line
45	D2[07]	EBI2_DATA07	В	Data line Data line Address line
46	A2[20]	A2[20]	О	Address line
47	A2[01]	A2[01]	О	Address line
48	RESOUT1	RESOUT1_N	О	Reset Out
49	LCD2_CS	LCD2_CS_N	О	Peripheral LCD chip select
50	GPIO23	LED_FULL_CURRENT	О	GPIO, Full Current LED

				I
51	OE2	OE2_N	О	LCD Output Enable Signal
52	WE2	WE2_N	О	LCD Write Enable Signal
53	GPIO_62	KEYSENSE0_N	I	Key sense input
54	GPIO_63	KEYSENSE1_N	I	Key sense input
55	GPIO_46	KEYSENSE2_N	I	Key sense input
56	GPIO_47	KEYSENSE3_N	I	Key sense input
57	GPIO_48	KEYSENSE4_N	I	Key sense input
58	GPIO_45	KYPAD_5	I	GPIO, Keypad input
59	GPIO_53	KYPAD_4	I	GPIO, Keypad input
60	GPIO_52	KYPAD_3	I	GPIO, Keypad input
61	GPIO_51	KYPAD_2	I	GPIO, Keypad input
62	GPIO_50	KYPAD_1	I	GPIO, Keypad input
63	GPIO_49	KYPAD_0	I	GPIO, Keypad input
64	CDIO 00	ALIN DOLL OLIV	ъ	PCM clock for auxiliary CODEC port
64	GPIO_80	AUX_PCM_CLK	В	or IDLE LED output. Default is LED
65	GPIO_81	AUX_PCM_SYNC		PCM data strobe for auxiliary CODEC port
65			О	or Traffic LED output. Default is LED
				PCM data input for auxiliary CODEC port
66	GPIO_82	AUX_PCM_DIN	I	or SMS LED output. Default is LED
67	GPIO_21	AMUX_IN1	I	External inputs to the analog multiplexer
68	GPIO_83	AUX_PCM_DOUT	О	PCM data output for auxiliary CODEC port
69	GPIO_05	AMUX_IN2	I	External inputs to the analog multiplexer
70	GPIO_37	COVER_DET	В	General purpose input output
71	VIB_DRV_N	VIB_DRV_N	О	VIBRATOR_DRV output
72	GPIO_42	PS_HOLD	О	POWER LED Enable
73	SPK_M	SPRK_OUT_M	О	Speaker driver output (-)
74	KYD_BAKLIGHT	KEY_BAKLIGHT	О	KYD_BAKLIGHT output
75	SPK_P	SPRK_OUT_P	О	Speaker driver output (+)
76	GND	GROUND	V	Signal ground
77	GND	GROUND	V	Signal ground
78	EAR_DET	EAR_DET1	I	GPIO, EAR Jack Detect
79	HPH_R	HPH_R	О	Stereo headphone output, Right
80	EAR10_P	EAR10_P	О	Earphone 1 amplifier output (+)
81	EAR10_M	EAR10_M	О	Earphone I amplifier output (-)
82	MIC1 P	MIC1_P	I	External Mic (+) input
	_	_		, , , , , , , , , , , , , , , , , , ,

AnyDATA.NET Inc.

83	MIC2 D	MIC2 D	I	For Ital-Min (1) innut
	MIC2_P	MIC2_P		Ear Jack Mic (+) input
84	GND	GROUND	V	Signal Ground
85	GND	GROUND	V	Signal ground
0.6	TABLE BATE	TABLE BALB		+3.3V ~ +4.2V power supply to peripheral
86	VPH_PWR	VPH_PWR	О	device
87	VBATT_DC	VEXT_DC	I	External DC input
88	VBATT_INT	VBATT_INT	I	Battery input
89	VEXT_DC	VEXT_DC	I	External DC input
90	VBATT_INT	VBATT_INT	I	Battery input
				+5Vdc input or output depending upon the
91	1 GPIO_29 US	USB_VBUS	I	type of peripheral device connected.
			_	Default is input
92	USB_OE_TP_N	USB_CON_D_M	В	USB differential data minus (-)
93	USB_SEO_VM	USB_CON_ID	I	Not in use
94	USB_DAT_VP	USB_CON_D_P	В	USB differential dada minus (+)
95	MIC1_M	MIC1_M	I	External Mic (-) input
06	AND DAND	VIDIA DIVID	0	+3.3V ~ +4.2V power supply to peripheral
96	VPH_PWR	VPH_PWR	О	device
97	HPH_L	HPH_L	О	Stereo headphone output, Left
98	N.C	GPIO_35	В	General purpose input output
99	GND	GROUND	V	Signal ground
100	GND	GROUND	V	Signal ground

Restricted Distribution

Restricted Distribution

3.2.2 100-Pin Connector Pin-out (Top view)

	out (10p view)		1
			-
 3	D2[15]	GND	2
	D2[14]	GND	4
5	D2[12]	D2[13]	6
	D2101	D2(11)	8
9	D2(08)	D2[09]	10
11	l GND '	ĞND	12
13	GPIO_39	GP(O 64	14
15	GPIO 98	GPIO 95	16
17	GP10_38 GP10_44	GPIO 96	18
19	GPIO_44 GPIO_97	VREG_UIM	20
21 23 25	UIM P DATA	UIM P RESET	22
23		MMC_DATA	24
25	UIMĪPĪCLK		26
27	MMC_CLK MMC_CDM-MMC_CMD	GPIO_84	28
27 29	MMC_CDM-MMC_CMD	GPIO_85	30
- 23	VREG_MMC	POWER_ON	
31	GPIO_24	GP(0_13	32
33	GPIO_17	VREG_MSME	34
<u>35</u>	VREG_AUX2	- GND	36
37	GND T	D2{88}	38
39	D2I011	D2[82]	40
41	D2[03]	D2[04]	42
43	D2(05)	D2{86}	44
45	D2[07]	A2[20]	46
47	A2[01]	RESOUT1	48
49		GP1023	50
51	OE2	01 1023 WE2	52
53	GPIO 62	GPIO_63	54
55	GPIO_02 GPIO_46	GP(0_33	56
57		GP10_47 GP10_45	58
58	GPIO_48	GF10_43	60
61	GPIO_53	GP(O_52	62
63	GPIO_51	GP(O_50	84
85	GPIO_49	AUX_PCM_CLK	66
67	AUX_PCM_SYNC	AUX_PCM_DIN	68
69	GPIO_21	AUX_PCM_DOUT	70
71	GPIO_05	GPIO_37	72
	VIB_DRV_N	GP(O_42	
73	SPK_M T	KYD_BAKLIGHT	74
<u>75</u>	SPK_P	GND	<u>76</u>
	GND	EAR_DET	78
79	HPH_R	EART8_P	80
<u></u>	EARTO M	MIC1_P	82
83	MIC2_P	GND	84
85	GND	VPH_PWR	86
87	VD△TT DC VEXT_DC	VBATT INT	88
<u> 88</u>	VEXT DO	VBATT INT	80
<u>91</u>	GPIO 29	USB_OE_TP_N	92
93	LISH SEC VM	USB DAT VP	94
95	GPIO_29 USB_SEO_VM MIC1_M	VPH PWR	96
97	HPH L	N.C	98
99	GND	GND	100
	OND	CIAD	
			J

Figure 3-1 100-PIN Connector Pinouts

Notes:

* Pin16 and Pin18 can be used as a debugging port if USB is used as primary data. We strongly recommend that the user have a 3-pin connector or 3 test points on their board, so that one can easily monitor and diagnose their module.

LEAVE UNUSED PINS OPEN AT ALL TIMES

Restricted Total Connector of 3 test points on their board, so that one can easily monitor and diagnose their module.

4. Interface Descriptions

4.1 Overview

This chapter covers information required to convert the DTEV-Dual into a subscriber unit application. In addition, some of the internal blocks of the device are described. Understanding these internal blocks is necessary for one to completely grasp the functions of the various interfaces.

This chapter discusses the interface to the major blocks of the DTEV-Dual as shown in the following figure. These blocks include:

- Power Up
- Power Down Registration Protocol for CDMA device
- Stereo Wideband CODEC Interface
- UART Interface
- General Purpose Interface
- User Interface
- External Bus Interface II
- USB Interface
- LED Interface
- RF Interface

Restricted Distribution

Restricted Distribution

4.2 Powering Up the Module

There are two ways to power up the module and customers may choose one of the two ways to power up DTEV-Dual module.

AnyTime AnyPlace Any Wireless Data SolutionTM

4.2.1 External Supply

If the customers don't need to save current in sleep mode, which is around 10mA, supplying voltage to VEXT DC (Pin 87 and Pin89) is recommended. When the input voltage from +4V to +5.25V is supplied, DTEV-Dual will automatically start its power-on process and finish it within 2 seconds. In this case, using a regulator with an enable pin is highly recommended so that the customer can reset the module using the enable pin if software lock-up symptoms are found.

If a customer needs to use charging circuit built in the module, apply +5.0V DC to VEXT_DC(Pin87 and Pin89) and connect a +3.6V 1-cell lithium-ion battery to BATT INT(Pin88 and 90).

Pin#	Pin Name	Main Function	Туре	Description
87	VEXT_DC	VEXT_DC	I	External DC input
89	VEXT_DC	VEXT_DC	I	External DC input

Table 4-1 Eternal Supply Pinouts

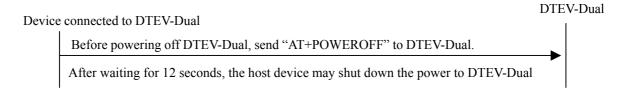
4.2.2 Keypad Power On and Supply Input to BATT INT

If the customers need to get their device to operate in a very low sleep current mode, supplying voltage to BATT INT (Pin 88 and 90) is recommended.

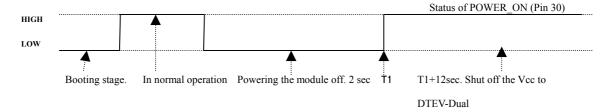
When the input voltage from +3.3V to +4.5V is supplied to BATT_INT (Pin88 and 90) and POWER ON goes to Low from High, power on sequence is initialed. For a successful power on sequence, POWER ON(Pin30) must stay Low for more than 500msec and less than 2sec).

To power off the module, have POWER ON(Pin 30) stay low for more than 2sec and less than 4sec and then the voltage in BATT INT may or may not be removed.

If Vcc is supplied thru a regulator or a DC/DC converter to BATT_INT(Pin88 and 90), using one with an enable pin is highly recommended so that the customer can shut off the power to the module using the enable pin if software lock-up symptoms are found. If the modem is locked up, low assertion of POWER_ON (Pin 30) won't power on or off the module. If Vcc is supplied directly from a battery, having a FET between the output of a battery and VBATT INT(Pin88 and Pin90) is recommended that the abution customer can shut off the power to DTEV-Dual using the FET switch.


Table 4-2 Battery Supply Pinouts

Pin#	Pin Name	Main Function	Туре	Description
88	VBATT_INT	VBATT_INT	I	Battery plus (+) input
90	VBATT_INT	VBATT_INT	I	Battery plus (+) input
30	POWER_ON	POWER_ON	ı	POWER ON used only when to use +3.6V 1-cell battery. External pull-up to +3V to +4.5V thru 100kohm resistor.


4.3 Power Down Registration Protocol for CDMA device

Before DTEV-Dual is powered off, it has to send power down registration message to the CDMA base station to help the base station to maximize its capacity. Depending on air interface environment, it may take up to 12 seconds according to CDMA technical standard.

4.3.1 Using AT command (When Vcc is applied to VEXT_DC)

4.3.2 Using POWER ON (Pin 30) (Only when Vcc is applied to BATT INT)

Restricted Distribution

Restricted NOT COPY

4.4 Stereo Wideband CODEC Interface

With the integrated microphone and earpiece amplifier including CODEC, the DTEV-Dual module interfaces directly, either differential or single-ended, to the microphone and earpiece.

The audio features in the module are

- Two microphone inputs
- Two earphone outputs and one auxiliary audio output.

4.4.1 Microphone and earphone Interface

The module contains analog audio interface circuitry. The contained audio interface supports all of the required conversation and amplification stages for the audio front end.

The audio interface includes the amplification stages for both the microphone and earphone.

The module supports audio outputs with its variable gain audio as volume control can be used for audio alerts or speaker phone. The speaker driver has programmable gain, turn-on time, and muting, and operates as a differential device delivering a volume-controlled 500mW to an external 8-Ohm speaker.

The EAR10 and MIC1P are typically used for the handset ear-piece/mic.

The EAR_JACK+ and MIC2P are typically used for the ear-jack.

Table 4-4.1 Analog Audio Pinouts

Pin#	Pin Name	Main Function	Туре	Description
73	SPK_M	SPRK_OUT_M	О	Loud speaker output (-)
75	SPK_P	SPRK_OUT_P	О	Loud speaker output (+)
80	EAR10_P	EAR10_P	О	Ear-piece output (+)
81	EAR10_M	EAR10_M	О	Ear-piece output (-)
82	MIC1_P	MIC1_P	I	Mic. (+) input
95	MIC1_M	MIC1_M	I	Mic. (-) input
78	EAR_DET	EAR_DET1	I	EAR/MIC Set Detect*

^{*} EAR_DET checks to see if a headset has been connected to the ear-jack. When there is no headset connected to the ear-jack, the audio path thru an ear-jack is disconnected and ear-piece/mic. is connected. Setting EAR_DET to HIGH disconnects ear-jack and connects ear-piece/mic.

Table 4-4.1.1Speaker Driver Performance Specifications

Parameter	Comments	Min	Тур	Max	Unit	Notes
Input frequency range		0.20		20	kHz	
Input resistance	Differential	60	72	86	k	
Input drive level					V_{RMS}	
Output power (P _{rated})	THD < 0.5%		500		mW	2
Power efficiency at P _{rated}		50			%	
Programmable amplifier gain		-16		+12	dB	3
Amplifier gain error		-1		+1	dB	
Amplifier gain flatness	20 Hz to 20 kHz	-0.5		+0.5	dB	
Output referred noise	$V_{in} = 0V$,					4
G = -16 dB	20 Hz – 20 kHz,		16		V_{RMS}	
G = -12 dB	8 ohm Load		16		V_{RMS}	
G = -8 dB			17		V_{RMS}	
G = -4 dB			18		V_{RMS}	
G = 0 dB			23		V_{RMS}	
G = +4 dB			30		V_{RMS}	
G = +8 dB			44		V_{RMS}	
G = +12 dB			66		V_{RMS}	
Output bandwidth at P _{rated}	8 load, 12dB gain		20		kHz	5
Output offdet voltage		-40		+40	mV	6
THD + noise				5	%	
Power supply rejection ratio	$V_{in} = 0V$,					
F = 20 Hz to 100 Hz	$V_{DD} = 3.6V + 100 \text{ mV}_{RMS}$		55		dB	
F = 100 Hz to 5 kHz			65		dB	
F = 5 kHz to 15 kHz			55		dB	
F = 15 kHz to 20 kHz			50		dB	
Turn-on time delay						7
Short delay			10	12.5	ms	1
Long delay			100	125	ms	tion
Pop and click levels	During power, gain, mute		11		mV_{PK}	8
	transitions			1019	P)
Mute suppression	$V_{in} = 2 V_{RMS}$	80	·ate	0	dB	
Quiescent current			the.	(6.2)	mA	6
-		10 8	, <u> </u>			

4.4.2 Stereo Headphone Interface

Table 4-4.2 Stereo Headphone Interface

Pin#	Pin Name	Main Function	Туре	Description
83	MIC2_P	MIC2_P	I	Ear-Mic Jack input *
78	EAR_DET	EAR_DET1	I	EAR/MIC Set Detect **
79	HPH_R	HPH_R	О	Stereo headphone output, Right
97	HPH_L	HPH_L	О	Stereo headphone output, Left

Note:

- * MIC2, along with being a microphone input, checks to see if the user has pressed the headset key, which allows the user to connect to or disconnect from a call. This pin is internally pulled high and is therefore normally in the high state. To activate this input and connect to or disconnect from a call, the user must set the MIC2 pin to a low state for 100ms to 200ms.
- ** EAR_DET checks to see if a headset has been connected to the ear-jack. When there is no headset connected to the ear-jack, the audio path thru an ear jack is disconnected. When a headset is connected to the ear-jack, audio path is opened. To simulate a headset connected to the ear-jack, the user must apply LOW signal to the EAR_DET pin for as long as the user wants the audio path thru ear-jack to be kept open

4.4.3 Digital PCM Interface

The Digital PCM CODEC interface is used for the car-kit audio system. This interface is optional. External CODEC interface signals are listed below:

Table 4-4.3 Digital CODEC Pinouts

Pin#	Pin Name	Main Function	Туре	Description
64	GPIO_80	AUX_PCM_CLK	В	PCM clock for auxiliary CODEC port
65	GPIO_81	AUX_PCM_SYNC	О	PCM data strobe for auxiliary CODEC port
66	GPIO_82	AUX_PCM_DIN	I	PCM data input for auxiliary CODEC port
68	GPIO_83	AUX_PCM_DOUT	0	PCM data output for auxiliary CODEC port

This feature is not implemented but can be added, please contact ed@anydata.com for technical support.

4.4.4 Stereo DAC Interface

DTEV-Dual supports DAC interface to an external stereo DAC for playing stereo sound or music (MP3 and MIDI, for example). This interface consists of four signals; serial bit clock (SDAC_CLK), left/right select (SDAC_L_R_N), serial data (SDAC_DOUT), and master clock (SDAC_MCLK).

Pin# **Main Function** Pin Name Type Description 64 GPIO 80 AUX PCM CLK O SDAC SCK 65 GPIO 81 AUX PCM SYNC SDAC L R N 0 66 GPIO_82 AUX_PCM_DIN O SDAC_MCLK 68 GPIO 83 AUX PCM DOUT 0 SDAC_DOUT

Table 4-4.4 Stereo DAC Pinouts

This feature is not implemented but can be added, please contact ed@anydata.com for technical support

4.5 UART Interface

The Universal Asynchronous Receiver Transmitter (UART) communicates with serial data that conforms to the RS-232 Interface protocol. The module has 3 UARTs which provides 2.85 V CMOS level outputs and 2.85 V CMOS input levels. All the control signals of the RS-232 are active low, however the data signals, RXD and TXD, are active high.

UART1 which has 512 bytes for Tx and Rx FIFO, supports high speed data communication up to 230.4kbps, program download and diagnostic monitor function.

UART2 and 3 which 64 bytes for T/Rx FIFO, support low speed data communication up to 115.2kbps, program download and diagnostic monitor function.

The UART features hardware handshaking, programmable data sizes, programmable stop bits, and odd, even, no parity.

4.5.1 UART1 interface

Table 4-5.1 UART1 Interface Pinouts

Pin #	Pin Name	Main Function	Туре	Description
13	GPIO_39	UART1_DCD_N	О	Data carrier detect control input (UART1)
14	GPIO_64	UART1_RI_N	0	Ring indicator control input (UART1)
15	GPIO_98	UART1_RFR_N	O	Ready for Receive (UART1)
16	GPIO_95	UART1_TXD	О	Transmit data output (UART1)
17	GPIO_44	UART1_DTR	I	Data terminal ready control output (UART1)
18	GPIO_96	UART1_RXD	I	Receive data input (UART1)
19	GPIO_97	UART1_CTS_N	Ι	Clear to send control input (UART1)

Leave unused Pins open.

This feature is not implemented but can be added, please contact ed@anydata.com for technical support.

4.5.2 UART2 R-UIM interface

The UART2 supports R-UIM interface.

Table 4-5.2 UART2 Interface Pinouts

Pin#	Pin Name	Main Function	Туре	Description
20	VREG_UIM	VREG_UIM	О	+3.0V power supply to RUIM card
21	UIM_P_DATA	UIM_P_DATA	I	Data from RUIM card
22	UIM_P_RESET	UIM_P_RESET	О	RUIM card reset
23	UIM_P_CLK	UIM_P_CLK	О	RUIM clock

Leave unused Pins open.

If a customer wants to use R-UIM card, UART2 can't be used as UART.

This feature is not implemented but can be added, please contact ed@anydata.com for technical support.

4.5.3 UART3 Debug Port Interface

The UART3 is used to monitor and diagnose the status of the DTEV-Dual. It is strongly recommended for the user to have the following UART3 pins connected to an extra connector or to test points, in order to easily troubleshoot any problems with the module.

Table 4-5.3 UART3 Interface Pinouts

Pin#	Pin Name	Main Function	Туре	Description
26	GPIO_84	UART3_TXD	0	Transmit data output, DEBUG PORT
28	GPIO_85	UART3_RXD	I	Receive data input, DEBUG PORT
16	GPIO_95	UART1_TXD	О	Transmit data output, DEBUG PORT
18	GPIO_96	UART1_RXD	I	Receive data input, DEBUG PORT

If USB is used for primary data, use Pin16 and Pin18 for debugging.

If UART1 is used for primary data and USB is not used, use Pin26 and 28 for debugging.

Leave unused Pins open.

This feature is not implemented but can be added, please contact ed@anydata.com for technical support.

4.5.4 USB Interface

The module contains Universal Serial Bus (USB) interface to provide an efficient interconnect between the mobile phone and a personal computer (PC). It can act as a USB peripheral device, supporting low speed 1.5 Mbps and full speed 12Mbps connections. In host mode, the module supplies VBUS with +5Vdc at up to 25mA.

This module is USB V1.1 comparable.

Pin# Pin Name **Main Function** Type Description +5Vdc input or output depending upon the type of peripheral device connected. 91 GPIO 29 USB VBUS I Default in input. 92 USB_OE_TP_N USB CON D M В Differential Data minus (-) 93 USB_SE0_VM USB_CON_ID Not in use I 94 USB DAT VP USB CON D P В Differential Data plus (+)

Table 4-5.4 USB Interface Pinouts

USB host feature is not implemented, please contact ed@anydata.com for technical support.

4.6 General Purpose Interface

The general purpose interface is user-definable bi-directional pin. It can be configured as an interrupt source. In addition, the GPIO pin can be used as output control pin from the module. The user can define this pin properly as following.

Table 4-6 General Purpose Interface Pinouts

Pin#	Pin Name	Main Function	Туре	Description
33	GPIO_17	GPIO_17	В	Programmable pull. This pin can be programmed to No Pull, Pull Up, or Pull Down.
98	NC	GPIO_35	В	Programmable pull. This pin can be programmed to No Pull, Pull Up, or Pull Down.

Restricted Distribution

Restricted NOT COPY

4.7 User Interface

4.7.1 Keypad

The keypad interface consists of a 5 X 6 matrix pattern. The 5-KEYSENSE/[4:0] pins are used to connect a matrix keypad to the module. The KEYSENSE/ pins are active low.

The 6-KEYPAD pins are necessary to construct the other side of the matrix. These KEYPAD pins must be active high in order for the keypad matrix to work properly. The general keypad matrix is shown below:

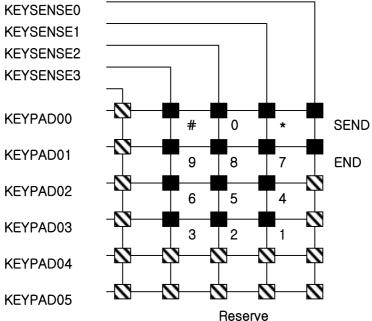


Figure 4-7.1 Keypad Matrix

Table 4-7.1.1 Keysense GPIO Pinouts

Pin#	Pin Name	Main Function	Туре	Description	
53	GPIO_62	KEYSENSE0_N	I	Key sense input	
54	GPIO_63	KEYSENSE1_N	I	Key sense input	
55	GPIO_46	KEYSENSE2_N	I	Key sense input	
56	GPIO_47	KEYSENSE3_N	I	Key sense input	
57	GPIO_48	KEYSENSE4_N	I	Key sense input	
Restricted Districted Districted Print					

Pin# Pin Name Main Function Туре Description 58 GPIO 45 KYPAD 5 I GPIO, Keypad input 59 GPIO 53 I KYPAD 4 GPIO, Keypad input 60 GPIO_52 KYPAD_3 Ι GPIO, Keypad input 61 GPIO 51 KYPAD 2 Ι GPIO, Keypad input 62 GPIO_50 KYPAD_1 I GPIO, Keypad input I 63 GPIO 49 KYPAD 0 GPIO, Keypad input

Table 4-7.1.2 Keypad GPIO Pinouts

DTMF

35

68

When key is pressed, CDMA Module generates standard DTMF tone and sends it to the local audio path (speaker). If the Mobile station is in traffic state, the CDMA Module sends DTMF Message to the Base Station and to the local audio path (speaker) at the same time. The network will deliver the analog DTMF tone or DTMF Message to its final destination.

This feature is not implemented but can be added, please contact ed@anydata.com for technical support. .

4.7.2 MultiMediaCard controller

VREG_AUX2

GPIO INT22

DTEV-Dual contains a MultiMediaCard (MMC) controller that provides a link between the ARM bus master and the MultiMediaCard bus for storing digital music, games, address books and photos. The SD card supports a 1-bit SD bi-directional bus mode. SD bus pins are CLK, CMD and DAT in 1-bit mode and CLK, CMD, and DAT[0:3] in 4-bit mode. The MultiMediaCard also supports the 1-bit bi-directional MMC bus mode that has CLK, CMD, and DAT bus pins. The CMD and DAT pins are bi-directional on the SD 1-bit, SD 4-bit, and MMC 1-bit. DTEV-Dual can't support SD 4-bit mode. MMC version 3.31 is supported for the ROM class and R/W MMCs. SD Memory Card Physical Layer Specification Version 1.01 is supported in SD bus mode.

Pin# Pin Name **Main Function** Description Type 24 MMC DATA MMC DATA В GPIO 32, MultiMediaCard data 25 MMC_CLK MMC CLK O GPIO 31, MMC clock 27 MMC CMD MMC CMD В GPIO 30, MMC command 29 VREG MMC VREG MMC O +2.85V

VREG_AUX2

SD DETECT

Table 4-7.2 MultiMediacatd Controller Pinouts

O

I

+2.85V

SD/MMC detect. Low detection

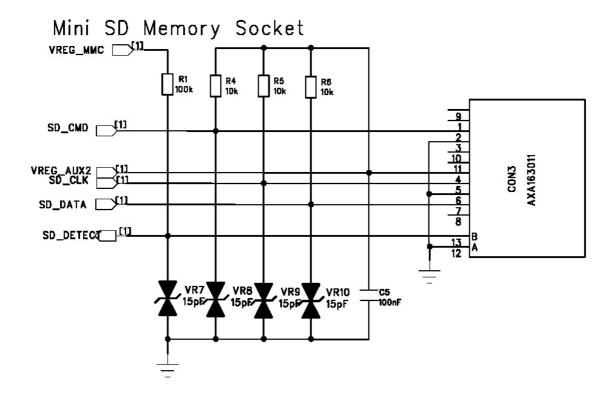


Figure 4-7.2 MMC Bus Circuitry Diagram

This feature is not implemented but can be added, please contact ed@anydata.com for technical support.

4.7.3 Vibration Motor Driver

DTEV-Dual supports silent incoming-call alarms with its vibration motor driver.

Table 4-7.3.1 Vibration Motor Driver Pinouts

Pin#	Pin Name	Main Function	Type Description	
71	VIB_DRV_N	VIB_DRV_N	O	VIBRATOR_DRV output

Table 4-7.3.2 Vibration motor driver performance specifications

Parameter	Comments	Min	Тур	Max	Unit	Notes
Output voltage (V _m) error	$V_{DD} \ge 3.2V$; $I_m = 0$ to 175mA;				Libi	1
Gain error	$V_{\rm m}$ setting = 1.2 to 3.1V	-6		+6	%	1
Offset error		-60	<u> </u>	+60	mV	
Short circuit current	$VIB_DRV_N (pin25) = V_{DD}$	225	rich	500	mA	
Driver bias current	I _m = 175mA	120	78			2
Driver leakage current			100	100	nA	

Notes:

- 1. The vibration motor driver circuit is a low-side driver. The motor is connected directly to V_{DD} and the voltage across the motor is: $V_m = V_{DD} V_{out}$ where V_{out} is the PM6650 voltage at pin25 (VIB_DRV_N).
- 2. Driver bias current is the change in I_{DD} when the motor driver is turned on less the motor current. This feature is not implemented but can be added, please contact ed@anydata.com for technical support.

4.7.4 LED Interface

Table 4-7.4 LED Pinouts

PIN NUMBER	USE	REMARK	
64	Idle LED	High Enable, High indicates	
04	idle LED	"The device is in CDMA service area"	
65	Traffic LED	High Enable, High indicates	
03	Hame LED	"The device is in CDMA Traffic state"	
66	SMS LED	High Enable High indicates	
00	SMS LED	"The device has received SMS message	
72	DO. LED	High Enable High indicates	
12	Power On LED	"The device is turned on"	

Above pins can not drive LED directly. Must use driver ICs to drive LEDs

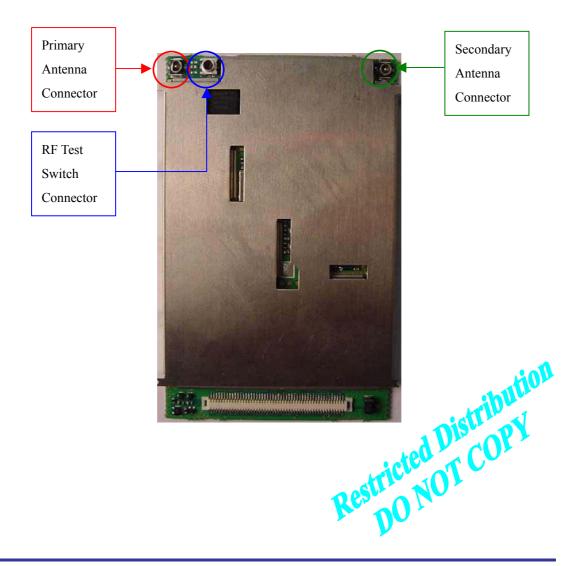
Restricted Distribution

Restricted Distribution

4.8 External Bus Interface II (or LCD Interface)

The External bus interface II supports the parallel LCD interfaces. The port mapped or memory mapped (16-bit interface and 8-bit devices) parallel LCD device could be connected to chip select LCD2_CS_N in EBI2. The maximum address space per chip select is 2 Megabyte. Direct access to the LCD driver is not applicable.

Table 4-8 LCD Interface Pinouts


Pin#	Pin Name	Main Function	Туре	Description
1	D2[15]	EBI2_DATA15	В	Data line
3	D2[14]	EBI2_DATA14	В	Data line
5	D2[12]	EBI2_DATA12	В	Data line
6	D2[13]	EBI2_DATA13	В	Data line
7	D2[10]	EBI2_DATA10	В	Data line
8	D2[11]	EBI2_DATA11	В	Data line
9	D2[08]	EBI2_DATA08	В	Data line
10	D2[09]	EBI2_DATA09	В	Data line
38	D2[00]	EBI2_DATA00	В	Data line
39	D2[01]	EBI2_DATA01	В	Data line
40	D2[02]	EBI2_DATA02	В	Data line
41	D2[03]	EBI2_DATA03	В	Data line
42	D2[04]	EBI2_DATA04	В	Data line
43	D2[05]	EBI2_DATA05	В	Data line
44	D2[06]	EBI2_DATA06	В	Data line
45	D2[07]	EBI2_DATA07	В	Data line
46	A2[20]	A2[20]	О	Address line
47	A2[01]	A2[01]	О	Address line
49	LCD2_CS	LCD2_CS_N	О	Peripheral LCD Chip Select
48	RESOUT1	RESOUT1_N	О	Reset Out
51	OE2	OE2_N	О	Output Enable Signal
52	WE2	WE2_N	О	Write Enable Signal
This fea	ature is not implen	nented but can be added, pl	ease contact s	ed@anydata.com for technical support

4.9 Antenna Interface

DTEV-Dual supports antenna diversity for CDMA signal reception, MS-Assisted GPS, MS-Based GPS, simultaneous GPS, standalone GPS using secondary RF chain.

Table 4-9 Required Antenna Type

INTENDED OPERATION	PRIMARY ANTENNA	SECONDARY ANTENNA	REMARK
- CDMA with Diversity - GPS	800/1900MHz Dual Band	800/1900/1575MHz Tri Band	CDMA Diversity and GPS support
- CDMA with Diversity - No GPS support	800/1900MHz Dual Band	800/1900MHz Dual Band	Optimized for CDMA Signal Reception
- CDMA without Diversity - GPS	800/1900MHz Dual Band	1575.42MHz Single Band	Optimized for GPS Signal Reception

5. Electrical Specifications

5.1 DC Electrical Specifications

5.1.1 Absolute Maximum Ratings

Operating the module under conditions that exceed those listed in the Absolute Maximum Ratings table may result in damage to the module.

Absolute Maximum Ratings should be considered as limiting values. The module may not function properly and should not be operated if any one of the parameters is not within its specified operating range.

PARAMETER MIN MAX **UNITS** Storage Temperature -50 °C +85 Voltage apply to any Input or output pin -0.5 +3.5VEXT DC -0.5 +5.5 V V Supply Voltage VBATT INT -0.5 +4.5 USB_VBUS +5.25 V -0.5 **Initializing Current** 250 mA Drop No damages after 60-Inch drop over concrete floor

Table 5-1 Absolute Maximum Ratings

5.1.2 Recommended Operating Conditions

Table 5-1.2 Recommended Operating Conditions

PARAMETER		MIN	TYP	MAX	UNITS
	VEXT_DC	+4.0	+5.0	+5.25	V
Supply Voltage	VBATT_INT	+3.3	+4.0	+4.5	V
	USB_VBUS	+4.4	+5.0	+5.25	V
Operating Temperature		-30		+60	°C
Operating Humidity		95% (50°C) Relative Humidity			

5.1.3 Power Consumption

Table 5-1.3 Power Consumption

CONVERSATION	STAN	IDBY
(Busy)	Rx	Sleep
900mA (MAX)	110mA	VEXT_DC: 10mA BATT_INT: 1mA

5.1.4 Serial Interface Electrical Specifications

Table 5-1.4 Serial Interface Electrical Specifications

PARAMETER	DESCRIPTION	MIN	MAX	UNITS
VIH	High-level input voltage, CMOS/Schmitt	1.7	3.3	Volts
VIL	Low-level input voltage, CMOS/Schmitt	-0.3	0.94	Volts
Voн	High-level output voltage, CMOS	2.25	2.85	Volts
Vol	Low-level output voltage, CMOS	0	0.45	Volts

5.1.5 Multi-Purpose Pin Specifications

5.1.5.1 Multi-Purpose Pin Configured

Table 5-1.5.1 Multi-Purpose Pin Configured

PARAMETER	DESCRIPTION	MIN	MAX	UNITS
ViH	High-level input voltage	1.7	3.0	Volts
VIL	Low-level input voltage	-0.3	0.94	Volts
Voн	High-level output voltage	2.25	2.85	Volts
Vol	Low-level output voltage	0	0.45	Volts

5.1.5.2 Multi-Purpose Pin Configured as a Bidirectional I/O

Table 5-1.5.2 Multi-Purpose Pin Configured as a Bidirectional I/O

PARAMETER	MIN	MAX	UNITS
Nominal pull-up resistance	1	30	K Ohm
Resistor tolerance	-20	20	%
Propagation delay	20	NA	ns

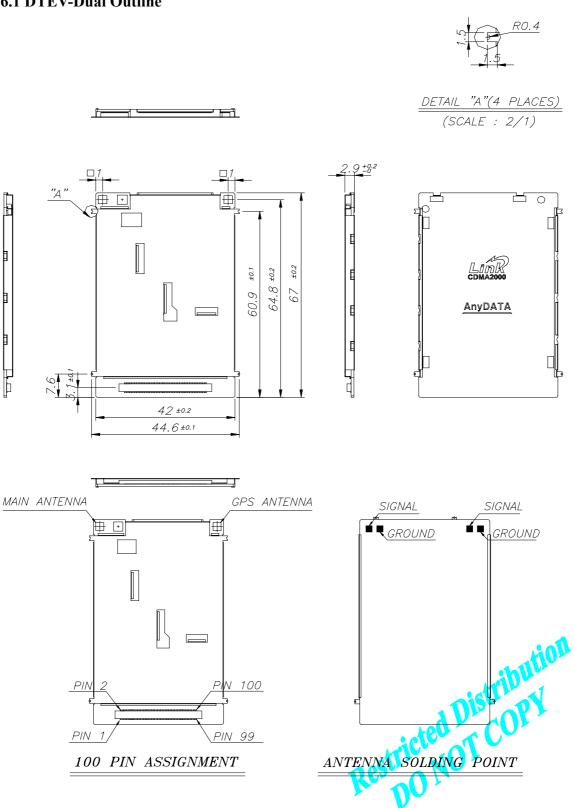

5.1.5.3 Multi-Purpose Pin Configured as an analog

Table 5-1.5.3 Multi-Purpose Pin Configured as an analog

PARAMETER	MIN	MAX	UNITS
Input current	NA	100	nA
Input capacitance	NA	5	pF
Output voltage error	NA	0.7	%
Load capacitance	25	NA	pF
	Restrict	NOT C	Or
All Rights Reserved.		AD-20	01-06-28 Ver 1.

6. Mechanical Dimensions

6.1 DTEV-Dual Outline

4 solder points in red circles MUST be soldered to PCB GND in the host device

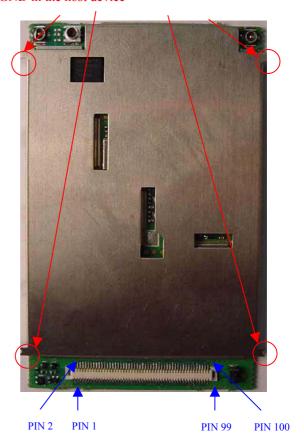


Figure 6-1 DTEV-Dual Outline

Restricted Distribution

Restricted Distribution

6.2 100-Pin Connector Mechanical Dimension

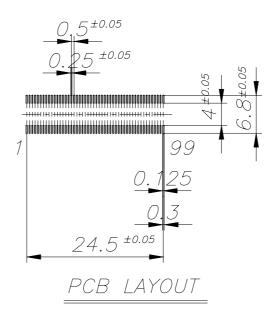


Figure 6-2 100-pin Connector

Counter-Part (the 100-pins socket connector (not in DTEV-Dual)): Part Name: Socket pin connector (0.5mm pitch, straight, dual row)

Part Number: AXK5F00545J

Manufacture: NAIS

Note: For more information on the 100-pins socket connector,

Please visit http://www.nais-e.com/, click connector, and "NARROW PITCH(0.5mm) CONNECTORS

P5 SERIES P5KF"

All Rights Reserved.

-42-

AD-2001-06-28 Ver 1.1

6.3 RF Connector

6.3.1 Cable Assembly, Sunridge Corp. Part

6.3.1.1 Bulkhead SMA Type cable: MCB2G-RH-59-LLL-SMAJB101

(Example, MCB2-RH-59-080-SMAJB101, 80mm-long RF cable)

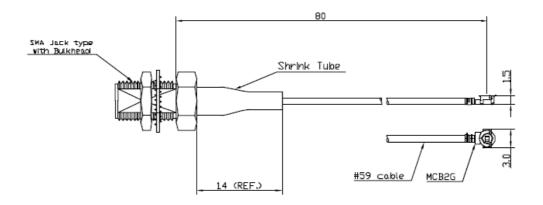


Figure 6-3.1.1 Bulkhead SMA Type cable

6.3.1.2 PCB mountable right angle SMA cable : MCB2G-RH-59-LLL-SMAJX103

(Example, MCB2G-RH-59-100-SMAJX103, 100mm-long RF cable)

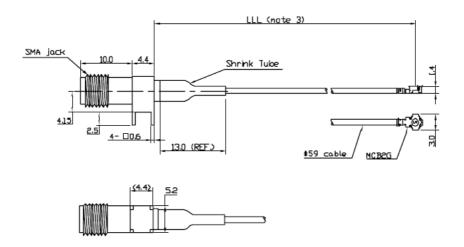


Figure 6-3.1.2 PCB mountable right angle SMA cable

6.3.1.3 Contact Info.

Chris Su chrissu@sunridge.com

Tel: 626-535-1780 (CA, U.S.A.) Fax: 626-535-1788 (CA, U.S.A.)

Restricted Distribution
Restricted Distribution Tony Su tsu@sunridge.com

6.3.2 Murata Part

Our part number: MM9329-2700.

Counter part number: MXTK92()()()

Please, visit http://www.murata.com and search for MXTK92 in product search engine

Part Numbering

Coaxial Connectors (Chip Type Receptacle)

MM 7329 -27 00 R A1 (Part Number)

●Product ID

Product ID	
ММ	Microwave Coaxial Connectors (Chip Type Receptacle)

Series

Code	Series
3325	BFA Type Straight
3326	BFA Type Right Angle
7329	FSC Type
8430	SWD Type
9329	GSC Type

Individual Specification Code (1)

_		
	Code	Individual Specification Code (1)
	-25	Discrete Terminal
	-26	Switch Connector SMD Type
Π	-27	Connector SMD Type

Coaxial Connectors (with Cable)		
(Part Number)	MX FG 76	

●Product ID

Product ID	
MX	Coaxial Connectors (with Cable)

Connector (1)

Code	Connector (1)
FG	FSC Type for 76 Cable
FK	FSC Type for 81 Cable
TK	GSC Type
YH	BFA Type

Cable

• • • • • • • • • • • • • • • • • • • •	
Code	Cable
62	0.8D, PE, Double Shield Line
63	0.8D, PE, Single Shield Line
75	0.8D, FEP, Double Shield Line
76	0.8D, FEP, Single Shield Line
81	0.4D, FEP, Single Shield Line
88	0.4D, PFA, Single Shield Line, Single Line
92	0.4D, PFA, Single Shield Line, Spiral

@Individual Specification Code (2)

Code	Individual Specification Code (2)
00	Serial

●Package Product ID

Code	Package Product ID
В	Bulk
R	Reel

Package Detail

Code	Package Detail
A1	FSC, SWD, GSC Type 1000pcs./Reel (ø178mm)
В3	SWD Type, 3000pcs./Reel (ø330mm)
В4	FSC Type, 4000pcs. /Reel (ø330mm)
B5	GSC Type, 5000pcs. /Reel (ø330mm)

@Connector (2)

Code	Connector (2)
FG	FSC Type for 76 Cable
FK	FSC Type for 81 Cable
TK	GSC Type
YH	BFA Type
XX	None Connector

Expressed by four figures. The unit is mm. From first to third figures are significant, and the fourth figure expresses the number of zeros which follow the three figures.

Ex.)	Code	Length
	5000	500mm = 500 x 10 ⁰
	1001	1000mm = 100 x 101

6 Individual Specification Code

Expressed by two figures.

7. Application Schematic

Figure 7 Application Schematic Poly North Conversion 1-45-

8. Module Picture

