CDMA DATA TERMINAL DT2000-Dual Reference Manual Application Information

October 2, 2002 01-DT2000-Dual-1 X3

AnyTime AnyPlace Any Wireless Data SolutionsTM

International Contact United Computer & Telecommunication Inc. 18902 Bardeen Ave Irvine, CA 92612-1522, U.S.A. e-mail : info@uct-time.com Korea Contact AnyDATA.NET Hanvit Bank Bldg. 6th Fl., 1-12 Byulyang-dong Kwachon, Kyunggi-do, Korea e-mail : <u>info@anydata.net</u>

Notice

All data and information contained in or disclosed by this document are confidential and proprietary information of **AnyDATA.NET Inc.**, and all rights therein are expressly reserved. By accepting this material, the recipient agrees that this material and the information contained therein are held in confidence and in trust and will not be used, copied, reproduced, or distributed in whole or in part, nor its contents revealed in any manner to others without the express written permission of **AnyDATA.NET Inc**.

AnyDATA.NET Inc. does not assume any liability arising out of the application or use of its products. **AnyDATA.NET Inc.** assumes no responsibility for any damage or loss resulting from the misuse of its products. **AnyDATA.NET Inc.** assumes no responsibility for any loss or claims by third parties, which may arise through the use of its products. **AnyDATA.NET Inc.** assumes no responsibility for any damage or loss caused by the deletion or loss of data as a result of malfunctions or repairs.

The information contained in this document is subject to change without notice. Information contained herein is for reference only and does not constitute a commitment on the part of **AnyDATA.NET Inc**. Although the information in this document has been carefully reviewed and it's believed to be reliable, **AnyDATA.NET Inc.** assumes no responsibility or liability for any errors or inaccuracies that may appear in this document nor are they in anyway responsible for any loss or damage resulting from the use (or misuse) of this document.

Warning: Exposure to Radio Frequency Radiation

The radiated output power of this device is far below the FCC radio frequency exposure limits. Nevertheless, the device should be used in such a manner that the potential for human contact during normal operation is minimized. In order to avoid the possibility of exceeding the FCC radio frequency exposure limits, human proximity to the antenna should not be less than 20cm during normal operation and the gain of the antenna must not exceed 1.5dBi.

Contents

- **1** Introduction
 - 1.1 Purpose
 - 1.2 Organization
 - **1.3 Revision History**
 - **1.4 Reference**
 - 1.5 Acronym List
- 2 Overview
 - 2.1 Application Description
 - 2.2 Technical Specifications
 - 2.2.1 General Specification
 - 2.2.2 Receive Specification
 - 2.2.3 Transmit Specification
 - 2.2.4 Standards
 - 2.3 Interface Diagram
 - 2.4 General Features
- **3 PIN Description**
 - 3.1 I/O Description Parameters
 - 3.2 PIN Names and Pinouts
 - 3.2.1 60-PIN Connector
 - **3.3** 60-Pin Connector Pinout (Top view)
- **4** Interface Descriptions
 - 4.1 Overview
 - 4.2 CODEC Interface
 - 4.3 UART Interface

- 4.3.1 Primary UART Interface
- 4.3.2 Secondary UART Interface
- 4.4 General Purpose Interface
- 4.5 External Hardware Reset
- 4.6 LEDs
- 4.7 User Interface
 - 4.7.1 Key Pad
 - 4.7.2 LCD
 - 4.7.3 Ringer
- **5** Electrical Specifications
 - 5.1 DC Electrical Specifications
 - 5.1.1 Absolute Maximum Ratings
 - 5.1.2 **Recommended Operating Conditions**
 - 5.1.3 **Power Consumption**
 - 5.1.4 Serial Interface Electrical Specifications
 - 5.2 Timing Characteristics
 - 5.2.1 External CODEC Timing
 - 5.2.2 LCD Timing
- 6 Mechanical Dimension
 - 6.1 DT2000-Dual Outline
 - 6.2 60-Pin Connector
 - 6.3 **RF Connector**

Restricted Distribution Restricted NOT COPY

Figures

Figure 2-1 Interface Block Diagram	11
Figure 2-2 General Features	12
Figure 4-1 Interface Block Diagram	16
Figure 4-2 Keypad Matrix	21
Figure 4-3 LCD Interface Block Diagram	22
Figure 4-4 Reference External Ringer Driver Circuit	23
Figure 5-1 External PCM CODEC to Module timing	25
Figure 5-2 Module to External PCM CODEC timing	25
Figure 5-3 LCD Timing	26
Figure 6-1 60-pin Female Connector	29
Figure 6-2 PCB Connector	30
Figure 6-3 PCB Connector Layout	30
Figure 6-4 Mechanical Characteristics of Cable Harness Assembly	31

Tables

Table 1-1 Revision History	. 7
Table 3-1 60-PIN Connector Pinouts	15
Table 4-1 Analog Audio Pinouts	17
Table 4-2 Digital CODEC Pinouts	18
Table 4-3 UART Interface Pinouts	18
Table 4-4 Secondary UART Interface Pinouts	. 19
Table 4-5 General Purpose Interface Pinouts	19
Table 4-6 LED Pinouts	. 20
Table 4-7 LCD Interface Signals	22
Table 5-1 Absolute Maximum Ratings	24
Table 5-2 External PCM CODEC Parameters	26
Table 5-3 LCD Timing Parameters	27

1. Introduction

1.1 Purpose

This Manual provides hardware interface and programming information for the DT2000-Dual CDMA Wireless Data Module.

1.2 Organization

This Manual will discuss the interface and operation of the module and is divided into the following subsections:

- Section 2 Introduces users to the DT2000-Dual CDMA Wireless Data Module's basic features and general specifications.
- Section 3 – Lists each DT2000-Dual pin and its function within the device. The pinout for the module is listed in numeric sequence.
- Section 4 Specifies the recommended operating conditions, DC voltage characteristics, I/O timing, and power estimations for the module. Timing diagrams are also included.
- Section 5 – Details each subsystem or block within the module and shows how the subsystem or block interfaces with external peripherals.
- Section 6 Provides package dimensions for the module.

1.3 Revision History

The revision history for this document is shown in Table 1-1.

Version	Date	Description	
V1_X1	April 2001	Initial Release – applicable DTS and DTSS series software	
V1_X2	June 2001	Corrected document format	
V1_X3	Oct. 2002	Corrected document content	V
Referenc	:es	Restricted Distribution Restricted Restricted Distribution Restricted Re	•

Table 1-1 Revision History

1.4 References

- 1. QUALCOMM Incorporated. MSM5100 Mobile Station Modem™: Component Supply Specification. 80-V2180-7-X1, July 13, 2001.
- 2. QUALCOMM Incorporated. MSM5100[™] Mobile Station Modem: Device Specification (Preliminary Information). 93-V2180-1-X3, August 30, 2001.
- 3. QUALCOMM Incorporated. SURF5100 User Manual. 80-V2535-1-X1, March 28, 2001.

1.5 Acronym List

Term	Definition	
CDMA	Code-Division Multiple Access	
CODEC	Coder-Decoder	
GPIO	General-purpose Input/Output	
JTAG	Joint Test Action Group (ANSI/ICEEE Std. 1149.1-1990)	
LCD	Liquid Crystal Display	
LDO	Voltage Regulator	
LED	Light Emitting Diode	
РСВ	Printed Circuit Board	
PCM	Pulse Coded Modulation	
PCS	Personal Communications Service	
RF	Radio Frequency	
Rx	Receive	
TCXO	Temperature-Controlled Crystal Oscillator	
Тх	Transmit	
UART	Universal Asynchronous Receiver Transmitter	

Restricted Distribution Restricted NOT COPY

2. Overview

2.1 Application Descriptions

The CDMA Wireless Data Module is a complex consumer communications instrument that relies heavily on both digital signal and embedded processor technologies. The Wireless Data Modules manufactured by AnyDATA.NET support Code-Division Multiple Access (CDMA). This operates in both the cellular and PCS spectrum.

In a continuing effort to simplify the design and to reduce the production cost of the Wireless Data Module, AnyDATA.NET has successfully developed the DT2000 series. The DT2000-Dual is AnyDATA.NET's latest compact Wireless Data Module operating in the Cellular and PCS spectrum. The DT2000-Dual also contains a complete digital modulation and demodulation system for CDMA standards as specified in IS-95 A/B and IS-2000.

The subsystem in the DT2000-Dual includes a CDMA processor (MSM5100), an integrated CODEC with an ear piece and microphone amplifiers, and an RS-232 serial interface supporting forward link data communications at a rate of 230.4kbps.

The DT2000-Dual provides an external interface that includes the standard RS-232, Digital Audio, External reset control, LCD Display, Keypad, and Ringer extension ports.

The DT2000-Dual has the capability to power down unused circuits in order to dynamically minimize power consumption.

Restricted Distribution Restricted NOT COPY

2.2 Technical Specifications

2.2.1 General Specifications

Parameters	Descriptions	
External Access	Code-Division-Multiple-Access (CDMA)	
CDMA Protocol	IS-95 A/B, IS-98A, IS-126, IS-637A, IS-707A, IS-2000	
Data Rate	153.6Kbps max	
Transmit/Receive Frequency Interval	45MHz for Cellular and 80MHz for PCS	
Number of Channel	832 for Cellular and 42 for PCS	
Operating Voltage	$DC +3.4V \sim +4.2V$	
Current Consumption	Stand by mode: Idle (110mA), Sleep (2mA)	
	Busy mode: 900mA (Max)	
Operating Temperature	$-30^{\circ}C \sim +60^{\circ}C$	
Frequency Stability	±300Hz for Cellular and ±150Hz for PCS	
Antenna	MCA Connector, 500hm	
Size	39 X 49 X 6.0mm with case	
Weight	About 20g	
External Interface	RS-232, Digital/Analog Audio, LCD, Keypad, Ringer	
	External Reset Control	

2.2.2 Receive Specifications

Parameters	Descriptions	
Frequency Range	869.04 ~ 893.97 MHz for Cellular and 1931.25 ~ 1988.75MHz for PCS	
Sensitivity	Below –104 dBm	
Interference Rejection	Single tone (-30dBm @900KHz): Below -101dBm	
	Two tone (-43 dBm @900KHz and 1700KHz): Below -101dBm	
	Two tone (-32 dBm @900KHz and 1700KHz): Below –90dBm	
	Two tone (-21 dBm @900KHz and 1700KHz): Below -79dBm	
Spurious Wave Suppression	Below –80dBc	
Input Dynamic Range	-25 dBm ~ -104dBm	

2.2.3 Transmit Specifications

Parameters	Descriptions
Frequency Range	$824.04 \sim 848.97$ MHz for Cellular and $1851.25 \sim 1908.75 MHz$ for PCS
Nominal Power	0.32 W (24.7dBm)
Minimum Controlled Output Power	Below –50dBm
Max Power Spurious	900KHz: Below –42dBc/30KHz
	1.98MHz: Below –54dBc/30KHz
	Restricted Dr COL-

AnyDATA.NET Inc.

2.2.4 Standards

IS-95 A/B: Protocol Between MS & BTS

IS-96A: Voice Signal Coding

IS-98A: Base MS Function

IS-126: Voice Loop-Back

IS-637: Short Message Service

IS-707: Data Service

2.3 Interface Diagram

2.4 General Features

Figure 2-2 General Features

Restricted Distribution Restricted Distribution

3. PIN Description

3.1 I/O Description Parameters

Symbol	Description	
Ι	CMOS Input	
0	Output	
В	Bi-directional	
Ν	Voltage or Current Level	
IS	Input with Schmitt Trigger	
BS	Bi-directional Schmitt Trigger	
PU	Internal Pull-Up	
PD	Internal Pull-Down	
KP	Internal Weak Keeper Device (Keepers cannot drive external buses.)	

3.2 PIN Names and Pinouts

3.2.1 60-Pin Connector

PIN	NAME	ТҮРЕ	DESCRIPTION
1	MSM_DP_DCD/ (GPIO_INT16)	BS-PD	Data carrier detect
2	MSM_DP_RI/ (GPIO_INT25)	BS-PD	Ring indicator
3	MSM_DP_RFR/	0	Ready for receive
4	MSM_DP_TXD	0	Transmit data
5	MSM_DP_DTR/ (GPIO_INT2)	BS-PU	Data terminal ready
6	MSM_DP_RXD	IS-PD	Receive data
7	MSM_DP_CTS/	IS-PD	Clear to send
8	GND	GND	Signal ground
9	AUX_PCM_DIN	IS-PD	External CODEC PCM data input, RXD *
10	GND	GND	Signal ground *
11	AUX_PCM_DOUT	BS_PU	External CODEC PCM data output, TXD *
12	GPIO_INT22 (PRE_DIAL)	BS_PU	General purpose input output
13	AUX_PCM_CLK	BS_PD	External CODEC PCM clock
14	AUX_PCM_SYNC	BS_PD	External CODEC PCM sync.
15	GPIO_INT23 (SMS_LED)	BS_PU	General purpose input output
16	GPIO_INT03 (IDLE_LED)	BS_PU	General purpose input output
17	GPIO_INT04 (BUSY_LED)	BS_PU	General purpose input output
18	EXT_RESET	Ι	External Hardware Reset
19	GPIO_INT09 (HOST_RESET)	BS_PD	General purpose input output
20	GPIO_INT12	BS_PU	General purpose input output
21	GPIO_INT13	BS_PD	General purpose input output
22	GPIO_INT17 (PS_HOLD)	BS_PD	General purpose input output
23	RINGER	0	Ringer output
24	D00	B-KP	Data line
25	D01	B-KP	Data line

AnyDATA.NET Inc.

AnyTime AnyPlace Any Wireless Data SolutionTM

PIN	NAME	TYPE	DESCRIPTION
26	D02	B-KP	Data line
27	D03	B-KP	Data line
28	D04	B-KP	Data line
29	D05	B-KP	Data line
30	D06	B-KP	Data line
31	D07	B-KP	Data line
32	A01	В	Address line
33	RES_OUT/	В	Reset output
34	LCD_CS/ (GPIO_INT40)	BS-PU	LCD chip select
35	RD/	В	Read enable output
36	LWR/	BS-PU	Write enable output
37	BATT+	Ι	Battery Monitoring **
38	GND	GND	Signal ground
39	VEXT_DC	Ι	External power input
40	VEXT_DC	Ι	External power input
41	MIC1P	Ι	Balanced Analog Audio Input (MIC) (Speaker)
42	MIC1N	Ι	Balanced Analog Audio Input (MIC) (Speaker)
43	EAR1P	0	Balanced Analog Audio Output (Speaker)
44	EAR1N	0	Balanced Analog Audio Output (Speaker)
45	GPIO_INT33 (KEYPAD_15)	BS_PU	General purpose input output
46	GPIO_INT35 (KEYPAD_11)	BS_PU	General purpose input output
47	GPIO_INT14 (MOTOR)	BS_PD	General purpose input output
48	GPIO_INT36 (KEYPAD_9)	BS_PU	General purpose input output
49	GPIO_INT34 (KEYPAD_13)	BS_PU	General purpose input output
50	KEYSENSE4/ (ON_SW)	IS_PU	Key sense input
51	KEYSENSE1/	IS_PU	Key sense input
52	KEYSENSE2/	IS_PU	Key sense input
53	KEYSENSE3/	IS_PU	Key sense input
54	KEYSENSE0/	IS_PU	Key sense input
55	LCD_E (GPIO_INT41)	BS-PD	LCD read enable
56	A00	В	Address line
57	EAR_DET1	Ι	Ear Kit Detect (small headset)
58	MIC2 (MIC)	Ι	Analog Audio Input (MIC) (small headset)
59	GND (GND_A)	GND	Signal ground (small headset)
60	EAR_JACK+ (EAR)	0	Analog Audio Output (Speaker) (small headset)

Notes:

* If not used as PCM, it can be used as a secondary UART for debugging. We strongly recommend that the user has a 3-pin connector or 3 test points on their board, so that one can easily monitor and diagnose their module.

** If the user wants the module to monitor battery voltage and the user is using a regulator in conjunction with a battery, whose maximum voltage exceeds 4.3 V, to drive the module, then the user should please contact our engineers.

When using a battery in which the voltage is between 3.3 V to 4.3 V and regulators aren't used to drive the module, leave this pin open.

3.3 60-PIN Connect Pinouts (Topview)

		1
1	MSM_DP_DCD/	2 MSM_DP_RI/
3	MSM_DP_RFR/	4 MSM_DP_TXD
5	MSM_DP_DTR/	6 MSM_DP_RXD
7	MSM_DP_CTS/	8 GND
9	AUX_PCM_DIN	10 GND
11	AUX_PCM_DOUT	12 GPIO_INT22
13	AUX_PCM_CLK	14 AUX_PCM_SYNC
15	GPIO_INT23	16 GPIO_INT03
17	GPIO_INT04	18 EXT_RESET
19	GPIO_INT09	20 GPIO_INT12
21	GPIO_INT13	22 GPIO_INT17
23	RINGER	24 D00
25	D01	26 D02
27	D03	28 D04
29	D05	30 D06
31	D07	32 A01
33	RES_OUT/	34 LCD_CS/
35	RD/	36 LWR/
37	BATT+	38 GND
39	VEXT_DC	40 VEXT_DC
41	MIC1P	42 MIC1N
43	EAR1P	44 EARIN
45	GPIO_INT33	46 GPIO_INT35
47	GPIO_INT14	48 GPIO_INT36
49	GPIO_INT34	50 KEYSENSE4/
51	KEYSENSE1/	52 KEYSENSE2/
53	KEYSENSE3/	54 KEYSENSE0/
55	LCD_E	56 A00
57	EAR_DET1	58 MIC2
59	GND	60 EAR_JACK+
		Restricted DISCOPT

Table 3-1 60-PIN Connector Pinouts

4. Interface Descriptions

4.1 Overview

This chapter covers information required to convert the DT2000-Dual into a subscriber unit application. In addition, some of the internal blocks of the device are described. Understanding these internal blocks is necessary for one to completely grasp the functions of the various interfaces.

This chapter discusses the interface to the major blocks of the DT2000-Dual as shown in the following figure. These blocks include:

- CODEC Interface
- UART Interface
- General Purpose Interface
- User Interface
- JTAG Interface

4.2 CODEC Interface

The CODEC Interface is configured by internal and external figures. If the internal CODEC interface is used, additional glue logic is not necessary and the module's very simple audio interface can be used. Otherwise if the internal CODEC interface is not used, an external CODEC is necessary to support the car-kit system. In this case, the module provides a PCM CODEC Interface.

4.2.1 Internal CODEC Interface

The module contains analog audio interface circuitry. The contained audio interface supports all of the required conversation and amplification stages for the audio front end.

The audio interface includes the amplification stages for both the microphone and earphone. The interface supports one single-ended microphone input and one single-ended earphone output.

Table 1 Tithalog Tudio Tinouts				
NAME	DESCRIPTION	CHARACTERISTIC		
MIC2	MIC Input	Analog Input (Pin No. 58) *		
EAR_DET1	EAR/MIC Set Detect	Logic Input (Pin No. 57) **		
EAR_JACK+	Earphone Output	Analog Output (Pin No. 60)		
GND_A	Audio Ground	Audio Ground (Pin No. 59)		

Table 4-1 Analog Audio Pinouts

Note:

* MIC2, along with being a microphone input, checks to see if the user has pressed the headset key, which allows the user to connect to or disconnect from a call. This pin is internally pulled high and is therefore normally in the high state. To activate this input and connect to or disconnect from a call, the user must set the MIC2 pin to a low state for 100ms to 200ms.

** EAR_DET1 checks to see if a headset has been connected to the ear-jack. When there is no headset connected to the ear-jack, the audio path is disconnected. When a headset is connected to the ear-jack an audio path is opened. To simulate a headset connected to the ear-jack, the user must apply a low signal to the EAR_DET1 pin for as long as the user wants the audio path to be kept open.

Restricted Distribution Restricted NOT COPY

4.2.2 Extended CODEC Interface

The PCM CODEC interface is used for the car-kit audio system. This interface is optional. External CODEC interface signals are listed below:

NAME	DESCRIPTION	PINOUTS		
AUX_PCM_CLK	PCM Clock	Pin No. 13		
AUX_PCM_DIN	PCM Data Input	Pin No. 9		
AUX_PCM_DOUT	PCM Data Output	Pin No. 11		
AUX_PCM_SYNC	PCM Sync.	Pin No. 14		

Table 4-2 Digital CODEC Pinouts

4.3 UART Interface

4.3.1 Primary UART interface

The Universal Asynchronous Receiver Transmitter (UART) communicates with serial data that conforms to the RS-232 Interface protocol. The module provides 3.0V CMOS level outputs and 3.0V CMOS switching input levels. In addition, all inputs have a 5.0V tolerance, however 3.0V or 3.3V CMOS logic compatible signals are highly recommended.

All the control signals of the RS-232 are active low, however the data signals, RXD and TXD, are active high.

The UART has a 64 byte transmit (TX) FIFO and a 64 byte receive (RX) FIFO. The UART features hardware handshaking, programmable data sizes, programmable stop bits, and odd, even, no parity. The UART operates at a maximum bit rate of 115.2kbps.

NAME	DESCRIPTION	CHARACTERISTIC		
DP_DCD/	Data Carrier Detect	Network connected from the module		
DP_RI/	Ring Indicator	Output to host indicating coming call		
DP_RFR/	Ready for Receive	Ready for receive from host		
DP_TXD	Transmit Data	Output data from the module		
DP_DTR/	Data Terminal Ready	Host ready signal		
DP_RXD	Receive Data	Input data to the module		
DP_CTS/	Clear to Send	Clear to send to the host		
GND	Signal Ground	Signal ground		
Reference Plane: D	Γ2000 Dual	Restricted Discopy		

Table 4-3 UART Interface Pinouts

4.3.2 Secondary UART interface

The secondary UART is used to monitor and diagnose the status of the DT2000-Dual. It is strongly recommended for the user to have the following secondary UART pins connected to an extra connector or to test points, in order to easily troubleshoot any problems with the module.

NAME	DESCRIPTION	CHARACTERISTIC
AUX_PCM_DIN/	Data Input	Input data to the module
AUX_PCM_DOUT/	Data Output	Output data from the module
GND	Signal Ground	Signal ground

Table 4-4	Secondary	UART	Interface	Pinouts
-----------	-----------	------	-----------	---------

Reference Plane: DT2000 Dual

4.4 General Purpose Interface

The general purpose interface consists of 13 user-definable bi-directional pins.

Each GPIO pin can be configured as an input interrupt source. In addition, some GPIO pins can be used as output control pins from the module. The user can define these pins properly as follows.

NAME	ТҮРЕ	CHARACTERISTIC
GPIO_INT03	BS_PU	Configured as a pull-up, Bi-directional
GPIO_INT04	BS_PU	Configured as a pull-up, Bi-directional
GPIO_INT09	BS_PD	Configured as a pull-down, Bi-directional
GPIO_INT12	BS_PU	Configured as a pull-up, Bi-directional
GPIO_INT13	BS_PD	Configured as a pull-down, Bi-directional
GPIO_INT14	BS_PD	Configured as a pull-down, Bi-directional
GPIO_INT17	BS_PD	Configured as a pull-down, Bi-directional
GPIO_INT22	BS_PU	Configured as a pull-up, Bi-directional
GPIO_INT23	BS_PU	Configured as a pull-up, Bi-directional
GPIO_INT33	BS_PU	Configured as a pull-down, Bi-directional
GPIO_INT34	BS_PU	Configured as a pull-down, Bi-directional
GPIO_INT35	BS_PU	Configured as a pull-down, Bi-directional
GPIO_INT36	BS_PU	Configured as a pull-down, Bi-directional
5 External Hard	ware Reset	ibuti

4.5 External Hardware Reset

There are two types of resets that the user can employ to restart the module. The first type will reset the MSM and the memory and is performed when the user gives the AT command, AT+RESET, to the MSM. Another way to reset the module is by using the external hardware reset. This type of reset will reset the hardware as well as the MSM and the memory. The flash memory will be the only information that is kept. To perform an external hardware reset, make sure the module has powered on and is not in

AnyDATA.NET Inc.

the initialization stage, and then apply a high signal of 2.5 V to 3.7 V to the external hardware reset pin for 200ms to 500ms. Keep the external hardware reset pin low when the module is initializing as well as during normal operation.

4.6 LEDs

The DT2000-Dual can indicate its current status through three pins. These three pins can be connected to LEDs to more quickly and easily determine the status of the module. The SMS LED indicates to the user if there is a SMS message or a voicemail message. If there is a SMS message or a voicemail message, the SMS LED will turn on. After the user has read the SMS message or listened to the voicemail message, the SMS LED turns off. Shortly after the module has been turned on, the Idle LED should turn on indicating that the module is in-service. This means that the module is within the range of the base station and is able to receive a signal from the base station. When the module is in traffic or conversation stage, the Busy LED is on.

Table 4-6 LED Pinouts	
------------------------------	--

NAME	DESCRIPTION	PINOUTS
GPIO_INT23	SMS_LED	Pin No. 15
GPIO_INT03	IDLE_LED	Pin No. 16
GPIO_INT04	BUSY_LED	Pin No. 17

Restricted Distribution Restricted NOT COPY

4.7 User Interface

4.7.1 Keypad

The keypad interface consists of a 4 X 5 matrix pattern. Only 4 of the 5-KEYSENSE/[4:0] pins are used to connect a matrix keypad to the module. The KEYSENSE/ pins are active low.

5-GPIO pins are necessary to construct the other side of the matrix. These 5-GPIO pins must be active high in order for the keypad matrix to work properly. The general keypad matrix is shown below:

Figure 4-2 Keypad Matrix

Restricted Distribution Restricted NOT COPY

4.7.2 LCD

The module supports the LCD interface. The LCD interface is composed of 15-signals. Direct access to the LCD driver is not applicable. Hence, 8-bit operation interface logic is required. The LCD interface block diagram is shown below:

Figure 4-3 LCD Interface Block Diagram

NAME	ТҮРЕ	CHARACTERISTIC	
LWR/	BS_PU	LCD RW pin out from the module	
RD/	BS	LCD E pin out from the module	
A01	В	LCD RS pin out from the module	
LCD_CS/	0	LCD Chip Select pin out from the module	
RES_OUT/	0	LCD Reset from the module	
$D00 \sim D07$	0	LCD Data Lines from the module	
VDD		LCD Power Supply	
GND		LCD Signal Ground	

Table 4-7 LCD	Interface	Signals
---------------	-----------	---------

AnyDATA.NET Inc.

4.7.3 Ringer

The Ringer pin provides the output to drive the sound transducer on the host. It alerts the user of a voice call event and outputs key tones if the keypad is connected.

The reference external driver circuit is shown below:

Figure 4-4 Reference External Ringer Driver Circuit

Restricted Distribution DO NOT COPY

All Rights Reserved.

AD-2001-06-28 Ver 1.1

5. Electrical Specifications

5.1 DC Electrical Specifications

5.1.1 Absolute Maximum Ratings

Operating the module under conditions that exceed those listed in the Absolute Maximum Ratings table may result in damage to the module.

Absolute Maximum Ratings should be considered as limiting values. The module may not function properly and should not be operated if any one of the parameters is not within its specified operating range.

PARAMETER	MIN	MAX	UNITS
Storage Temperature	-50	+85	°C
Voltage On Any Input or Output Pin	-0.8	+4.8	V
Supply Voltage	-1.0	+5.0	V
Initializing Current	250		mA
Drop	No damages after 60-Inch drop over concrete floor		

Table 5-1 Absolute Maximum Ratings

5.1.2 Recommended Operating Conditions

PARAMETER	MIN	ТҮР	MAX	UNITS
Supply Voltage	+3.4	+3.8	+4.2	V
Operating Temperature	-30		+60	°C
Operating Humidity	95% (50°C) Relative Humidity			

5.1.3 Power Consumption

CONVERSATION	STANDBY		
(Busy)	Idle	Sleep	
900mA (MAX)	110mA	2mA	

AnyDATA.NET Inc.

5.1.4 Serial Interface Electrical Specifications

PARAMETER	MIN	TYP (NO LOAD)	MAX	UNITS	
Input High Voltage	+2.0	+3	+3.7	V	
Input Low Voltage	-0.5	0	+0.8	V	
Output High Voltage	+2.4	+2.7		V	
Output Low Voltage		0	+0.4	V	

5.2 Timing characteristics

5.2.1 External CODEC Timing

Figure 5-1 External PCM CODEC to Module timing

PARAMETER	DESCRIPTION	MIN	TYP.	MAX	UNIT
t _{clk}	PCM-CLK cycle time	400	500		ns
t _{clkl}	PCM-CLK low time	200	250		ns
t _{elkh}	PCM-CLK high time	200	250		ns
t _{su(sync)}	PCM_SYNC setup time to PCM_CLK falling		150		ns
t _{h(sync)}	PCM_SYNC hold time after PCM_CLK falling		350		ns
t _{su(din)}	PCM_DIN setup time to PCM_CLK falling	50			ns
t _{h(din)}	PCM_DIN hold time after PCM_CLK falling	10			ns
t _{pdout}	Delay from PCM_CLK falling to PCM_DOUT			50	ns

Table 5-2 External PCM CODEC Parameters

5.2.2 LCD Timing

PARAMETER	DESCRIPTION	MIN	MAX	UNIT
t _{LCDES}	LCD_CS/ active to LCD_E active			ns
t _{LCDEHI}	Pulse width if LCD_E active			ns
t _{LCDEH}	LCD_E inactive to LCD_CS/ inactive (write)			ns
t _{LCDEHR}	LCD_E inactive to LCD_CS/ inactive (Read)			
t _{RDS}	Read data setup			ns
t _{RDH}	Read data hold			ns
t _{WRS}	Write data setup to LCD_E inactive			ns
t _{WRH}	Write data hold from LCD_E inactive			ns

Table 5-3 LCD Timing Parameters

• k, I, n is integer lower than 16, MCLK is internal Clock of module

All Rights Reserved.

AD-2001-06-28 Ver 1.1

6. Mechanical Dimensions

6.1 Outline for DT2000 and DTSS series

6.2 60-Pin Connector

Figure 6-1 60-pin Female Connector (Units: mm)

Counter-Part (the 60-pin male connector (not on the DT2000-Dual)): Part Name: Header pin connector (0.05" (1.27mm) pitch, straight, dual row) Part Number: GDH7-60DBC-SMT

Note: For more information on the 60-pin male connector, please refer to: http://www.goldenconnector.co.kr/index_product_e.html Use the part name and number to help search for the correct part.

Restricted Distribution DO NOT COPY

6.3 RF Connector

Figure 6-2 PCB Connector (Units: mm)

Counter-Part (not found on the DT2000-Dual) used to connect the RF connector to an antenna:

Figure 6-4 Mechanical Characteristics of Cable Harness Assembly (Units: mm)

Part name: Cable Harness Assembly

Note: For more information about the RF connector parts, please refer to the file found at http://www.sunridgecorp.com/pdf/MCAseries.pdf

Restricted Distribution Restricted NOT COPY