

FCC PART 22H, 24E IC RSS-132, ISSUE 2, SEP 2005 IC RSS-133, ISSUE 5, FEB 2009

TEST AND MEASUREMENT REPORT

For

AnyDATA Corporation

5 Oldfield, Irvine, CA 92618, USA

FCC ID: P4M-ACT231 IC: 4594A-ACT231

Report Type: Original Rep	ort	Product Type: CDMA Vehicle Tracker with Bluetooth and RKE Function	
Prepared By:	Wei Sun	lie?	
Report Number:	R1207094-2224		
Report Date:	2012-08-24 Victor Zhang		
Reviewed By:	EMC/RF Lead		
	Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164		

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*" (BECL)

TABLE OF CONTENTS

1	GE	NERAL DESCRIPTION	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	MECHANICAL DESCRIPTION OF EUT	5
	1.3	Objective	5
	1.4	RELATED SUBMITTAL(S)/GRANT(S)	5
	1.5	TEST METHODOLOGY	5
	1.6	MEASUREMENT UNCERTAINTY	6
	1./		6
2	EU	T TEST CONFIGURATION	7
	2.1	JUSTIFICATION	7
	2.2	EUT Exercise Software	7
	2.3	EQUIPMENT MODIFICATIONS	7
	2.4	SPECIAL EQUIPMENT	/ 7
	2.5	FUT INTERNAL CONFIGURATION DETAILS	7
	2.7	INTERFACE PORTS AND CABLING	
	2.8	POWER SUPPLY LIST AND DETAILS	8
3	SU	MMARY OF TEST RESULTS	9
4	IC	RSS-132 84 1. RSS-133 86 1 – CHANNELING ARRANGEMENTS & FREQUENCY PLAN	10
•	<u> </u>	ADDI ICADI E STANDADD	10
	4.1	TEST RESULTS	10
5	т.2 FC	C \$2 1047 & IC DSS 122 \$4.2 DSS 122 \$6.2 MODULATION CHADACTEDISTIC	10
3	rU 7 1	C §2.1047 & IC KSS-152 §4.2, KSS-155 §0.2 – MODULATION CHARACTERISTIC	
	5.1	APPLICABLE STANDARD	11 11
	3.2 EC	IEST RESULTS	11
0	FC	C §2.1055, §22.355, §24.235 & IC R55-132 §4.3, R55-133 §6.3 – FREQUENCY STABILITY	12
	6.1	APPLICABLE STANDARD	
	6.2	TEST PROCEDURE	13
	0.3 6.4	TEST EQUIPMENT LIST AND DETAILS	13
	6.5	TEST ENVIRONMENTAL CONDITIONS	13
7	FC	C 82 1046 822 013(A) 824 232 & IC DSS 132 844 DSS 133 864 DE OUTDUT DOWED	16
1	7 1	Approx 1040, 922.715(A), 924.252 & IC R55-152 94.4, R55-155 90.4 - RF OUTI UTI OWER	10
	7.1	APPLICABLE STANDARD	10 16
	73	TEST FROCEDURE	10
	7.4	TEST EQUIVIENTAL CONDITIONS	
	7.5	TEST RESULTS	
8	FC	C \$2.1053, \$22.917, \$24.238 & IC RSS-132 \$4.5, RSS-133 \$6.5 - SPURIOUS RADIATED EMISS	IONS20
-	81	APPLICABLE STANDARD	20
	8.2	Test Procedure	20
	8.3	TEST EQUIPMENT LIST AND DETAILS	20
	8.4	TEST ENVIRONMENTAL CONDITIONS	21
	8.5	TEST RESULTS	21
9	FC	C §2.1053, §22.917, §24.238 & IC RSS-132 §4.5, RSS-133 §6.5 - SPURIOUS EMISSIONS AT AN	ITENNA
T	ERMI	INALS	22
	9.1	APPLICABLE STANDARD	22

92	Τεςτ Ροργεριφε	22
93	TEST FROCEDORE	22
94	TEST EQUIVALUTE DETINES	22
9.5	Test Results	
10 FC	C \$2.1053. \$22.917. \$24.238 & IC RSS-132 \$4.5. RSS-133 \$6.5 – BAND EDGE	
10.1	$\Delta DDI I CARLE STANDARD$	<u>-</u> ° 26
10.1	TEST PROCEDURE	20 26
10.3	TEST FROOLD ONLY THE TAILS	
10.4	Test Environmental Conditions	
10.5	Test Results	
11 FC	C \$2.1049. \$22.917. \$24.238 & IC RSS-GEN \$4.6.1 – OCCUPIED BANDWIDTH	
11.1	APPI ICABLE STANDARD	28
11.2	Test Procedure	
11.3	Test Equipment List and Details	
11.4	TEST ENVIRONMENTAL CONDITIONS	
11.5	TEST RESULTS	29
12 FC	C §15.109 & IC RSS-GEN §4.10, §6 – RECEIVER RADIATED SPURIOUS EMISSIONS	32
12.1	APPLICABLE STANDARDS	32
12.1	EUT SETUP.	
12.3	Test Procedure	
12.4	CORRECTED AMPLITUDE & MARGIN CALCULATION	
12.5	TEST EQUIPMENT LIST AND DETAILS	
12.6	TEST ENVIRONMENTAL CONDITIONS	
12.7	SUMMARY OF TEST RESULTS	
12.8	Test Results	34
13 FC	C §1.1307(B)(1), §2.1091 & IC RSS-102 §4 – RF EXPOSURE INFORMATION	
13.1	APPLICABLE STANDARD	
13.2	MPE PREDICTION	
13.3	MPE Results	
14 EX	XHIBIT A - FCC ID & IC LABELING REQUIREMENTS	
14.1	FCC ID LABEL REQUIREMENTS	
14.2	IC LABEL REQUIREMENTS	
14.3	FCC ID & IC LABEL CONTENTS AND LOCATION	
15 EX	XHIBIT B - TEST SETUP PHOTOGRAPHS	
15.1	Radiated Emissions - Front View	40
15.1	RADIATED EMISSIONS - REAR VIEW (BELOW 1 GHZ)	40
15.3	RADIATED EMISSIONS - REAR VIEW (ABOVE 1 GHZ)	
15.4	RECEIVER SPURIOUS EMISSION - FRONT VIEW	41
15.5	RECEIVER SPURIOUS EMISSION - REAR VIEW (BELOW 1 GHZ)	42
15.6	RECEIVER SPURIOUS EMISSION - REAR VIEW (ABOVE 1 GHZ)	42
16 EX	XHIBIT C – EUT PHOTOGRAPHS	43
16.1	EUT – Front View	43
16.2	EUT – REAR VIEW	43
16.3	EUT COVER OFF VIEW	44
16.4	EUT RKE BOARD TOP VIEW	44
16.5	EUT RKE BOARD BOTTOM VIEW	45
16.6	EUT STN (POWER) BOARD TOP VIEW	45
16.7	EUT STN (POWER) BOARD BOTTOM VIEW	
16.8	EUT CDMA AND BLUETOOTH BOARD TOP VIEW	
16.9	EUT CDIVIA AND BLUETOUTH BUARD BUTTOM VIEW	4/ 17
10.1	ο δοι σδιμα αινιείνια γιεψ	47 48
101		

Report Number: R1207094-2224

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1207094-2224	Original Report	2012-08-24

1 General Description

Report Number: R1207094-2224

Page 4 of 48 FCC Part 22H/24E; IC RSS-132/133 Test Report

1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report was prepared on behalf of *AnyDATA Corporation*, and their product FCC ID: P4M-ACT231, IC: 4594A-ACT231, model: *ACT231* or the "EUT" as referred on this report is a vehicle tracker with Bluetooth and RKE function.

1.2 Mechanical Description of EUT

The "EUT" measures approximately 80 mm (L) x 45mm (W) x 22mm (H), and weighs approximately 66.5g.

The test data gathered are from typical production sample, serial number: 201206224815710 (6C4C727D) for radiated and 201206224815710(6C4C727E) for conducted provided by the manufacturer.

1.3 Objective

This type approval report is prepared on behalf of AnyDATA Corporation in accordance with Part 2, Subpart J, Part 22 Subpart H, and Part 24 Subpart E, of the Federal Communication Commissions rules and IC RSS 132: Cellular Telephones Employing New Technologies Operating in the Bands 824-849 MHz and 869-894 MHz; RSS 133: 2 GHz Personal Communications Services

The objective is to determine compliance with FCC/IC rules for RF output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, frequency stability, band edge, and conducted and radiated margin.

1.4 Related Submittal(s)/Grant(s)

FCC Part 15.247 and RSS-210 report No.: R1207094-247 FCC Part 15.231 and RSS-210 report No.: R1207094-231

1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

FCC Part 22 Subpart H; IC RSS 132 – Cellular Radiotelephone Service FCC Part 24 Subpart E; IC RSS 133 – Broadband PCS

Applicable Standards: TIA/EIA 603-C

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR16-4-2:2003, The Treatment of Uncertainty in EMC Measurements, the values ranging from +2.0 dB for Conducted Emissions tests and +4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test site at BACL Corp. has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997, and Article 8 of the VCCI regulations on December 25, 1997. The test site also complies with the test methods and procedures set forth in CISPR 22:2008 §10.4 for measurements below 1 GHz and §10.6 for measurements above 1 GHz as well as ANSI C63.4-2003, ANSI C63.4-2009, TIA/EIA-603 & CISPR 24:2010.

The Federal Communications Commission and Voluntary Control Council for Interference have the reports on file and they are listed under FCC registration number: 90464 and VCCI Registration No.: A-0027. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL Corp. is an American Association for Laboratory Accreditation (A2LA) accredited laboratory (Lab Code 3297-02). The current scope of accreditations can be found at

 $\frac{http://www.a2la.org/scopepdf/3297-02.pdf?CFID=1132286\&CFTOKEN=e42a3240dac3f6ba-6DE17DCB-1851-9E57-477422F667031258&jsessionid=8430d44f1f47cf2996124343c704b367816b}{\label{eq:expansion}}$

2 EUT Test Configuration

Report Number: R1207094-2224

2.1 Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The final qualification test was performed with the EUT operating at normal mode.

2.2 EUT Exercise Software

The EUT was communication with Agilent E5515C communication tester during all testing. E5515C communication test was calibrated please refer to equipment list for each section.

2.3 Equipment Modifications

No modifications were made to the EUT.

2.4 Special Equipment

No special equipment used during testing.

2.5 Local Support Equipment

Manufacturer	Description	Model No.	Serial No.
Dell	Laptop	PP11L	CN-0D4571-48643- 57F-7162

2.6 EUT Internal Configuration Details

Manufacturers	Descriptions	Models	Serial Numbers
AnyDATA Corporation	RKE Board	ACT231 TRANS V1.0	E170968
AnyDATA Corporation	STN Board	ACT231 STN V0.3	0.194V-0
AnyDATA Corporation	CDMA Board	ACT231 MAIN V0.3	5234V-0

2.7 Interface Ports and Cabling

Cable Description	Length (m)	From	То
Power Cable	<3	EUT	DC/AC
USB Cable	<3	EUT	Laptop
RF Cable	1	EUT	PSA

2.8 **Power Supply List and Details**

Manufacturer	Description	Model	Serial Number
HON-KWANG	AC/DC Adapter	HK-Q106-A12	-

3 Summary of Test Results

FCC/IC Rules	Description of Tests	Results
FCC §2.1046 §22.913(a), §24.232 IC RSS-132 §4.4 IC RSS-133 §6.4	RF Output Power	Compliant
IC RSS-132 §4.1 IC RSS-133 §6.1	Channeling Arrangements Frequency Plan	Compliance
FCC §2.1047 IC RSS-132 §4.2 IC RSS-133 §6.2	Modulation Characteristics	Compliant
FCC §2.1049 §22.917, §24.238 RSS-Gen	Occupied Bandwidth / Out of Band Emissions	Compliant
FCC §2.1053 §22.917, §24.238 IC RSS-132 §4.5 IC RSS-133 §6.5	Spurious Radiated Emissions	Compliant
FCC §2.1051 §22.917, §24.238 ICRSS-132 §4.5 IC RSS-133 §6.5	Spurious Emissions at Antenna Terminals	Compliant
FCC §22.917, §24.238 IC RSS-132 §4.5 IC RSS-133 §6.5	Band Edge	Compliant
FCC §2.1055 §22.355, §24.235 IC RSS-132 §4.3 IC RSS-133 §6.3	Frequency Stability	Compliant
FCC§2.1091 RSS-102	RF Exposure Information	Compliant
FCC §15.109 IC RSS-Gen §4.10, §6	Receiver Spurious Emission	Compliant

4 IC RSS-132 §4.1, RSS-133 §6.1 – Channeling Arrangements & Frequency Plan

4.1 Applicable Standard

According to RSS-132 §4.1, Equipment certified under this Standard may employ any channeling arrangement that which is deemed suitable by the service provider, however, such a channeling arrangement shall meet all relevant conditions specified in SRSP-503.

According to RSS-133 §6.1, the frequency plan can be found in Standard Radio System Plan 510 (SRSP-510).

4.2 Test Results

According to the test data, channeling arrangement meets all relevant conditions specified in SRSP-503.

5 FCC §2.1047 & IC RSS-132 §4.2, RSS-133 §6.2 – Modulation Characteristic

5.1 Applicable Standard

According to FCC §2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation.

According to RSS-132 §4.2, Equipment certified under this Standard shall use digital modulation; however supervisory and other control function signals may use any type of modulation technique. The type of modulation used shall be reported.

According to RSS-133 §6.2, the devices may employ any type of modulation techniques. The type of modulation used shall be reported.

5.2 Test Results

The EUT uses digital modulation.

6 FCC §2.1055, §22.355, §24.235 & IC RSS-132 §4.3, RSS-133 §6.3 – Frequency Stability

6.1 Applicable Standard

Requirements: FCC §2.1055 (a), §2.1055 (d) & following:

According to FCC §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile≤3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

Frequency Tolerance for Transmitters in the Public Mobile Services

According to FCC §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

According to RSS-132 §4.3,

The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations and ± 1.5 ppm for base stations.

According to RSS-133 §6.3, the carrier frequency shall not depart from the reference frequency in excess of \pm 2.5 ppm for mobile stations and \pm 1.0 ppm for base stations.

In lieu of meeting the above stability values, the test report may show that the frequency stability is sufficient to ensure that the emission bandwidth stays within the operating frequency block, when tested to the temperature and supply voltage variations specified in RSS-Gen.

6.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC/AC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Interval
Everfine	DC Power Supply	WY305	809024	/	/
Fluke	DMM, True-RMS	179	78490059	2012-05-20	1 year
BMI	AC Power Supply	3030A	35558	2011-08-26	1 year
Espec	Temp/Humidity Chamber	ESL-4CA	18010	2012-02-10	1 year
Agilent	Spectrum Analyzer	E4440A	MY4430335 2	2012-05-10	1 year
Agilent	Communication Tester	E5515C	GB44051221	2012-06-28	1 year

6.3 Test Equipment List and Details

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

6.4 Test Environmental Conditions

Temperature:	24 °C
Relative Humidity:	41%
ATM Pressure:	103.1kPa

The testing was performed by Wei Sun on 2012-07-24 at RF Site.

6.5 Test Results

Cellular Band, Part 22H, RSS-132

AC Main: 120V/60Hz

	Reference Frequency: 836.52 MHz, Limit: 2.5 ppm							
Test Envir	onment	Frequency M	Frequency Measure with Time Elapsed					
Temperature (°C)	Power Supplied (Vdc)	Measured Error (Hz) Frequency Error (ppm) Lin (pp						
	Frequence	cy Stability versus Temp	perature					
50	120	75	0.090	2.5				
40	120	83	0.099	2.5				
30	120	79	0.094	2.5				
20	120	75	0.090	2.5				
0	120	83	0.099	2.5				
-20	120	83	0.099	2.5				
-30	120	75	0.090	2.5				
	Freque	ency Stability versus Vo	ltage					
20	102	83	0.099	2.5				
20	138	85	0.102	2.5				

DC: 12V

	Reference Frequency: 836.52 MHz, Limit: 2.5 ppm						
Test Envir	onment	Frequency Measure with Time Elapsed					
Temperature (°C)	Power Supplied (Vdc)	Measured Error (Hz) Frequency Li Error (ppm) (pp					
	Frequence	cy Stability versus Temp	erature				
50	12	79	0.094	2.5			
40	12	60	0.072	2.5			
30	12	79	0.094	2.5			
20	12	85	0.102	2.5			
0	12	79	0.094	2.5			
-20	12	86	0.103	2.5			
-30	12	81	0.097	2.5			
	Freque	ency Stability versus Vo	ltage				
20	10.2	86	0.103	2.5			
20	13.8	85	0.102	2.5			

Report Number: R1207094-2224

PCS Band, Part 24E, RSS-133

	Reference Frequency: 1880 MHz						
Test Envir	onment	Frequency M	easure with Time E	apsed			
Temperature (°C)	Power Supplied (Vdc)	Measured Error (Hz)	Result				
	Frequence	cy Stability versus Temp	erature				
50	120	137	0.073	Compliance			
40	120	129	0.069	Compliance			
30	120	139	0.074	Compliance			
20	120	201	0.107	Compliance			
0	120	137	0.073	Compliance			
-20	120	139	0.074	Compliance			
-30	120	127	0.068	Compliance			
	Freque	ency Stability versus Vo	ltage				
20	102	129	0.069	Compliance			
20	138	127	0.068	Compliance			

AC Main: 120V/60Hz

DC: 12V

	Reference Frequency: 1880 MHz							
Test Envir	onment	Frequency M	easure with Time E	lapsed				
Temperature (°C)	Power Supplied (Vdc)	Measured Error (Hz) Frequency Error (ppm)		Result				
	Frequence	cy Stability versus Temp	erature					
50	12	139	0.074	Compliance				
40	12	138	0.073	Compliance				
30	12	130	0.069	Compliance				
20	12	129	0.069	Compliance				
0	12	138	0.073	Compliance				
-20	12	137	0.073	Compliance				
-30	12	129	0.069	Compliance				
	Freque	ency Stability versus Vo	ltage					
20	10.2	131	0.070	Compliance				
20	13.8	137	0.073	Compliance				

7 FCC §2.1046, §22.913(a), §24.232 & IC RSS-132 §4.4, RSS-133 §6.4 – RF Output Power

7.1 Applicable Standard

According to FCC §22.913 (a), the maximum effective radiated power (ERP) of base transmitters and cellular repeaters must not exceed 500 Watts.

According to FCC §24.232, Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

According to RSS-132 §4.4, the transmitter output power shall not exceed the limits given in SRSP-503 §5.1.3, the maximum ERP shall be 6.3 watts for mobile stations.

According to RSS-133 §6.4, the average equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits given in SRSP-510. Moreover, base station transmitters operating in the band 1930-1995 MHz shall not have output power exceeding 100 watts.

7.2 Test Procedure

Conducted:

The RF output of the transmitter was connected to the signal generator and the spectrum analyzer through sufficient attenuation.

Radiated method:

TIA 603-C section 2.2.17

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Interval
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	-
Sunol Science Corp	Combination Antenna	JB3	A020106-2	2011-08-10	1 year
Hewlett Packard	Pre-amplifier	8447D	2944A10187	2012-03-08	1 year
A.H. Systems	Horn antenna	SAS- 200/571	261	2012-01-18	1 year
Mini-Circuits	Pre-amplifier	ZVA-183-S	667400960	2012-05-08	1 year
HP	Signal Generator	8648C	3426A00417	2011-08-18	1 year
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10	1 year
Agilent	Communication Tester	E5515C	GB44051221	2012-06-28	1 year

7.3 Test Equipment List and Details

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

7.4 Test Environmental Conditions

Temperature:	23 °C
Relative Humidity:	40%
ATM Pressure:	101.29kPa

The testing was performed by Wei Sun on 2012-08-02 at 5 meter chamber #2.

7.5 Test Results

Conducted:

Mode	FED	REV	Low CH (824.7 MHz)	Middle CH (836.52 MHz)	High CH (848.31MHz)	Limit (dBm)
	RC1	RC1 (S02)	24.06	23.91	24.07	38.45
	RC1	RC1 (S055)	24.03	23.87	24.08	38.45
	RC2	RC2 (S09)	24.05	23.91	24.03	38.45
	RC2	RC2 (S055)	24.08	23.88	24.07	38.45
CDMA2000	RC3	RC3 (S02)	24.08	23.90	24.12	38.45
1xRTT	RC3	RC3 (S055)	24.08	23.91	24.14	38.45
	RC4	RC3 (S02)	24.03	23.92	24.14	38.45
	RC4	RC3 (S055)	24.01	23.91	24.10	38.45
	RC5	RC4 (S09)	23.99	23.90	24.09	38.45
	RC5	RC4 (S055)	24.07	23.75	24.06	38.45

Cellular Band, Part 22H/RSS-132

PCS Band, Part 24E/RSS-133

Mode	FED	REV	Low CH (1851.25 MHz)	Middle CH (1880.0 MHz)	High CH (1908.75 MHz)	Limit (dBm)
	RC1	RC1 (S02)	24.71	24.75	24.13	33
	RC1	RC1 (S055)	24.75	24.83	23.99	33
	RC2	RC2 (S09)	24.70	24.79	24.10	33
	RC2	RC2 (S055)	24.69	24.91	24.21	33
CDMA2000	RC3	RC3 (S02)	24.75	24.87	24.24	33
1xRTT	RC3	RC3 (8055)	24.76	24.97	24.24	33
	RC4	RC3 (S02)	24.71	24.92	24.13	33
	RC4	RC3 (S055)	24.75	24.91	24.24	33
	RC5	RC4 (S09)	24.68	24.76	24.15	33
	RC5	RC4 (S055)	24.70	24.91	24.17	33

ERP/EIRP:

Indica	ated	Turntable	Test A	Intenna		S	ubstituted				
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Cord. (dB)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
824.7	88.65	275	115	V	824.7	25.44	0	1.29	24.15	38.45	-14.3
824.7	87.23	211	155	Н	824.7	24.33	0	1.29	23.04	38.45	-15.41
836.52	93.21	280	175	V	836.52	25.46	0	1.29	24.17	38.45	-10.28
836.52	93.29	264	166	Н	836.52	24.41	0	1.29	23.12	38.45	-15.33
848.31	88.96	283	132	V	848.31	23.34	0	1.29	22.05	38.45	-16.4
848.31	90.78	284	160	Н	848.31	25.71	0	1.29	24.42	38.45	-11.03

Cellular Band, Part 22H/RSS-132: RC3 (S055)

PCS Band, Part 24E/RSS-133: RC3 (S055)

Indica	ated	Turntable	Test A	Antenna		S	ubstituted	l			
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polarity (H/V)	Frequency (MHz)	Level (dBm)	Ant. Cord. (dB)	Cable Loss (dB)	Absolute Level (dBm)	(dBm)	Margin (dB)
1851.25	88.88	123	117	V	1851.25	15.99	8.74	2.37	22.36	33	-10.64
1851.25	91.57	283	155	Н	1851.25	18.78	8.74	2.37	25.15	33	-7.85
1880	91.08	232	157	V	1880	18.96	8.74	2.37	25.33	33	-7.67
1880	90.27	206	134	Н	1880	17.99	8.74	2.37	24.36	33	-8.64
1908.75	88.38	133	142	V	1908.75	16.59	8.74	2.37	22.96	33	-10.04
1908.75	90.75	134	190	Н	1908.75	18.94	8.74	2.37	25.31	33	-7.69

8 FCC §2.1053, §22.917, §24.238 & IC RSS-132 §4.5, RSS-133 §6.5 - Spurious Radiated Emissions

8.1 Applicable Standard

Requirements:

FCC §2.1053, §22.917 and §24.238

RSS-132 §4.5, RSS-133 §6.5

8.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \log (TX \text{ Power in Watts}/0.001) - \text{the absolute level}$ Spurious attenuation limit in dB = 43 + 10 Log10 (power out in Watts)

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Interval
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	-
Sunol Science Corp	Combination Antenna	JB3	A020106-2	2011-08-10	1 year
Hewlett Packard	Pre-amplifier	8447D	2944A10187	2012-03-08	1 year
A.H. Systems	Horn antenna	SAS- 200/571	261	2012-01-18	1 year
Mini-Circuits	Pre-amplifier	ZVA-183-S	667400960	2012-05-08	1 year
HP	Signal Generator	8648C	3426A00417	2011-08-18	1 year
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10	1 year
Agilent	Communication Tester	E5515C	GB44051221	2012-06-28	1 year

8.3 Test Equipment List and Details

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

Report Number: R1207094-2224

8.4 Test Environmental Conditions

Temperature:	23 °C
Relative Humidity:	40%
ATM Pressure:	101.29kPa

The testing was performed by Wei Sun on 2012-08-02 at 5 meter chamber #2.

8.5 Test Results

Cellular Band, Part 22H/RSS-132: RC3 (S055)

Indic	ated	Turntable Test Antenna		Substituted				Absolute	FC	C/IC	
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
3702.5	29.26	0	100	V	3702.5	-45.81	10.14	3.92	-39.59	-13	-26.59
3702.5	29.65	0	100	Н	3702.5	-44.58	10.14	3.92	-38.36	-13	-25.36
5553.75	27.54	0	100	V	5553.75	-47.56	11.01	5.63	-42.18	-13	-29.18
5553.75	27.59	0	100	Н	5553.75	-46.63	11.01	5.63	-41.25	-13	-28.25
7405	27.49	0	100	V	7405	-47.7	11.54	6.54	-42.7	-13	-29.7
7405	27.2	0	100	Н	7405	-47.43	11.54	6.54	-42.43	-13	-29.43

30 MHz -10 GHz Radiated Emission at 3-meter (Middle Channel, 836.52 MHz)

PCS Band, Part 24E/RSS-133: RC3 (S055)

30 MHz -20 GHz Radiated Emission at 3-meter (Middle Channel, 1880 MHz)

Indic	Indicated Turntable		Test A	ntenna	Substituted		Absolute	FCC/IC			
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (cm)	Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
3760	42.13	54	155	V	3760	-33.02	9.96	4	-27.06	-13	-14.06
3760	44.69	122	155	Н	3760	-29.42	9.96	4	-23.46	-13	-10.46
5640	27.5	0	100	V	5640	-47.57	11.33	5.63	-41.87	-13	-28.87
5640	27.6	0	100	Н	5640	-46.62	11.33	5.63	-40.92	-13	-27.92
7520	27.09	0	100	V	7520	-48.1	11.68	6.54	-42.96	-13	-29.96
7520	27.11	0	100	Н	7520	-47.52	11.68	6.54	-42.38	-13	-29.38

9 FCC §2.1053, §22.917, §24.238 & IC RSS-132 §4.5, RSS-133 §6.5 - Spurious Emissions at Antenna Terminals

9.1 Applicable Standard

Requirements:

FCC §2.1053, §22.917 and §24.238

RSS-132 §4.5, RSS-133 §6.5

9.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

9.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10	1 year
Agilent Communication Tester		E5515C	GB44051221	2012-06-28	1 year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	24 °C		
Relative Humidity:	41%		
ATM Pressure:	103.1kPa		

The testing was performed by Wei Sun on 2012-07-24 at RF Site.

9.5 Test Results

Please refer to the following plots.

30 MHz – 1 GHz

Atten 10 dB

🔆 Agilent

Ref 10 dBm #Peak

AnyDATA Corporation

Plots of Spurious Emissions for Part 22H/RSS-132: RC3 (S055)

🔆 Agilent

Ref 10 dBm #Peak

Log 10 dB/ Offst 13.8 dB

DI -13.0 dBm

αĤv

AP

1.000 GHz

Copyright 2000–2010 Agilent Technologies

Res BW 1 MHz

M1 S3

£(f):

Tun

wn

Start

Atten 10 dB

30 MHz – 1 GHz

∗VBW 1 MHz

Low Channel

R T Peak Search

Next Peak

5.4 MHz

-27.04 dBm

1 GHz - 10 GHz

R T Peak Search

Next Peak

Next Pk Right

Next Pk Left

Min Search

Mkr→CF

More 1 of 2

Pk-Pk Search

7.120 GH

-<u>52.12</u> dBm

Stop 10.000 GHz p 15 ms (601 pts)

Swe

Mkr1

1 GHz - 10 GHz

🔆 Agilent Peak Search RL Mkr1 848.0 MH: -24.93 dBm Ref 10 dBm Atten 10 dB Next Peak Log 10 dB/ Next Pk Right Offst 13.8 dB 10 Next Pk Left DI -13. dBm 3.0 Min Search .gAv M1 S3 Pk-Pk Search AP **£**(f): Tun Mkr → CF wp More 1 of 2 Hart 30.0 MHz Res BW 100 kHz Stop 1.000 0 GHz Sweep 92.72 ms (601 pts) #VBW 300 kHz Copyright 2000-2010 Agilent Tech

30 MHz – 1 GHz

High Channel

1 GHz – 10 GHz

Plots of Spurious Emissions for Part 24E/RSS-133: RC3 (S055)

Low Channel

30 MHz – 1 GHz

Middle Channel

1 GHz - 20 GHz

High Channel

1 GHz - 20 GHz

10 FCC §2.1053, §22.917, §24.238 & IC RSS-132 §4.5, RSS-133 §6.5 – Band Edge

10.1 Applicable Standard

According to FCC 22.917, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to FCC \$24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to RSS-132 §4.5, RSS-133 §6.5

10.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

10.3 Test Equipment List and Details

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10	1 year
Agilent	Communication Tester	E5515C	GB44051221	2012-06-28	1 year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	24 °C		
Relative Humidity:	41%		
ATM Pressure:	103.1kPa		

The testing was performed by Wei Sun on 2012-07-24 at RF Site.

10.5 Test Results

Please refer to the following plots.

Plots of Spurious Emissions for Part 22H/RSS-132: RC3 (S055)

Lowest Channel

Highest Channel

Plots of Spurious Emissions for Part 24E/RSS-133: RC3 (S055)

Highest Channel

11 FCC §2.1049, §22.917, §24.238 & IC RSS-Gen §4.6.1 – Occupied Bandwidth

11.1 Applicable Standard

Requirements: FCC §2.1049, §22.917 and §24.238.

According to RSS-Gen §4.6.1

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% bandwidth, as calculated or measured.

11.2 Test Procedure

Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.

Measure the frequency difference of two frequencies that indicated 99% Bandwidth.

Repeat above procedures until all frequencies measured were complete.

11.3 Test Equipment List and Details

Manufacturer	er Description Model Serial Numbe		Serial Number	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10	1 year
Agilent	Communication Tester	E5515C	GB44051221	2012-06-28	1 year

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the A2LA requirements, traceable to the NIST.

11.4 Test Environmental Conditions

Temperature:	24 °C	
Relative Humidity:	41%	
ATM Pressure:	103.1kPa	

The testing was performed by Wei Sun on 2012-07-24 at RF Site.

11.5 Test Results

Channel	Frequency (MHz)	26 dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)		
CDMA 1xRTT					
Low	824.7	1.435	1.2781		
Middle	836.52	1.441	1.2785		
High	848.31	1.440	1.2786		

Cellular Band, Part 22H/RSS-132

PCS Band, Part 24E/RSS-133

Channel	Frequency (MHz)	26 dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)		
CDMA 1xRTT					
Low	1851.25	1.445	1.2828		
Middle	1880.00	1.431	1.2773		
High	1908.75	1.458	1.2862		

Please refer to the following plots.

Report Number: R1207094-2224

🐇 Agilent

Ref 30 dBm #Avg

.09 10

dB/

)ffsi

Occupied Bandwidth

Center 824.700 MHz #Res BW 30 kHz

Occupied Bandwidth

Transmit Freq Error x dB Bandwidth

Plots of Occupied Bandwidth for Part 22H/RSS-132: RC3 (8055)

Agilent

R T Freq/Channel

<u>Auto</u>

Trig Fre

Snan 3 MHz

99.00 %

-26.00 dB

#Sweep 1 s (601 pts)

Occ BW % Pwr × dB

Low Channel

₩VBW 100 kHz

Ch Freq 824.7 MHz

Atten 30 dB

1.2781 MHz

Copyright 2000–2010 Agilent Technologies

2.547 kHz 1.435 MHz*

Center Freq 824.700000 MHz Center Freq 836.520000 MHz Ch Freq 836.52 MHz Trig Fre Occupied Bandwidth Start Freq 823.200000 MHz Start Freq 835.020000 MHz Ref 30 dBm #Avg Atten 30 dB Stop Freq 826.200000 MHz Stop Freq 838.020000 MHz og **CF Step** 300.000000 kHz Aut<u>o</u>Man CF Step 300.000000 kHz <u>Auto</u> Man)ffs[.] <u>Auto</u> FreqOffset 0.00000000 Hz FreqOffset 0.00000000 Hz Center 836.520 MHz #Res BW 30 kHz Snan 3 MH: ∗VBW 100 kHz *Sweep 1 s (601 pts) Signal Track Signal Track Occupied Bandwidth Occ BW % Pwr 99.00% Off Off **x dB** -26.00 dB 1.2785 MHz Transmit Freq Error 629.279 Hz x dB Bandwidth 1.441 MHz* Copyright 2000–2010 Agilent Technologies

Freq/Channel

RT

Report Number: R1207094-2224

AnyDATA Corporation

Plots of Occupied Bandwidth for Part 24E/RSS-133: RC3 (8055)

Low Channel

Middle Channel

FCC ID: P4M-ACT231, IC: 4594A-ACT231

12 FCC §15.109 & IC RSS-Gen §4.10, §6 – Receiver Radiated Spurious Emissions

12.1 Applicable Standards

FCC §15.109 and IC RSS-Gen §4.10, §6

12.2 EUT Setup

The radiated emissions tests were performed in the 3 meter chamber, using the setup in accordance with ANSI C63.4-2009.

12.3 Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations.

All data were recorded in the peak detection mode. Quasi-peak readings was performed only when an emissions was found to be marginal (within -4 dB of specification limits), and are distinguished with a "**QP**" in the data table.

12.4 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corrected Amplitude = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Spectrum Analyzer	E4440A	MY44303352	2012-05-10	1 year
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	-
Sunol Science Corp	Combination Antenna	JB3	A020106-2	2011-08-10	1 year
Hewlett Packard	Pre-amplifier	8447D	2944A10187	2012-03-08	1 year
A.H. Systems	Horn antenna	SAS-200/571	261	2012-01-18	1 year
Mini-Circuits	Pre-amplifier	ZVA-183-S	667400960	2012-05-08	1 year
HP	Signal Generator	8648C	3426A00417	2011-08-18	1 year
Wisewave	Horn antenna	ARH-4223-02	10555-02	2010-06-14 1	3 years

12.5 Test Equipment List and Details

Statement of Traceability: BACL attests that all calibrations have been performed per the A2LA requirements, traceable to NIST.

12.6 Test Environmental Conditions

Temperature:	24 °C
Relative Humidity:	49%
ATM Pressure:	101.9kPa

The testing was performed by Wei Sun on 2012-07-23 at 5 meter chamber #2.

12.7 Summary of Test Results

According to the test data, the EUT <u>complied with the FCC Part 15.109 and IC RSS-Gen</u>, with the closest margins from the limit listed below:

Mode: Receiving			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Range (MHz)
-2.10	249.9968	Vertical	30-12750

Please refer to the following table and plots for specific test result details

12.8 Test Results

1) 30 MHz -1 GHz, measured at 3 meters

Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Detector
249.9968	43.9	100	V	172	46	-2.10	QP
186.285	35.31	110	V	119	43.5	-8.19	QP
113.5448	31.08	105	V	93	43.5	-12.42	QP
66.94875	25.54	195	V	90	40	-14.46	QP
41.00825	23.43	170	V	88	40	-16.57	QP
33.3615	19.05	135	V	194	40	-20.95	QP

2) 1 – 25 GHz, measured at 3 meters

Frequency (MHz)	Corrected Amplitude (dB)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Detector
11350.92	41.59	155	V	33	54	-12.41	Ave.
2497.446	36.56	100	V	352	54	-17.44	Ave.
2926.212	30.23	100	V	52	54	-23.77	Ave.
1865.138	29.58	119	V	360	54	-24.42	Ave.
2389.46	28.58	108	V	360	54	-25.42	Ave.
1597.073	25.5	142	V	304	54	-28.50	Ave.

13 FCC §1.1307(b)(1), §2.1091 & IC RSS-102 §4 – RF Exposure Information

13.1 Applicable Standard

According to FCC §15.247(i), §1.1307(b)(1) and IC RSS-102, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
	Limits for Ge	neral Population/Uncor	ntrolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

13.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

 $\mathbf{R} = \mathbf{distance}$ to the center of radiation of the antenna

13.3 MPE Results

Cellular Band

<u>24.14</u>	Maximum peak output power at antenna input terminal (dBm):
<u>259.42</u>	Maximum peak output power at antenna input terminal (mW):
<u>20</u>	Prediction distance (cm):
848.31	Prediction frequency (MHz):
<u>-3.0</u>	Maximum Antenna Gain, typical (dBi):
<u>0.5</u>	Maximum Antenna Gain (numeric):
0.0258	Power density of prediction frequency at 20 cm (mW/cm ²):
0.5655	MPE limit for uncontrolled exposure at prediction frequency (mW/cm ²):
0.258	Power density of prediction frequency at 20 cm (W/m^2):
<u>5.655</u>	MPE limit for uncontrolled exposure at prediction frequency (W/m ²):

PCS Band

24.97	Maximum peak output power at antenna input terminal (dBm):
<u>314.05</u>	Maximum peak output power at antenna input terminal (mW):
<u>20</u>	Prediction distance (cm):
1880	Prediction frequency (MHz):
-3.0	Maximum Antenna Gain, typical (dBi):
<u>0.5</u>	Maximum Antenna Gain (numeric):
0.0312	Power density of prediction frequency at 20 cm (mW/cm ²):
<u>1.0</u>	<u>MPE limit for uncontrolled exposure at prediction frequency (mW/cm²):</u>
0.312	Power density of prediction frequency at 20 cm (W/m ²):
<u>10.0</u>	MPE limit for uncontrolled exposure at prediction frequency (W/m ²):

The device is compliant with the requirement MPE limit for uncontrolled exposure.