

FCC PART 22H, 24E TEST AND MEASUREMENT REPORT

For

AnyDATA Corporation

5 Oldfield, Irvine, CA 92618, USA

FCC ID: P4M- ACT200D

Report Type: Product Type:

Original Report

CDMA Vehicle Tracker

Test Engineer: Arthur Tie

Report Number: R1110171-2224

Report Date: 2011-11-08

Victor Zhang

Reviewed By: EMC & RF Lead

Prepared By: Bay Area Compliance Laboratories Corp.

(SP) 1274 Anvilwood Avenue,

Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	GE	NERAL INFORMATION	5
2	1.1 1.2 1.3 1.4 1.5 1.6 1.7 SYS 2.1 2.2 2.3	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT). MECHANICAL DESCRIPTION	
	2.4 2.5 2.6 2.7 2.8	EQUIPMENT MODIFICATIONS REMOTE SUPPORT EQUIPMENT INTERNAL CONFIGURATION POWER SUPPLY AND LINE FILTERS INTERFACE PORTS AND CABLING	7 7 7
3	SUN	MMARY OF TEST RESULTS	8
4	FCC	C §2.1046, §22.913(A) & §24.232 – RF OUTPUT POWER	9
	4.1 4.2 4.3 4.4 4.5 4.6	APPLICABLE STANDARD TEST PROCEDURE TEST SETUP BLOCK DIAGRAM TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	9 10 10
5	FCC	C §2.1047 - MODULATION CHARACTERISTIC	13
	5.1	APPLICABLE STANDARD	13
6	6.1 6.2 6.3 6.4 6.5	C §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH APPLICABLE STANDARD TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS & PLOTS	14 14 14
7	FCC	C §2.1051, §22.917 & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
	7.1 7.2 7.3 7.4 7.5	APPLICABLE STANDARD TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS & PLOTS	19 19 19
8	FCC	C §2.1053 - RADIATED SPURIOUS EMISSIONS	
	8.1 8.2 8.3 8.4 8.5	APPLICABLE STANDARD TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS TEST ENVIRONMENTAL CONDITIONS TEST RESULTS	26 26 27

9 FC	CC §22.917 & §24.238 – BAND EDGE	28
9.1	APPLICABLE STANDARD	28
9.2	TEST PROCEDURE	
9.3	TEST EQUIPMENT LIST AND DETAILS	
9.4	TEST ENVIRONMENTAL CONDITIONS	
9.5	TEST RESULTS & PLOTS	28
10 FC	CC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY	31
10.1	APPLICABLE STANDARD	31
10.2	TEST PROCEDURE	
10.3	TEST EQUIPMENT LIST AND DETAILS	
10.4	TEST ENVIRONMENTAL CONDITIONS	
10.5	TEST RESULTS	32
11 FC	CC §1.1307(B)(1) & §2.1091 - RF EXPOSURE INFORMATION	34
11.1	APPLICABLE STANDARD	34
11.2	MPE Prediction	34
12 EX	KHIBIT A - FCC ID LABELING REQUIREMENTS	36
12.1	FCC LABELING REQUIREMENTS	36
12.2	FCC ID LABEL CONTENTS	36
12.3	FCC ID LABEL LOCATION ON EUT	37
13 EX	KHIBIT B - TEST SETUP PHOTOGRAPHS	38
13.1	RADIATED EMISSIONS BELOW 1 GHz - FRONT VIEW	38
13.2	RADIATED EMISSIONS BELOW 1 GHz - REAR VIEW	38
13.3	RADIATED EMISSIONS ABOVE 1 GHz - Front View	39
13.4	RADIATED EMISSIONS ABOVE 1 GHz - REAR VIEW	39
14 EX	KHIBIT C - EUT PHOTOGRAPHS	40
14.1	EUT- FRONT SIDE VIEW	40
14.2	EUT- BACK SIDE VIEW	40
14.3	EUT – Port View 1	41
14.4	EUT – Port View 2	
14.5	EUT-Uncovered View	
14.6	EUT INTERNAL – BOARD ASSEMBLY TOP VIEW	
14.7	EUT Internal – Board Assembly Bottom View	
14.8	EUT INTERNAL – WITH OBD-II POWER CABLE	43

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1110171-2224	Original Report	2011-11-08

1 GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

This test and measurement report has been compiled on behalf of the company *AnyDATA Corporation* and their product, FCC ID: P4M-ACT200D, model: ACT200-D, which will henceforth in this report be referred to as the EUT. The EUT is a CDMA vehicle tracker operates in Cellular and PCS bands.

Description	Specification
Frequency Band	Cellular Band: 824-849 MHz (TX) 869-894 MHz (RX) PCS Band: 1850-1910 MHz (TX) 1930-1990 MHz (RX)
CDMA Protocol	CDMA 1XRTT

1.2 Mechanical Description

The EUT measures approximately 75.24mm (L) x 44.60mm (W) x 21.4mm (H), and weighs approximately 50 g.

The test data gathered are from typical production sample, serial number: E315850 provided by the manufacturer.

1.3 Objective

This type approval report is prepared on behalf of *AnyDATA Corporation* in accordance with Part 2, Subpart J, Part 22 Subpart H, and Part 24 Subpart E of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for RF output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, frequency stability, band edge, and conducted and radiated margin.

This measurement and test report only pertains to the CDMA 1xRTT 850/1900 MHz portion of the EUT.

1.4 Related Submittal(s)/Grant(s)

N/A

1.5 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H – Cellular Radiotelephone Service Part 24 Subpart E – PCS

Applicable Standards: TIA/EIA-603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

Detailed instrumentation measurement uncertainties can be found in BACL Corp. report QAP-018.

1.7 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing according to TIA/EIA 603-C.

The final qualification test was performed with the EUT operating at normal mode.

2.2 EUT Exercise Software

Agilent 8960 (HP E5155C) Wireless Communication test set was used to activate the EUT with CDMA 1X.

2.3 Special Accessories

N/A

2.4 Equipment Modifications

No modifications were made to the EUT

2.5 Remote Support Equipment

N/A

2.6 Internal Configuration

Manufacturer	Description	Model	Serial Number
AnyDATA	PCB	ACT200-D V1.0	-

2.7 Power Supply and Line Filters

Manufacturer	Description	Model	Serial Number
OBDII	OBDII cable	E164571	-

2.8 Interface Ports and Cabling

N/A

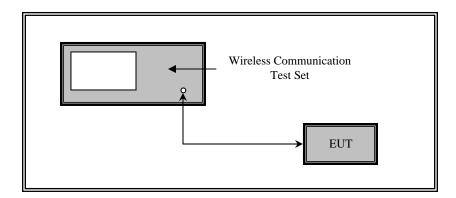
3 SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
\$2.1046 \$22.913; \$24.232	RF Output Power	Compliance
§2.1047	Modulation Characteristics	N/A ¹
\$2.1049 \$22.917; \$24.238	Out of Band Emissions, Occupied Bandwidth	Compliance
§2.1051, §22.917; §24.238 (a)	Spurious Emissions at Antenna Terminals	Compliance
\$2.1053 \$22.917 (a); \$24.238 (a)	Field Strength of Spurious Radiation	Compliance
§22.917; §24.238	Band Edge	Compliance
§2.1055 (a); §2.1055 (d) §22.355; §24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance
§2.1091	RF Exposure Information	Compliance

Note: ¹ According to FCC §2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

4 FCC §2.1046, §22.913(a) & §24.232 – RF OUTPUT POWER

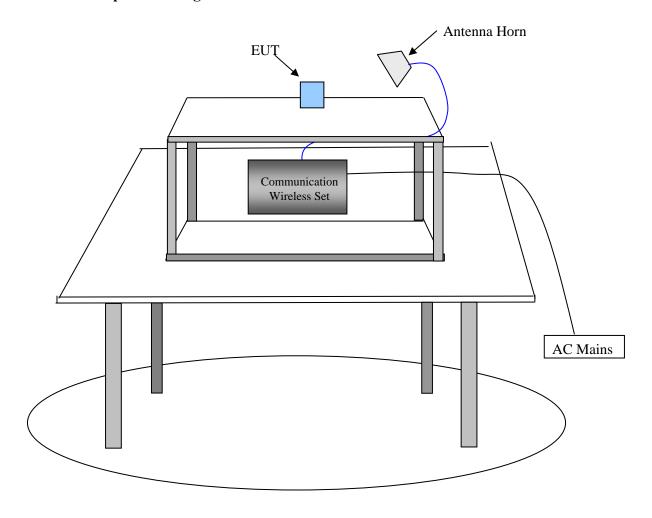
4.1 Applicable Standard


According to FCC $\S 2.1046$ and $\S 22.913$ (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (a), in no case may the peak output power of a base station transmitter exceed 2 watts.

4.2 Test Procedure

Conducted:


The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

Radiated (ERP and EIRP):

TIA-603-C §2.2.17

4.3 Test Setup Block Diagram

4.4 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-05-10
Agilent	Analyzer, Communications	E5155C	GB44051221	2011-06-11
Sunol Sciences	Sunol Sciences Antenna A.R.A Horn Antenna		A020106-1	2011-05-11
A.R.A			1132	2010-11-29
A. H. Systems	Antenna, Horn	3115	9511-4627	2011-08-09
Mini Circuits	Pre-Amplifier	ZVA-183-S	570400946	2011-05-09
НР	Pre-Amplifier	8447D	2944A06639	2011-06-18

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

4.5 Test Environmental Conditions

Temperature:	20 °C ~ 23 °C
Relative Humidity:	40 % ~ 45 %
ATM Pressure:	101.1kPa ~ 101.2kPa

Testing was performed by Arthur Tie on 2011-10-24 in 5 meter chamber 3.

4.6 Test Results

Conducted Power:

Cellular Band Part 22H:

Mode	FED	REV	Low CH (824.7 MHz)	Middle CH (836.52 MHz)	High CH (848.31MHz)	Part 22H Limit (dBm)
	RC1	RC1 (S02)	24.98	24.71	24.50	38.45
	RC1	RC1 (S055)	24.95	24.71	24.47	38.45
	RC2	RC2 (S09)	24.97	24.67	24.49	38.45
	RC2	RC2 (S055)	24.98	24.71	24.45	38.45
CDMA2000	RC3	RC3 (S02)	24.98	24.63	24.43	38.45
1xRTT	RC3	RC3 (S055)	25.00	24.72	24.52	38.45
	RC4	RC3 (S02)	24.98	24.65	24.44	38.45
	RC4	RC3 (S055)	24.98	24.64	24.45	38.45
	RC5	RC4 (S09)	24.98	24.64	24.45	38.45
	RC5	RC4 (S055)	24.95	24.65	24.45	38.45

PCS Band Part 24E:

Mode	FED	REV	Low CH (1851.25 MHz)	Middle CH (1880.0 MHz)	High CH (1908.75 MHz)	Part 24E Limit (dBm)
	RC1	RC1 (S02)	24.58	24.91	23.01	33
	RC1	RC1 (S055)	24.57	24.89	23.00	33
	RC2	RC2 (S09)	24.56	25.00	23.00	33
	RC2	RC2 (S055)	24.55	24.83	22.99	33
CDMA2000	RC3	RC3 (S02)	24.58	24.95	22.98	33
1xRTT	RC3	RC3 (S055)	24.61	25.01	23.02	33
	RC4	RC3 (S02)	24.57	24.78	22.94	33
	RC4	RC3 (S055)	24.56	24.78	22.92	33
	RC5	RC4 (S09)	24.55	24.76	22.91	33
	RC5	RC4 (S055)	24.56	24.76	22.91	33

Note: Part 22H Limit = 7 Watts = 38.45 dBm, Part 24E Limit = 2 Watts = 33 dBm

Radiated Power (ERP and EIRP):

ERP: Cellular Band Part 22H

Indica	Indicated		Test Antenna		Substituted				Absolute		t 22H
Freq. (MHz)	Amp. (dBuV)	Azimuth	Height	Polar (H/V)	Freq. (MHz)	Level (dBm)	Antenna Gain (dBd)	Cable Loss (dB)	Level (dBm)		Margin (dB)
824.7	115.71	146	100	V	824.7	20.85	0	0.5	20.35	38.45	-18.10
824.7	120.27	185	115	Н	824.7	23	0	0.5	22.50	38.45	-15.95
836.52	112.54	350	105	V	836.52	17.68	0	0.5	17.18	38.45	-21.27
836.52	121.53	190	118	Н	836.52	24.53	0	0.5	24.03	38.45	-14.42
848.31	111.29	70	150	V	848.31	16.43	0	0.5	15.93	38.45	-22.52
848.31	121.17	185	115	Н	848.31	24.17	0	0.5	23.67	38.45	-14.78

EIRP: PCS Band Part 24E

Indica	ited	Turntable	Test Antenna Substituted		Absolute		t 24E				
Freq. (MHz)	Amp. (dBuV)	Azimuth	Height	Polar (H/V)	Freq. (MHz)	Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level		Margin (dB)
1851.25	89.68	198	230	V	1851.25	-7.62	9.5	1.0	23.21	33	-9.79
1851.25	95.25	275	135	Н	1851.25	-3.12	9.5	1.0	23.11	33	-9.89
1880	88.89	225	220	V	1880	-8.41	8.23	1.0	23.73	33	-9.27
1880	95.44	275	150	Н	1880	-2.93	8.23	1.0	22.55	33	-10.45
1908.75	86.21	195	250	V	1908.75	-11.09	9.0	1.0	23.45	33	-9.55
1908.75	91.08	110	150	Н	1908.75	-7.29	9.0	1.0	22.01	33	-10.99

5 FCC §2.1047 - MODULATION CHARACTERISTIC

5.1 Applicable Standard

According to FCC 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

6 FCC §2.1049, §22.917, §22.905 & §24.238 - OCCUPIED BANDWIDTH

6.1 Applicable Standard

Requirements: FCC §2.1049, §22.901, §22.917 and §24.238.

6.2 Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 3 kHz (Cellular /PCS) and the -26 dB bandwidth was recorded.

6.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-05-10	
Agilent	Analyzer, Communications	E5155C	GB44051221	2011-06-11	

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.4 Test Environmental Conditions

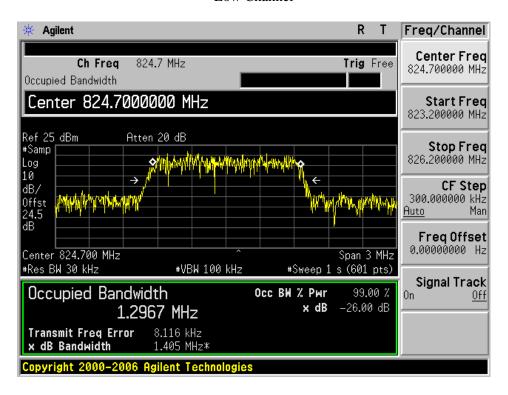
Temperature:	20 °C ~ 23 °C
Relative Humidity:	40 % ~ 45 %
ATM Pressure:	101.1kPa ~ 101.2kPa

Testing was performed by Arthur Tie on 2011-10-24 in RF Site.

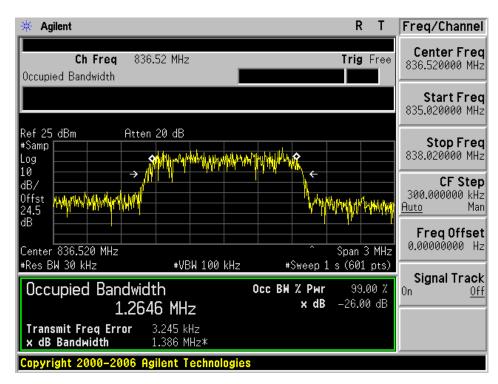
6.5 Test Results & Plots

Please refer to the following tables and plots.

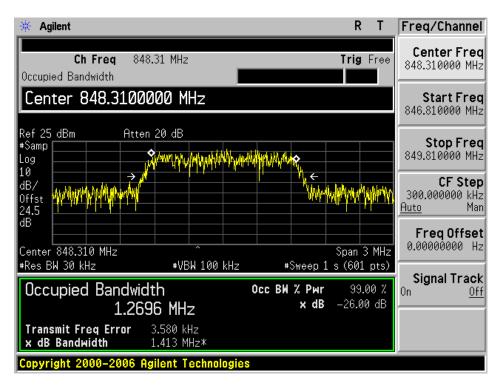
Cellular Band Part 22H


Channel	Frequency (MHz)	26 dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)				
CDMA 1xRTT							
Low	824.7	1.41	1.30				
Middle	836.52	1.39	1.26				
High	848.31	1.41	1.27				

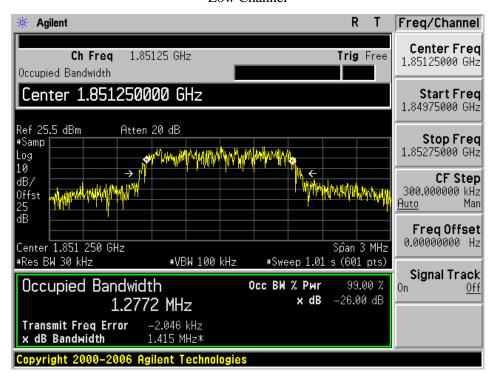
PCS Band Part 24E


Channel	Frequency (MHz)	26 dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)				
CDMA 1xRTT							
Low	1851.25	1.42	1.28				
Middle	1880.00	1.43	1.29				
High	1908.75	1.40	1.28				

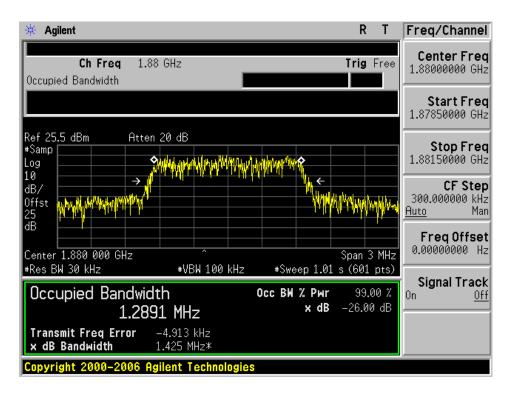
Plots of Occupied Bandwidth for Part 22H


Low Channel

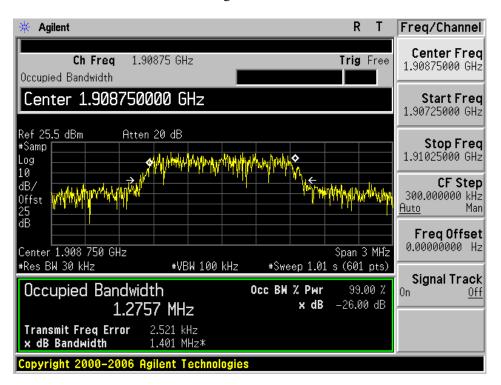
Middle Channel



High Channel



Plots of Occupied Bandwidth for Part 24E


Low Channel

Middle Channel

High Channel

7 FCC §2.1051, §22.917 & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

7.1 Applicable Standard

Requirements: FCC §2.1051. §22.917 & §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in §2.1057.

7.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

7.3 Test Equipment List and Details

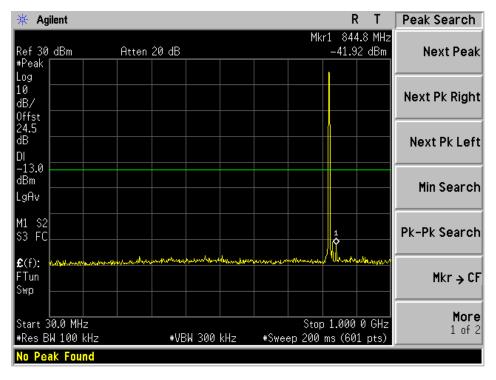
Manufacturer	Description	Description Model		Description Model Serial Number		Calibration Date
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-05-10		
Agilent	Analyzer, Communications	E5155C	GB44051221	2011-06-11		

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

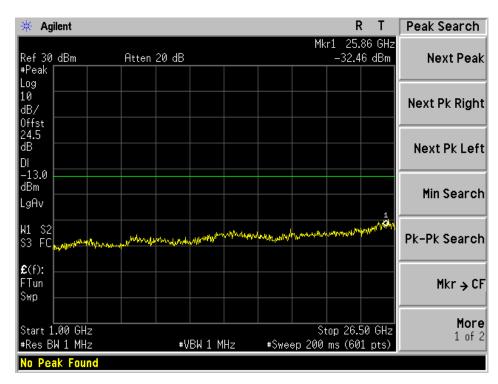
7.4 Test Environmental Conditions

Temperature:	20 °C ~ 23 °C
Relative Humidity:	40 % ~ 45 %
ATM Pressure:	101.1kPa ~ 101.2kPa

Testing was performed by Arthur Tie on 2011-10-25 in RF Site.

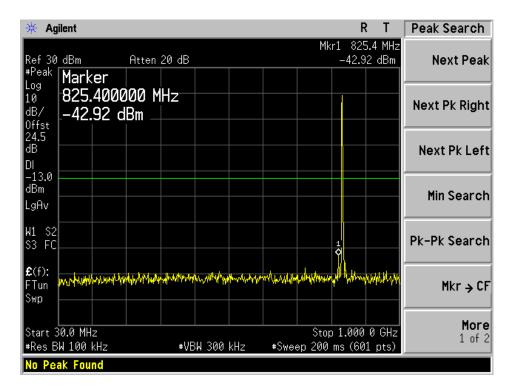

7.5 Test Results & Plots

Please refer to the following plots.

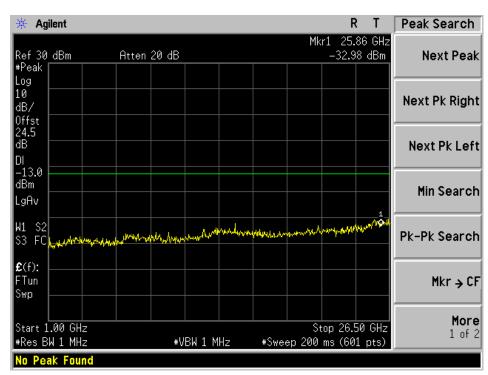

Plots of Spurious Emissions for Part 22H

Low Channel (f = 824.7 MHz)

Plot 1a: 30 MHz – 1 GHz

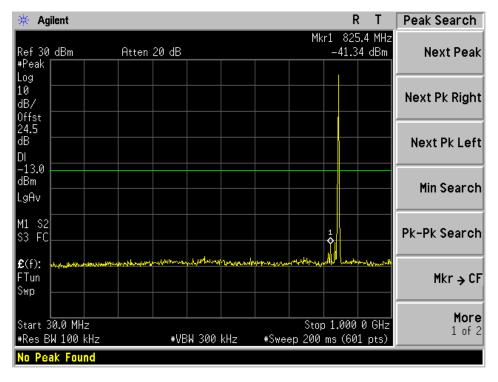


Plot 2a: 1 GHz – 26.5 GHz

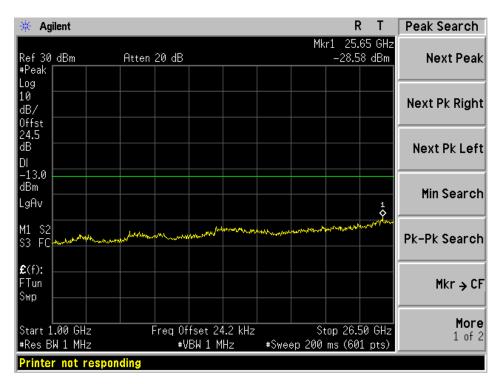


Middle Channel (f = 836.52 MHz)

Plot 1b: 30 MHz – 1 GHz

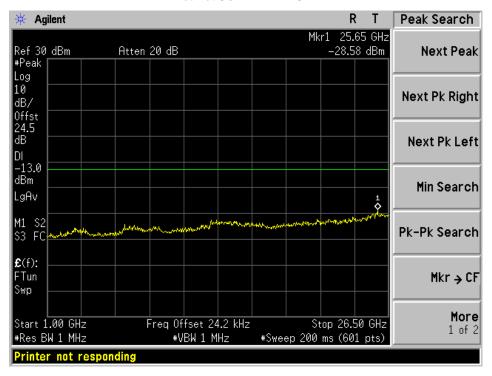


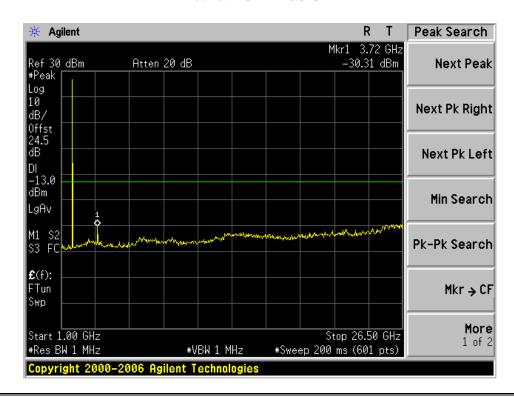
Plot 2b: 1 GHz – 26.5 GHz



High Channel (f = 848.31 MHz)

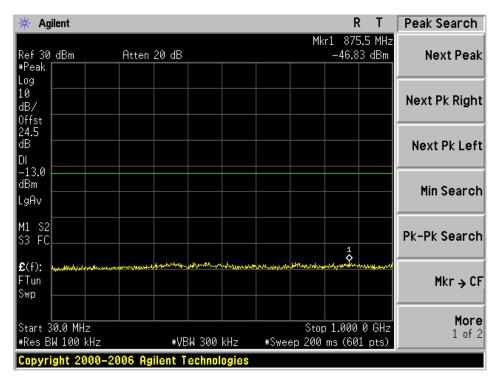
Plot 1c: 30 MHz - 1 GHz


Plot 2c: 1 GHz – 26.5 GHz

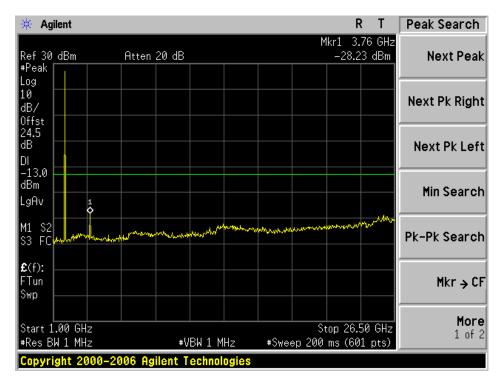

Plots of Spurious Emissions for Part 24E

Low Channel (f = 1851.25 MHz)

Plot 1d: 30 MHz - 1 GHz

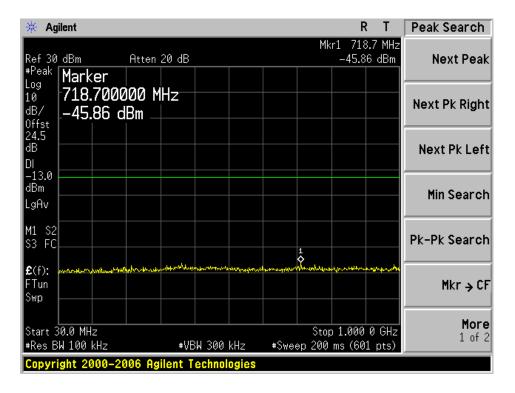


Plot 2d: 1 GHz -26.5 GHz

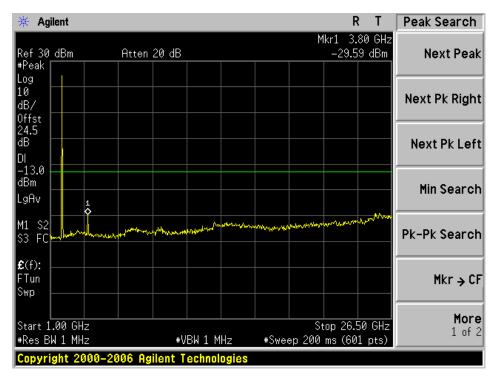


Middle Channel (f = 1880 MHz)

Plot 1e: 30 MHz – 1 GHz



Plot 2e: 1 GHz -26.5 GHz



High Channel (f = 1908.75 MHz)

Plot 1f: 30 MHz - 1 GHz

Plot 2f: 1 GHz -26.5 GHz

8 FCC §2.1053 - RADIATED SPURIOUS EMISSIONS

8.1 Applicable Standard

Requirements: FCC §2.1053, §22.917, §24.238.

8.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \log (TX \text{ Power in Watts}/0.001)$ – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

8.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-05-10
Agilent	Analyzer, Communications	E5155C	GB44051221	2011-06-11
Sunol Sciences	Antenna	JB1	A020106-1	2011-05-11
A.R.A	Horn Antenna	DRG-118/A	1132	2010-11-29
A. H. Systems	Antenna, Horn	3115	9511-4627	2011-08-09
Mini Circuits	Pre-Amplifier	ZVA-183-S	570400946	2011-05-09
НР	Pre-Amplifier	8447D	2944A06639	2011-06-18

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

8.4 Test Environmental Conditions

Temperature:	20 °C ~ 23 °C
Relative Humidity:	40 % ~ 45 %
ATM Pressure:	101.1kPa ~ 101.2kPa

Testing was performed by Arthur Tie on 2011-10-24 in 5 meter chamber 3.

8.5 Test Results

Cellular Band, Part 22H:

30 MHz -10 GHz Radiated Emission at 3-meter (Middle Channel, 836.52 MHz)

Indic	ated	Turntable	Test A	ntenna		Substit	uted		Absolute Level (dBm)	Part 22H	
Frequency (MHz)	S.A.	Azimuth (degree)		Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)		Limit (dBm)	Margin (dB)
-		-	-		-	-		-	-	-13	-

Note: Emissions levels are at the noise floor and/or 20 dB below the limit.

PCS Band, Part 24E:

30 MHz -20 GHz Radiated Emission at 3-meter (Middle Channel, 1880 MHz)

Indic	ated	Turntable Azimuth (degree)	Turntable	Turntable	Test A	ntenna		Substit	uted		Absolute	Part 24E	
Frequency (MHz)	S.A. Amp. (dBuV)			Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)		
-	-	-	-	-	-	-	-	-	-	-13	-		

Note: Emissions levels are at the noise floor and/or 20 dB below the limit.

9 FCC §22.917 & §24.238 – BAND EDGE

9.1 Applicable Standard

According to FCC 22.917, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to FCC $\S24.238$, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

9.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.

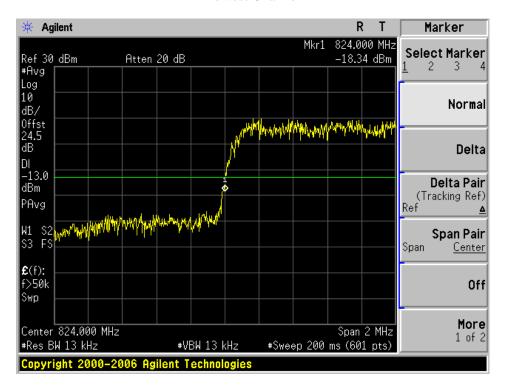
9.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date
Agilent	Spectrum Analyzer	E4446A	US44300386	2011-05-10
Agilent	Analyzer, Communications	E5155C	GB44051221	2011-06-11

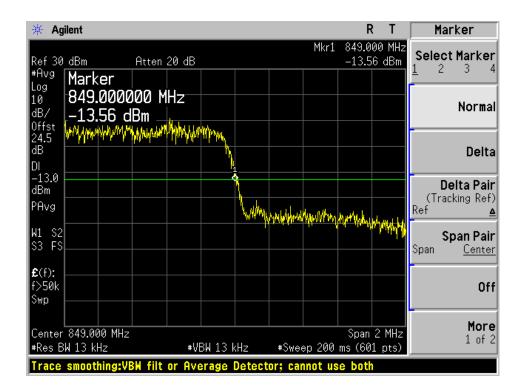
Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Test Environmental Conditions

Temperature:	20 °C ~ 23 °C
Relative Humidity:	40 % ~ 45 %
ATM Pressure:	101.1kPa ~ 101.2kPa

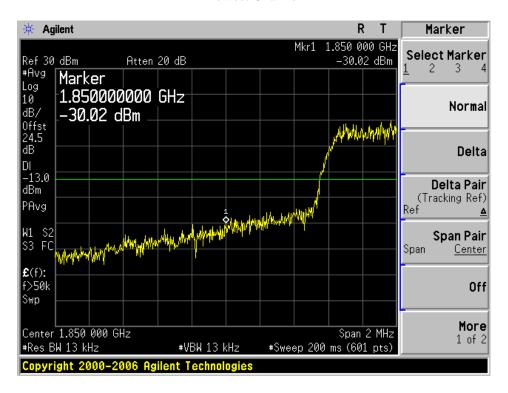

Testing was performed by Arthur Tie on 2011-10-26 in RF Site.

9.5 Test Results & Plots

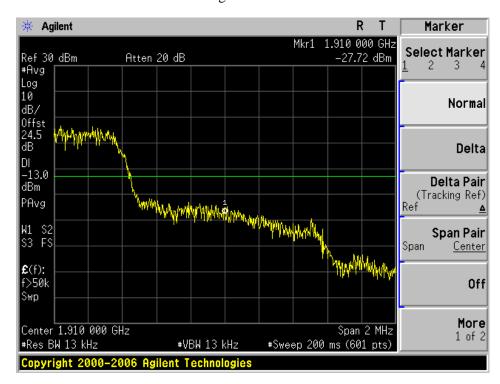

Please refer to the following plots.

Plots of Band Edge for Part 22H

Lowest Channel



Highest Channel



Plots of Band Edge for Part 24E

Lowest Channel

Highest Channel

10 FCC §2.1055, §22.355 & §24.235 - FREQUENCY STABILITY

10.1 Applicable Standard

Requirements: FCC §2.1055 (a), §2.1055 (d) & following:

According to FCC §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to FCC §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

10.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

10.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Tenney	Temperature oven	Versa Tenn	12.431-8	2012-06-28
Agilent	Spectrum Analyzer	E4446A	US44300386	2012-05-10
Agilent	Analyzer, Communications	E5155C	GB44051221	2012-06-11

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Test Environmental Conditions

Temperature:	20 °C ~ 23 °C
Relative Humidity:	40 % ~ 45 %
ATM Pressure:	101.1kPa ~ 101.2kPa

Testing was performed by Arthur Tie on 2011-10-26 in RF Site.

10.5 Test Results

Cellular Band, Part 22H

Reference Frequency: 836.52 MHz, Limit: 2.5 ppm				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (°C)	Power Supplied (Vdc)	Measured Frequency (Hz)	Frequency Error (ppm)	Limit (ppm)
	Frequenc	y Stability versus Temp	perature	
50	13.5	836.520091	0.108784	2.5
40	13.5	836.520073	0.087266	2.5
30	13.5	836.520054	0.064553	2.5
20	13.5	836.520030	0.035862	2.5
0	13.5	836.520014	0.016736	2.5
-20	13.5	836.520046	0.054989	2.5
-30	13.5	836.520067	0.080093	2.5
Frequency Stability versus Voltage				
20	13.1	836.520076	0.090852	2.5
20	13.5	836.520058	0.069334	2.5

PCS Band, Part 24E

Reference Frequency: 1880.0 MHz				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (°C)	Power Supplied (Vdc)	Measured Frequency (Hz)	Frequency Error (ppm)	Result
	Frequenc	cy Stability versus Tem	perature	
50	13.5	1880.000009572	0.005318	Pass
40	13.5	1880.000009418	0.005232	Pass
30	13.5	1880.000006386	0.003548	Pass
20	13.5	1880.000004915	0.002731	Pass
0	13.5	1880.000002772	0.001540	Pass
-20	13.5	1880.000005650	0.003139	Pass
-30	13.5	1880.000006530	0.003628	Pass
Frequency Stability versus Voltage				
20	13.1	1879.999998261	-0.000966	Pass
20	13.5	1880.000002579	0.001433	Pass

11 FCC §1.1307(b)(1) & §2.1091 - RF EXPOSURE INFORMATION

11.1 Applicable Standard

According to FCC §1.1310 and §2.1091 (Mobile Devices) RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minute)	
Limits for General Population/Uncontrolled Exposure					
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	$*(180/f^2)$	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

Note: f = frequency in MHz

11.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Cellular Band

Maximum peak output power at antenna input terminal (dBm): 25.00
Maximum peak output power at antenna input terminal (mW): 316.23

Prediction distance (cm): $\frac{20}{20}$

Prediction frequency (MHz): 824.7

Antenna Gain, typical (dBi): 3
Antenna Gain numeric: 2

Power density at predication frequency and distance (mW/cm²): $\frac{0.1258}{0.7528}$

MPE limit for uncontrolled exposure at predication frequency (mW/cm²): 0.5498

PCS Band

Maximum peak output power at antenna input terminal (dBm): 25.01

Maximum peak output power at antenna input terminal (mW): 316.96

Prediction distance (cm): 20

Prediction distance (cm): 20 Prediction frequency (MHz): 1880 Antenna Gain, typical (dBi): 3

Antenna Gain numeric:

Power density at predication frequency and distance (mW/cm²): $\frac{0.1261}{1.000}$

MPE limit for uncontrolled exposure at predication frequency (mW/cm 2): $\frac{1}{2}$

^{* =} Plane-wave equivalent power density

Results

For Cellular band, the highest power density level at 20 cm is below the uncontrolled exposure limit. For PCS band; the highest power density level at 20 cm is below the uncontrolled exposure limit.