

NOKIA CORPORATION

Yrttipellontie 6 FIN-90230 Oulu FINLAND Tel. +358 7180 08000 Fax. +358 7180 52641

Jan 15, 2003

Federal Communications Commission, Authorization & Evaluation Division, 7435 Oakland Mills Road Columbia, MD. 21046

Attention: Equipment Authorization Branch

We hereby certify that the transceiver FCC ID: P4JDTE-3 complies with ANSI/IEEE C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

Compliance was determined by testing appropriate parameters according to standard.

NOKIA CORPORATION

Petteri Holma Product Program Manager, Nokia Corporation Oulu

SAR Compliance Test Report

Test report no.:	Not numbered	Date of report:	2002-12-17		
Number of pages:	92	Contact person: Responsible test	Pentti Pärnänen Pertti Mäkikyrö		
		engineer:			
	Nalia Camanatian		Nabia Comparation		
Testing laboratory:	Nokia Corporation Elektroniikkatie 10 P.O. Box 50 FIN-90571 OULU Finland Tel. +358-7180-08000 Fax. +358-7180-47222	Client:	Nokia Corporation Yrttipellontie 10 P.O. Box 300 FIN-90230 OULU Finland Tel.+358-7180-08000 Fax. +358-7180-58300		
Tostad davisas:					
Testeu devices.	P4JDTE-3				
Complement respects					
Supplement reports:	-				
Testing has been carried out in	47CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices				
	IEEE P1528-200X Draft 6.4 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques				
	FCC OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields				
Documentation:	The documentation of the testing performed on the tested devices is archived for 15 years at TCC Oulu				
lest results:	respect of all parameters				
	The test results and statements relate only to the items tested. The test report shall not be reproduced except in full, without written approval of the laboratory.				
Date and signatures:		2002-12-17			
For the contents:					

Just Malun

Pertti Mäkikyrö Engineering Manager, EMC

ALE ~

Anne Kiviniemi Test Engineer

FCC ID: P4JDTE-3

Copyright © 2002 Nokia Corporation

CONTENTS

1.	SUMMARY FOR SAR TEST REPORT	3
	1.1 MAXIMUM RESULTS FOUND DURING SAR EVALUATION 1.1.1 Body Worn Configuration 1.1.2 Measurement Uncertainty	3 3 3
2.	DESCRIPTION OF TESTED DEVICE	4
	2.1 Picture of Tested Device	4 4 4
3.	TEST CONDITIONS	5
	 3.1 Ambient Conditions 3.2 RF characteristics of the test site 3.3 Test Signal, Frequencies, and Output Power 	5 5 5
4.	DESCRIPTION OF THE TEST EQUIPMENT	5
	4.1 SYSTEM ACCURACY VERIFICATION 4.2 TISSUE SIMULANTS 4.2.1 Muscle Tissue Simulant 4.3 PHANTOMS 4.4 ISOTROPIC E-FIELD PROBE ET3DV6	6 7 7 8 9
5.	DESCRIPTION OF THE TEST PROCEDURE	9
	 5.1 TEST POSITIONS Position for testing the lower part area of P4JDTE-3 5.1.2 Position for testing the tip area of P4JDTE-3 5.2 SCAN PROCEDURES 5.3 SAR AVERAGING METHODS 	9 10 12 14 14
6.	MEASUREMENT UNCERTAINTY	15
	6.1 DESCRIPTION OF INDIVIDUAL MEASUREMENT UNCERTAINTY 6.1.1 Assessment Uncertainty	15 15
7.	RESULTS	16
	7.1 BODY WORN CONFIGURATION	16
۸D	PENDIX A. Validation Test Printouts (11 pages)	

APPENDIX A:	validation lest Printouts (11 pages)
APPENDIX B:	SAR Distribution Printouts (33 pages)
APPENDIX C:	Calibration Certificate(s) (28 pages)

1. SUMMARY FOR SAR TEST REPORT

Date of test	2002-11-13 – 2002-11-15, 2002-11-17 – 2002-11-18		
	2002-11-23 – 2002-11-24, 2002-11-26, 2002-11-29		
Contact person	Pentti Pärnänen		
Test plan referred to	-		
FCC ID	P4JDTE-3		
SN, HW and numbers of tested device	SN: 001004/10/07/5800/3, HW: 0701, SW: v02.30		
Accessories used in testing	Snap-on spacer		
Notes	-		
Document code	DTX 05855-EN		
Responsible test engineer	Pertti Mäkikyrö		
Measurement performed by	Anne Kiviniemi		

1.1 Maximum Results Found during SAR Evaluation

The equipment is deemed to fulfil the requirements if the measured values are less than or equal to the limit. Maximum found results are reported per operating band.

1.1.1 Body Worn Configuration

Mode	Ch / <i>f</i> (MHz)	Power	Separation Distance	Limit	Measured	Result
GPRS 850	128/824.20	29.2 dBm	18.9 mm	1.6 mW/g	0.59 mW/g	PASSED
GPRS 1900	512/1850.20	29.9 dBm	18.9 mm	1.6 mW/g	0.90 mW/g	PASSED
WLAN	6/2437	17.1 dBm	18.8 mm	1.6 mW/g	0.15 mW/g	PASSED

1.1.2 Measurement Uncertainty

Combined Standard Uncertainty	±13.6%
Expanded Standard Uncertainty (k=2)	± 27.1%

2. DESCRIPTION OF TESTED DEVICE

Device category	Portable device				
Exposure environment	Uncontrolled exposure				
Unit type	Prototype unit				
Modes of Operation	GSM	GPRS	WLAN		
Modulation Mode	Gaussian Minimum Shift Keying	Gaussian Minimum Shift Keying	Differential Quadrature Phase Shift Keying		
Duty Cycle	1/8	2/8	4/5		
Transmitter Frequency Range (MHz)	824.2 – 848.8 1850.2 -1909.8	824.2 - 848.8 1850.2 -1909.8	2412-2462		

2.1 Picture of Tested Device

2.2 Description of the Antenna

Туре	Internal integrated antenna
Location	Tip of the device

2.3 Snap-on spacer

Snap-on spacer was attached to P4JDTE-3 during body worn measurements.

3. TEST CONDITIONS

3.1 Ambient Conditions

Ambient temperature (°C)	22±2
Tissue simulating liquid temperature (°C)	22±2
Humidity	42

3.2 RF characteristics of the test site

Tests were performed in a enclosed RF shielded environment.

3.3 Test Signal, Frequencies, and Output Power

The device was controlled by using a test mode software and by using a radio tester. GSM mode was not tested since P4JDTE-3 is able to use two time slots for transmitting data in GPRS mode whereas GSM mode uses only one time slot.

P4JDTE-3 is capable of operating in several host products. Typical laptops IBM ThinkPad T23, IBM ThinkPad 560x, IBM ThinkPad 600x and pocket PCs: Casio Cassiopeia, Compaq iPAQ and Hewlett Packard Jornada were chosen for testing.

In 850 and 1900 MHz operating bands the measurements were performed on lowest, middle and highest channels and in 2450 MHz band measurements were performed at the middle channel only, because each test configuration in that channel was more than 3.0dB lower than the SAR limit. Maximum power level was used during the all tests.

DASY3 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. These records were used to monitor stability of power output.

4. DESCRIPTION OF THE TEST EQUIPMENT

The measurements were performed with an automated near-field scanning system, DASY3, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland.

Test Equipment	Serial Number	Due Date
DASY3 DAE V1	405	02/03
E-field Probe ET3DV6	1379	02/03
Dipole Validation Kit, D835V2	448	11/03
Dipole Validation Kit, D1900V2	511	02/03

E-field probe calibration records are presented in Appendix C.

Additional equipment needed in validation

Test Equipment	Model	Serial Number	Due Date
Signal Generator	Agilent E4433B	GB40050947	09/04
Amplifier	Amplifier Research 5S1G4	27573	-
Power Meter	R&S NRT	835065/049	04/03
Power Sensor	R&S NRT-Z44	835374/021	04/03
Thermometer	DO9416	1505985462	-
Vector Network Analyzer	Hewlett Packard 8753E	US38432701	05/03
Dielectric Probe Kit	Agilent 85070C	-	-

4.1 System Accuracy Verification

The probes are calibrated annually by the manufacturer. Dielectric parameters of the simulating liquids are measured by using a dielectric probe kit and a vector network analyzer.

The SAR measurement of the DUT were done within 24 hours of system accuracy verification, which was done using the dipole validation kit.

The dipole antenna, which is manufactured by Schmid & Partner Engineering AG, is matched to be used near flat phantom filled with tissue simulating solution. Length of 835 MHz dipole is 161mm with overall height of 330mm. Dipole length for 1900 MHz is 68 mm with overall height of 300mm. A specific distance holder is used in the positioning of both antennas to ensure correct spacing between the phantom and the dipole. Manufacturer's reference dipole data is presented in Appendix C.

Due to lack of dipole and verification data for 2450 MHz, system verification for WLAN measurements were done with dipole for 1900 MHz.

Power level of 250 mW was supplied to a dipole antenna placed under the flat section of SAM phantom. The validation results are in the table below and printout of the validation test is presented in Appendix A. All the measured parameters were within the specification.

Tissue	f	Description	SAR	Dielectric Parameters		Temp
	(MHz)		(W/kg), 1g	ε _r	σ (S/m)	(°C)
Muselo	025	Measured 11/15/2002	2.75	57.9	0.95	22
iviuscie a	030	Reference Result	2.73	56.0	0.98	N/A
Muscle 8	025	Measured 11/17/2002	2.66	56.8	0.95	22
	035	Reference Result	2.73	56.0	0.98	N/A
Muselo	025	Measured 11/18/2002	2.66	56.7	0.96	22
iviuscie	000	Reference Result	2.73	56.0	0.98	N/A
Mucolo	025	Measured 11/24/2002	2.70	56.8	0.94	22
IVIUSCIE	030	Reference Result	2.73	56.0	0.98	N/A

FCC ID: P4JDTE-3

Muselo	025	Measured 11/26/2002	2.73	56.8	0.96	22
IVIUSCIE	030	Reference Result	2.73	56.0	0.98	N/A
Muselo	1000	Measured 11/13/2002	10.9	50.8	1.50	22
IVIUSCIE	1900	Reference Result	10.6	53.5	1.46	N/A
Muselo	1000	Measured 11/14/2002	11.0	51.0	1.52	22
IVIUSCIE	1900	Reference Result	10.6	53.5	1.46	N/A
Muselo	1000	Measured 11/15/2002	11.0	51.1	1.52	22
IVIUSCIE	1900	Reference Result	10.6	53.5	1.46	N/A
Muselo	1000	Measured 11/23/2002	11.1	51.0	1.49	22
IVIUSCIE	1900	Reference Result	10.6	53.5	1.46	N/A
Muselo	1000	Measured 11/24/2002	10.8	51.0	1.50	22
IVIUSCIE	1900	Reference Result	10.6	53.5	1.46	N/A
Musclo	1000	Measured 11/29/2002	10.6	51.0	1.50	22
IVIUSCIE	1700	Reference Result	10.6	53.5	1.46	N/A

4.2 Tissue Simulants

All dielectric parameters of tissue simulants were measured within 24 hours of SAR measurements. The depth of the tissue simulant in the ear reference point of the phantom was $15 \text{ cm} \pm 5 \text{ mm}$ during all the tests. Volume for each tissue simulant was 26 liters.

4.2.1 Muscle Tissue Simulant

The composition of the muscle tissue simulating liquid for 835MHz is

- 55.97% De-Ionized Water
- 41.76% Sugar
- 1.21% HEC
- 0.79% Salt
- 0.27% Preservative

and for 1900MHz

- 69.02% De-Ionized Water
- 30.76% Diethylene Glycol Monobutyl Ether
- 0.22% Salt

and for 2450 MHz

70.0% De-Ionized Water

30.0% Diethylene Glycol Monobutyl Ether

f	Description	Dielectric Parameters		Temp
(MHz)		ε _r	σ (S/m)	(°C)
025	Measured 11/15/2002	57.9	0.95	22
030	Recommended Values	55.2	0.97	20-26
025	Measured 11/17/2002	56.8	0.95	22
030	Recommended Values	55.2	0.97	20-26

FCC ID: P4JDTE-3

025	Measured 11/18/2002	56.7	0.96	22
030	Recommended Values	55.2	0.97	20-26
025	Measured 11/24/2002	56.8	0.94	22
030	Recommended Values	55.2	0.97	20-26
025	Measured 11/26/2002	56.8	0.96	22
030	Recommended Values	55.2	0.97	20-26
1000	Measured 11/13/2002	50.9	1.48	22
1000	Recommended Values	53.3	1.52	20-26
1000	Measured 11/14/2002	51.2	1.51	22
1000	Recommended Values	53.3	1.52	20-26
1000	Measured 11/15/2002	51.3	1.51	22
1000	Recommended Values	53.3	1.52	20-26
1000	Measured 11/23/2002	51.0	1.47	22
1000	Recommended Values	53.3	1.52	20-26
1000	Measured 11/24/2002	51.2	1.47	22
1880	Recommended Values	53.3	1.52	20-26
2450	Measured 11/29/2002	53.7	2.05	22
2400	Recommended Values	52.7	1.95	20-26

Recommended values are adopted from OET Bulletin 65 (97-01) Supplement C (01-01).

4.3 Phantoms

"SAM v4.0" phantom", manufactured by SPEAG, was used during the measurement. It has fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. Reference

markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

The thickness of phantom shell is 2 mm except for the ear, where an integrated ear spacer provides a 6 mm spacing from the tissue boundary. Manufacturer reports tolerance in shell thickness to be ± 0.1 mm.

4.4 Isotropic E-Field Probe ET3DV6

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether)
Calibration	Calibration ceritifcate in Appendix C
Frequency Optical Surface Detection	10 MHz to 3 GHz (dosimetry); Linearity: \pm 0.2 dB (30 MHz to 3 GHz) \pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic Range	5 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Test Positions

P4JDTE-3 with Snap-On spacer attached was placed into laptops and pocket PCs and then below the flat section of the phantom using a device holder and expanded polystyrene (EPS).

Two positions were used to test compliance. These positions correspond to applicaple operating configurations.

5.1.1 Position for testing the lower part area of P4JDTE-3

Laptop IBM 560x, all the laptops were positioned similary for testing underneath P4JDTE-3

Laptop IBM 600x

Laptop IBM t23

Pocket PC Casio Cassiopeia, all the pocket PCs were positioned similary for testing underneath P4JDTE-3

Pocket PC Compaq iPAQ

Handheld PC Hewlett Packard Jornada

5.1.2 Position for testing the tip area of P4JDTE-3

Laptop IBM 560x, all the laptops were positioned similary for testing the tip of P4JDTE-3 with separation distance 15mm.

Laptop IBM 600x

Laptop IBM T23

Pocket PC Casio Cassiopeia, all the pocket PCs were positioned similary for testing the tip of P4JDTE-3 with separation distance 15mm.

Pocket PC Compaq iPAQ

Handheld PC Hewlett Packard Jornada

5.2 Scan Procedures

First coarse scans are used for quick determination of the field distribution. Next a cube scan, 5x5x7 points; spacing between each point 8x8x5 mm, is performed around the highest E-field value to determine the averaged SAR-distribution over 1g.

5.3 SAR Averaging Methods

The maximum SAR value is averaged over its volume using interpolation and extrapolation.

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot" -condition [W. Gander, Computermathematik, p. 141-150] (x, y and z -directions) [Numerical Recipes in C, Second Edition, p 123].

The extrapolation is based on least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 30 mm in all z-axis, polynomials of order four are calculated. This polynomial is then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1mm from one another.

6. MEASUREMENT UNCERTAINTY

6.1 Description of Individual Measurement Uncertainty

6.1.1 Assessment Uncertainty

Uncertainty description	Uncert. value %	Probability distribution	Div.	C _i ¹	Stand.	V _i ²
		distribution			(1a)	Voff
					%	• en
Measurement System						
Probe calibration	± 4.4	normal	1	1	± 4.4	∞
Axial isotropy of the probe	± 4.7	rectangular	√3	(1-c _p) ^{1/2}	±1.9	~
Sph. Isotropy of the probe	± 9.6	rectangular	√3	$(c_p)1^{/2}$	± 3.9	~
Spatial resolution	± 0.0	rectangular	√3	1	± 0.0	~
Boundary effects	± 5.5	rectangular	√3	1	± 3.2	8
Probe linearity	± 4.7	rectangular	√3	1	± 2.7	~
Detection limit	± 1.0	rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	normal	1	1	± 1.0	8
Response time	± 0.8	rectangular	√3	1	± 0.5	~
Integration time	± 1.4	rectangular	√3	1	± 0.8	8
RF ambient conditions	± 3.0	rectangular	√3	1	± 1.7	~
Mech. Constrains of robot	± 0.4	rectangular	√3	1	± 0.2	8
Probe positioning	± 2.9	rectangular	√3	1	±1.7	~
Extrap. And integration	± 3.9	rectangular	√3	1	± 2.3	∞
Test Sample Related						
Device positioning	± 6.0	normal	0.89	1	± 6.7	12
Device holder uncertainty	± 5.0	normal	0.84	1	± 5.9	8
Power drift	± 5.0	rectangular	√3	1	± 2.9	8
Phantom and Setup						
Phantom uncertainty	± 4.0	rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	rectangular	√3	0.6	±1.7	~
Liquid conductivity (meas.)	± 10.0	rectangular	√3	0.6	± 3.5	8
Liquid permittivity (target)	± 5.0	rectangular	√3	0.6	±1.7	~
Liquid permittivity (meas.)	± 5.0	rectangular	√3	0.6	± 1.7	~
Combined Standard					± 13.6	
Uncertainty						
Expanded Standard					± 27.1	
Uncertainty (k=2)						

7. RESULTS

Corresponding SAR distribution printouts of maximum results in every operating mode and position are shown in Appendix B. It also includes Z-plots of maximum measurement results in body worn configurations. The SAR distributions are substantially similar or equivalent to the plots submitted regardless of used channel in each mode and position. As all WLAN SAR results with the laptop PCs were below 0.16 W/kg, WLAN was not remeasured with the pocket PCs.

7.1 Body Worn Configuration

Mode	Channel/ f (MHz)	Power (dBm)
CDDS	128/824.20	29.2
OFRS OFA	190/836.60	29.2
000	251/848.80	29.0
CDDS	512/1850.20	29.9
1000	661/1880.00	29.5
1900	810/1909.80	29.4
WLAN	6/2437	17.1

P4JDTE-3 with laptop IBM T23				
Modo	Channel/	SAR, averaged over 1g (mW/g)		
NIUUE	<i>f</i> (MHz)	Underneath	Тір	
CDDC	128/824.20	0.52	0.06	
850	190/836.60	0.51	0.06	
	251/848.80	0.51	0.06	
CDDC	512/1850.20	0.56	0.30	
1000	661/1880.00	0.53	0.26	
1900	810/1909.80	0.48	0.26	
WLAN	6/2437	0.15	0.04	

P4JDTE-3 with laptop IBM 560x				
Mada	Channel/	SAR, averaged over 1g (mW/g)		
IVIOUE	<i>f</i> (MHz)	Underneath	Тір	
CDDS	128/824.20	0.42	0.09	
OFRS	190/836.60	0.41	0.09	
030	251/848.80	0.41	0.08	
CDDS	512/1850.20	0.90	0.43	
1900	661/1880.00	0.77	0.36	
	810/1909.80	0.69	0.33	
WLAN	6/2437	0.13	0.03	

P4JDTE-3 with laptop IBM 600x				
Modo	Channel/	SAR, averaged over 1g (mW/g)		
INIOUE	<i>f</i> (MHz)	Underneath	Тір	
CDDS	128/824.20	0.44	0.04	
850	190/836.60	0.43	0.04	
	251/848.80	0.40	0.05	
CDDC	512/1850.20	0.67	0.28	
GPRS 1900	661/1880.00	0.55	0.25	
	810/1909.80	0.51	0.26	
WLAN	6/2437	0.15	0.07	

P4JDTE-3 with pocket PC Casio Cassiopeia				
Modo	Channel/	SAR, averaged over 1g (mW/g)		
would	<i>f</i> (MHz)	Underneath	Tip	
CDDS	128/824.20	0.37	0.03	
	190/836.60	0.40	0.03	
000	251/848.80	0.40	0.04	
CDDS	512/1850.20	0.61	0.23	
GPRS	661/1880.00	0.50	0.22	
1900	810/1909.80	0.46	0.23	

P4JDTE-3 with pocket PC Compaq iPAQ				
Mada	Channel/	SAR, averaged over 1g (mW/g)		
wode	<i>f</i> (MHz)	Underneath	Тір	
CDDC	128/824.20	0.59	0.03	
GPRS 0E0	190/836.60	0.58	0.04	
000	251/848.80	0.56	0.04	
CDDS	512/1850.20	0.72	0.24	
1000	661/1880.00	0.54	0.23	
1700	810/1909.80	0.51	0.26	

P4JDTE-3 with Handheld PC Hewlett Packard Jornada				
Modo	Channel/	SAR, averaged over 1g (mW/g)		
Iviode	<i>f</i> (MHz)	Underneath	Тір	
CDDS	128/824.20	0.35	0.05	
GPRS	190/836.60	0.37	0.05	
000	251/848.80	0.36	0.05	
CDDC	512/1850.20	0.48	0.21	
1000	661/1880.00	0.41	0.21	
1700	810/1909.80	0.40	0.20	

APPENDIX A.

Validation Test Printouts

11/15/02

Dipole 835 MHz

SAM 3; Flat Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Muscle 836 MHz: $\sigma = 0.95$ mho/m $\varepsilon_r = 57.9 \ \rho = 1.00$ g/cm³, liquid temperature: 21.0 C Cubes (2): Peak: 4.43 mW/g ± 0.09 dB, SAR (1g): 2.75 mW/g ± 0.07 dB, SAR (10g): 1.76 mW/g ± 0.05 dB Penetration depth: 12.5 (10.7, 14.9) [mm] Powerdrift: -0.06 dB

11/17/02

Dipole 835 MHz

SAM 3; Flat Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Muscle 836 MHz: $\sigma = 0.95$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00 \ g/cm^3$, liquid temperature: 22.3 C Cubes (2): Peak: 4.18 mW/g ± 0.06 dB, SAR (1g): 2.66 mW/g ± 0.07 dB, SAR (10g): 1.73 mW/g ± 0.07 dB Penetration depth: 12.8 (11.2, 14.8) [mm] Powerdrift: 0.01 dB

11/18/02

Dipole 835 MHz

SAM 3; Flat Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.7 \ \rho = 1.00 \text{ g/cm}^3$; Liquid temperature: 22.5 °C Cubes (2): Peak: 4.20 mW/g ± 0.13 dB, SAR (1g): 2.66 mW/g ± 0.10 dB, SAR (10g): 1.72 mW/g ± 0.08 dB Penetration depth: 12.6 (11.0, 14.7) [mm] Powerdrift: -0.02 dB

 $SAR_{Tot} [mW/g]$

11/24/02

Dipole 835 MHz

SAM 3; Flat Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Muscle 836 MHz: $\sigma = 0.94$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00 \ g/cm^3$; Liquid temperature: 21.5 °C Cubes (2): Peak: 4.25 mW/g ± 0.03 dB, SAR (1g): 2.70 mW/g ± 0.06 dB, SAR (10g): 1.75 mW/g ± 0.07 dB Penetration depth: 12.8 (11.2, 14.8) [mm] Powerdrift: 0.01 dB

 $SAR_{Tot} [mW/g]$

11/26/02

Dipole 835 MHz

SAM 3; Flat Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 1.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00 \ g/cm^3$; Liquid temperature: 21.9 °C Cubes (2): Peak: 4.35 mW/g ± 0.06 dB, SAR (1g): 2.73 mW/g ± 0.01 dB, SAR (10g): 1.76 mW/g ± 0.06 dB Penetration depth: 12.7 (11.2, 14.8) [mm] Powerdrift: -0.03 dB

 $SAR_{Tot} \ [mW/g]$

11/13/02

Dipole 1900 MHz

SAM 1; Flat Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 1.0; Muscle 1900 MHz: $\sigma = 1.50$ mho/m $\epsilon_r = 50.8 \ \rho = 1.00 \ g/cm^3$, liquid temperature:21.6 C Cubes (2): Peak: 20.5 mW/g ± 0.09 dB, SAR (1g): 10.9 mW/g ± 0.08 dB, SAR (10g): 5.53 mW/g ± 0.07 dB Penetration depth: 8.6 (7.8, 9.9) [mm] Powerdrift: 0.03 dB

11/14/02

Dipole 1900 MHz

SAM 1; Flat Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 1.0; Muscle 1900 MHz: $\sigma = 1.52$ mho/m $\epsilon_r = 51.0 \ \rho = 1.00 \ g/cm^3$, liquid temperature: 21.0 C Cubes (2): Peak: 20.6 mW/g \pm 0.08 dB, SAR (1g): 11.0 mW/g \pm 0.08 dB, SAR (10g): 5.62 mW/g \pm 0.07 dB Penetration depth: 8.6 (7.9, 9.9) [mm] Powerdrift: 0.03 dB

 $SAR_{Tot} [mW/g]$

11/15/02

Dipole 1900 MHz

SAM 1; Flat Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 1.0; Muscle 1900 MHz: $\sigma = 1.52$ mho/m $\epsilon_r = 51.1 \ \rho = 1.00$ g/cm³, liquid temperature: 21.2 C Cubes (2): Peak: 20.8 mW/g \pm 0.10 dB, SAR (1g): 11.0 mW/g \pm 0.07 dB, SAR (10g): 5.58 mW/g \pm 0.05 dB Penetration depth: 8.4 (7.7, 9.7) [mm] Powerdrift: 0.04 dB

 $SAR_{Tot} [mW/g]$

11/23/02

Dipole 1900 MHz

SAM 1; Flat Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 1.0; Muscle 1900 MHz: $\sigma = 1.49$ mho/m $\epsilon_r = 51.0 \ \rho = 1.00 \ g/cm^3$; Liquid temperature: 21.8 °C Cubes (2): Peak: 20.8 mW/g \pm 0.05 dB, SAR (1g): 11.1 mW/g \pm 0.08 dB, SAR (10g): 5.64 mW/g \pm 0.09 dB Penetration depth: 8.6 (7.9, 9.9) [mm] Powerdrift: -0.01 dB

11/24/02

Dipole 1900 MHz

SAM 1; Flat Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 1.0; Muscle 1900 MHz: $\sigma = 1.50$ mho/m $\epsilon_r = 51.0 \ \rho = 1.00 \ g/cm^3$; Liquid temperature: 21.0 °C Cubes (2): Peak: 20.5 mW/g ± 0.05 dB, SAR (1g): 10.8 mW/g ± 0.07 dB, SAR (10g): 5.53 mW/g ± 0.08 dB Penetration depth: 8.5 (7.8, 9.7) [mm] Powerdrift: 0.03 dB

 $SAR_{Tot} [mW/g]$

11/29/02

Dipole 1900 MHz

SAM 2; Flat Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 1.0; Muscle 1900 MHz: $\sigma = 1.50$ mho/m $\epsilon_r = 51.0 \ \rho = 1.00 \ g/cm^3$; Liquid temperature: 21.9 °C Cubes (2): Peak: 19.9 mW/g \pm 0.01 dB, SAR (1g): 10.6 mW/g \pm 0.03 dB, SAR (10g): 5.44 mW/g \pm 0.08 dB Penetration depth: 8.7 (7.9, 10.2) [mm] Powerdrift: -0.00 dB

 $SAR_{Tot} [mW/g]$

DTX05855-EN

APPENDIX B.

SAR Distribution Printouts

11/18/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, IBM T23; Frequency: 824 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.7 \ \rho = 1.00$ g/cm³; Liquid temperature: 22.5 °C Cube 5x5x7: SAR (1g): 0.522 mW/g, SAR (10g): 0.359 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.01 dB

 $SAR_{Tot} [mW/g]$

11/17/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, IBM 560X; Frequency: 824 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.95$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.6 °C Cube 5x5x7: SAR (1g): 0.419 mW/g, SAR (10g): 0.290 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.01 dB

11/17/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, IBM 600X; Frequency: 824 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.95$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.5 °C Cube 5x5x7: SAR (1g): 0.443 mW/g, SAR (10g): 0.306 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.03 dB

11/24/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, Casio; Frequency: 836 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.94$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.7 °C Cube 5x5x7: SAR (1g): 0.403 mW/g, SAR (10g): 0.308 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.03 dB

 $SAR_{Tot} \ [mW/g]$

11/24/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, Compaq; Frequency: 824 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.94$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³; Liquid temperature, 21.6 °C Cube 5x5x7: SAR (1g): 0.590 mW/g, SAR (10g): 0.436 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.06 dB

DTX05855-EN
11/26/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, HP; Frequency: 836 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³; Liquid temperature: 22.0 °C Cube 5x5x7: SAR (1g): 0.368 mW/g, SAR (10g): 0.249 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.03 dB

DTX05855-EN

11/15/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, IBM T23; Frequency: 836 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.95$ mho/m $\epsilon_r = 57.9 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.1 °C Cube 5x5x7: SAR (1g): 0.0570 mW/g, SAR (10g): 0.0418 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.07 dB

 $SAR_{Tot} [mW/g]$

11/18/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, IBM 560X; Frequency: 824 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.7 \ \rho = 1.00$ g/cm³; Liquid temperature: 22.5 °C Cube 5x5x7: SAR (1g): 0.0920 mW/g, SAR (10g): 0.0674 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.02 dB

9.60E-2

8.64E-2

7.68E-2

6.72E-2

5.76E-2

4.80E-2

3.84E-2

2.88E-2

1.92E-2

9.60E-3

11/18/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, IBM 600X; Frequency: 849 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.7 \ \rho = 1.00$ g/cm³; Liquid temperature: 22.7 °C Cube 5x5x7: left peak SAR (1g): 0.0499 mW/g, SAR (10g): 0.0288 mW/g, right peak SAR (1g): 0.0388mW/g, SAR (10g): 0.0285mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.01 dB

 $SAR_{Tot} [mW/g]$

4.10E-3

11/26/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, Casio; Frequency: 849 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³; Liquid temperature: 22.4 °C Cube 5x5x7: SAR (1g): 0.0358 mW/g, SAR (10g): 0.0230 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.02 dB

4.30E-2 3.87E-2 3.44E-2 3.01E-2 2.58E-2 2.58E-2 2.15E-2 1.72E-2 1.29E-2 8.60E-3

 $SAR_{Tot} [mW/g]$

4.30E-3

11/26/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, Compaq; Frequency: 849 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³; Liquid temperature: 22.1 °C Cube 5x5x7: SAR (1g): 0.0381 mW/g, SAR (10g): 0.0235 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.01 dB

SAR_{Tot} [mW/g]

11/27/02

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, HP; Frequency: 836 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.96$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.9 °C Cube 5x5x7: SAR (1g): 0.0530 mW/g, SAR (10g): 0.0377 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.04 dB

 $SAR_{Tot} [mW/g]$

11/13/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM T23; Frequency: 1850 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.48$ mho/m $\epsilon_r = 50.9 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.6 °C Cube 5x5x7: Upper peak SAR (1g): 0.560 mW/g, SAR (10g): 0.315 mW/g, lower peak SAR (1g): 0.549 mW/g, SAR (10g): 0.317 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.11 dB

11/14/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM 560X; Frequency: 1850 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 51.2 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.1 °C Cube 5x5x7: SAR (1g): 0.902 mW/g, SAR (10g): 0.542 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.06 dB

DTX05855-EN

11/14/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM 600X; Frequency: 1850 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 51.2 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.6 °C Cube 5x5x7: SAR (1g): 0.668 mW/g, SAR (10g): 0.366 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.00 dB

11/23/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, Casio; Frequency: 1850 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.47$ mho/m $\epsilon_r = 51.0 \ \rho = 1.00 \ g/cm^3$; Liquid temperature: 22.3 °C Cube 5x5x7: SAR (1g): 0.611 mW/g, SAR (10g): 0.358 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.06 dB

 $SAR_{Tot} [mW/g]$

11/23/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, Compaq; Frequency: 1850 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.47$ mho/m $\epsilon_r = 51.0 \ \rho = 1.00 \ g/cm^3$; Liquid temperature: 22.3 °C Cube 5x5x7: Upper peak SAR (1g): 0.715 mW/g, SAR (10g): 0.352 mW/g, lower peak SAR (1g): 0.622mW/g, SAR (10g): 0.363 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.09 dB

 $SAR_{Tot} [mW/g]$

11/23/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, HP; Frequency: 1850 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.47$ mho/m $\epsilon_r = 51.0 \ \rho = 1.00 \ g/cm^3$; Liquid temperature: 21.5 °C Cube 5x5x7: SAR (1g): 0.483 mW/g, SAR (10g): 0.290 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.03 dB

 $SAR_{Tot} [mW/g]$

11/14/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM T23; Frequency: 1850 MHz, GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 51.2 \ \rho = 1.00$ g/cm³, liquid temperature: 21.8 C Cube 5x5x7: SAR (1g): 0.302 mW/g, SAR (10g): 0.181 mW/g Coarse: Dx = 13.0, Dy = 13.0, Dz = 10.0 Powerdrift: -0.14 dB

11/15/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM 560X; Frequency: 1850 MHz, GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 51.3 \ \rho = 1.00$ g/cm³, liquid temperature: 21.2 C Cube 5x5x7: SAR (1g): 0.429 mW/g, SAR (10g): 0.259 mW/g Coarse: Dx = 13.0, Dy = 13.0, Dz = 10.0 Powerdrift: -0.07 dB

 $SAR_{Tot} [mW/g]$

11/15/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM 600X ; Frequency: 1850 MHz, GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 51.3 \ \rho = 1.00$ g/cm³, liquid temperature: 21.4 C Cube 5x5x7: SAR (1g): 0.279 mW/g, SAR (10g): 0.167 mW/g Coarse: Dx = 13.0, Dy = 13.0, Dz = 10.0 Powerdrift: -0.02 dB

SAR_{Tot} [mW/g]

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, Casio; Frequency: 1910 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.47$ mho/m $\epsilon_r = 51.2 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.7 °C Cube 5x5x7: SAR (1g): 0.233 mW/g, SAR (10g): 0.136 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.00 dB

 $SAR_{Tot} [mW/g]$

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, Compaq; Frequency: 1910 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.47$ mho/m $\epsilon_r = 51.2 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.6 °C Cube 5x5x7: SAR (1g): 0.260 mW/g, SAR (10g): 0.151 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.04 dB

 $SAR_{Tot} \ [mW/g]$

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, HP; Frequency: 1880 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.47$ mho/m $\epsilon_r = 51.2 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.2 °C Cube 5x5x7: SAR (1g): 0.214 mW/g, SAR (10g): 0.124 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.04 dB

 $SAR_{Tot} [mW/g]$

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM T23; Frequency: 2437 MHz; WLAN Probe: ET3DV6 - SN1379; ConvF(4.00,4.00,4.00); Crest factor: 1.3; Muscle 2437 MHz: σ = 2.00 mho/m ϵ_r = 53.7 ρ = 1.00 g/cm³; Liquid temperature: 21.5 °C Cube 5x5x7: SAR (1g): 0.147 mW/g, SAR (10g): 0.0827 mW/g Coarse: Dx = 13.0, Dy = 13.0, Dz = 10.0 Powerdrift: 0.06 dB

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn IBM 560X; Frequency: 2437 MHz, WLAN Probe: ET3DV6 - SN1379; ConvF(4.00,4.00,4.00); Crest factor: 1.3; Muscle 2437 MHz: $\sigma = 2.00$ mho/m $\epsilon_r = 53.7 \ \rho = 1.00$ g/cm³, liquid temperature: 21.6 C Cube 5x5x7: SAR (1g): 0.125 mW/g, SAR (10g): 0.0568 mW/g Coarse: Dx = 13.0, Dy = 13.0, Dz = 10.0 Powerdrift: -0.03 dB

DTX05855-EN

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM 600X; Frequency: 2437 MHz, WLAN Probe: ET3DV6 - SN1379; ConvF(4.00,4.00,4.00); Crest factor: 1.3; Muscle 2437 MHz: $\sigma = 2.00$ mho/m $\epsilon_r = 53.7 \ \rho = 1.00$ g/cm³, liquid temperature: 21.5 C Cube 5x5x7: SAR (1g): 0.153 mW/g, SAR (10g): 0.0833 mW/g Coarse: Dx = 13.0, Dy = 13.0, Dz = 10.0 Powerdrift: -0.25 dB

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM T23; Frequency: 2437 MHz; WLAN Probe: ET3DV6 - SN1379; ConvF(4.00,4.00,4.00); Crest factor: 1.3; Muscle 2437 MHz: σ = 2.00 mho/m ε_r = 53.7 ρ = 1.00 g/cm³; Liquid temperature: 22.1°C Cube 5x5x7: SAR (1g): 0.0360 mW/g, SAR (10g): 0.0192 mW/g Coarse: Dx = 13.0, Dy = 13.0, Dz = 10.0 Powerdrift: -0.15 dB

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM 560X; Frequency: 2437 MHz; WLAN Probe: ET3DV6 - SN1379; ConvF(4.00,4.00,4.00); Crest factor: 1.3; Muscle 2437 MHz: σ = 2.00 mho/m ϵ_r = 53.7 ρ = 1.00 g/cm³; Liquid temperature: 22.3 °C Cube 5x5x7: SAR (1g): 0.0335 mW/g, SAR (10g): 0.0134 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: -0.24 dB

 $SAR_{Tot} [mW/g]$

DTE05855-EN

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM 600X; Frequency: 2437 MHz; WLAN Probe: ET3DV6 - SN1379; ConvF(4.00,4.00,4.00); Crest factor: 1.3; Muscle 2437 MHz: σ = 2.00 mho/m ϵ_r = 53.7 ρ = 1.00 g/cm³; Liquid temperature: 22.3 °C Cube 5x5x7: SAR (1g): 0.0654 mW/g, SAR (10g): 0.0362 mW/g Coarse: Dx = 12.0, Dy = 12.0, Dz = 10.0 Powerdrift: 0.26 dB

P4JDTE-3

SAM 3 Phantom; Flat Section; Position: body worn, Compaq; Frequency: 824 MHz, GPRS Probe: ET3DV6 - SN1379; ConvF(6.20,6.20,6.20); Crest factor: 4.0; Muscle 836 MHz: $\sigma = 0.94$ mho/m $\epsilon_r = 56.8 \ \rho = 1.00$ g/cm³, liquid temperature: 21.6 C Cube 5x5x7: SAR (1g): 0.590 mW/g, SAR (10g): 0.436 mW/g Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

11/14/02

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM560X; Frequency: 1850 MHz; GPRS Probe: ET3DV6 - SN1379; ConvF(4.80,4.80,4.80); Crest factor: 4.0; Muscle 1880 MHz: $\sigma = 1.51$ mho/m $\epsilon_r = 51.2 \ \rho = 1.00$ g/cm³; Liquid temperature: 21.1 °C Cube 5x5x7: SAR (1g): 0.902 mW/g, SAR (10g): 0.542 mW/g Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

P4JDTE-3

SAM 1 Phantom; Flat Section; Position: body worn, IBM 600X; Frequency: 2437 MHz, WLAN Probe: ET3DV6 - SN1379; ConvF(4.00,4.00,4.00); Crest factor: 1.3; Muscle 2437 MHz: σ = 2.00 mho/m ϵ_r = 53.7 ρ = 1.00 g/cm³, liquid temperature: 21.5 C Cube 5x5x7: SAR (1g): 0.153 mW/g, SAR (10g): 0.0833 mW/g Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

APPENDIX C.

Calibration Certificate(s)

530065

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

Dosimetric E-Field Probe

Type:ET3DV6Serial Number:1379Place of Calibration:ZurichDate of Calibration:February 22, 2002Calibration Interval:12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

Probe ET3DV6

SN:1379

Manufactured: Last calibration: Recalibrated: September 21, 1999 February 20, 2001 February 22, 2002

Calibrated for System DASY3

DASY3 - Parameters of Probe: ET3DV6 SN:1379

Sensiti	vity in Free Sp	bace	Diode Compression			
Sensiti	NormX NormY NormZ vity in Tissue	1.74 μV/(V/m) ² 1.72 μV/(V/m) ² 1.75 μV/(V/m) ² Simulating Liquid	DCP X 95 m ¹ DCP Y 95 m ¹ DCP Z 95 m ¹	V V V		
Head	900 MHz	e _r = 41.5 ± 5%	s = 0.97 ± 5% mho/m			
	ConvF X ConvF Y ConvF Z	 6.5 ± 8.9% (k=2) 6.5 ± 8.9% (k=2) 6.5 ± 8.9% (k=2) 	Boundary effect:Alpha 0.45 Depth 2.34			
Head	1800 MHz	$e_r = 40.0 \pm 5\%$	s = 1.40 ± 5% mho/m			
	ConvF X ConvF Y ConvF Z	 5.4 ± 8.9% (k=2) 5.4 ± 8.9% (k=2) 5.4 ± 8.9% (k=2) 	Boundary effect: Alpha 0.62 Depth 2.15			

Boundary Effect

Head	900	MHz	Typical SAR gradien	t: 5 % per m	Im		
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Co	prrection Algorithm		10.6	5.8	
	SAR _{be} [%]	With Corre	ction Algorithm		0.3	0.6	
Head	d 1800 MHz Typical SAR gradient: 10 % per mm						
	Probe Tip to Boundary				1 mm	2 mm	
	SAR _{be} [%]	Without Co	prrection Algorithm		12.3	7.6	
	SAR _{be} [%]	With Corre	ction Algorithm		0.1	0.2	
Sensor	Offset						
	Probe Tip to Sensor Center			2.7		mm	
	Optical Surf	ace Detecti	on	1.5 ± 0.2		mm	

Receiving Pattern (f), q = 0°

Isotropy Error (f), $q = 0^{\circ}$

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

ET3DV6 SN:1379

February 22, 2002

Conversion Factor Assessment

Head	900 MHz		$e_r = 41.5 \pm 5\%$	s =	0.97 ± 5% mho/	m
	ConvF X	6.5	± 8.9% (k=2)		Boundary effect	
	ConvF Y	6.5	± 8.9% (k=2)		Alpha	0.45
	ConvF Z	6.5	± 8.9% (k=2)		Depth	2.34
Head	1800 MHz		$e_{\rm r} = 40.0 \pm 5\%$	s =	1.40 ± 5% mho/	m
	ConvF X	5.4	± 8.9% (k=2)		Boundary effect	
	ConvF Y	5.4	± 8.9% (k=2)		Alpha	0.62
	ConvF Z	5.4	± 8.9% (k=2)		Depth	2.15

ET3DV6 SN:1379

February 22, 2002

Conversion Factor Assessment

Head	835 MHz		e _r = 41.5 ± 5%	s = ().90 ± 5% mho/	m
	ConvF X	6.6	± 8.9% (k=2)	E	Boundary effect:	
	ConvF Y	6.6	± 8.9% (k=2)	A	Alpha	0.42
	ConvF Z	6.6	± 8.9% (k=2)	[Depth	2.44
Head	1880 MHz		$e_{\rm r} = 40.0 \pm 5\%$	s = 1	.40 ± 5% mho/	m
	ConvF X	5.3	± 8.9% (k=2)	E	Boundary effect:	
	ConvF Y	5.3	± 8.9% (k=2)	A	Alpha	0.64
	ConvF Z	5.3	± 8.9% (k=2)	[Depth	2.15

ET3DV6 SN:1379

February 22, 2002

Conversion Factor Assessment

Body	835 MHz	e	$r = 55.2 \pm 5\%$	s = 0.97 ± 5% mho	/m
	ConvF X	6.2 ± 8.9%	(k=2)	Boundary effec	t:
	ConvF Y	6.2 ± 8.9%	(k=2)	Alpha	0.42
	ConvF Z	6.2 ± 8.9%	(k=2)	Depth	2.56
Body	1880 MHz	e	a = 53.3 ± 5%	s = 1.52 ± 5% mho	/m
	ConvF X	4.8 ± 8.9%	(k=2)	Boundary effec	t:
	ConvF Y	4.8 ± 8.9%	(k=2)	Alpha	0.92
	ConvF Z	4.8 ± 8.9%	(k=2)	Depth	1.86

ET3DV6 SN:1379

February 22, 2002

Deviation from Isotropy in HSL

Error (**q**,**f**), f = 900 MHz

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D835V2

Serial: 448

Calibrated:

Manufactured: October 24, 2001 November 30, 2001

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity	42.3	± 5%
Conductivity	0.91 mho/m	± 5%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.48 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>15mm</u> from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3\%$. The results are normalized to 1W input power.

2. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 1. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm 3 (1 g) of tissue:10.36 mW/gaveraged over 10 cm 3 (10 g) of tissue:6.64 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.404 ns	(one direction)
Transmission factor:	0.995	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz:	$Re\{Z\} = 49.1 \Omega$
	Im $\{Z\} = -5.3 \Omega$
Return Loss at 835 MHz	-25.3 dB

4. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with muscle simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity	56.0	± 5%
Conductivity	0.98 mho/m	± 5%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.10 at 900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>15mm</u> from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3\%$. The results are normalized to 1W input power.

5. SAR Measurement

Standard SAR-measurements were performed with the phantom according to the measurement conditions described in section 4. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm^3 (1 g) of tissue: 10.92 mW/g averaged over 10 cm^3 (10 g) of tissue: 7.04 mW/g

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz:	$Re\{Z\} = 45.6 \Omega$
	Im $\{Z\} = -6.5 \Omega$
Return Loss at 835 MHz	-21.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

9. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

11/29/01

Validation Dipole D835V2 SN:448, d = 15 mm

Cubes (2): Peak: 4.15 mW/g ± 0.02 dB, SAR (1g): 2.59 mW/g ± 0.00 dB, SAR (10g): 1.66 mW/g ± 0.01 dB, (Worst-case extrapolation) Penetration depth: 12.0 (10.6, 13.7) [mm] Powerdrift: -0.01 dB SAM Phantom; Flat Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0 Probe: ET3DV6 - SN1507; ConvF(6.48,6.48) at 900 MHz; IEEE1528 835 MHz; σ = 0.91 mho/m ε_r = 42.3 **σ**^e= 1.00 g/cm³ Frequency: 835 MHz; Antenna Input Power: 250 [mW]

Validation Dipole D835V2 SN:448, d = 15 mm

SAM Phantom; Flat Section; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0 Frequency: 835 MHz; Antenna Input Power: 250 [mW]

Probe: ET3DV6 - SN1507; ConvF(6.10,6.10) at 900 MHz; Muscle 835 MHz; σ = 0.98 mho/m ε_r = 56.0 ρ = 1.00 g/cm³ Cubes (2): Peak: 4.32 mW/g ± 0.00 dB, SAR (1g): 2.73 mW/g ± 0.01 dB, SAR (10g): 1.76 mW/g ± 0.02 dB, (Worst-case extrapolation) Penetration depth: 12.4 (11.0, 14.3) [mm]

Powerdrift: 0.02 dB

(

I (

1

l

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, \$004 Zurich, Switzeriand, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY3

Dipole Validation Kit

Type: D1900V2 Serial: 511

Manufactured: October 20, 1999 Calibrated: February 13, 2001

S. 8.1.

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom fitled with head simulating solution of the following electrical parameters at 1900 MHz:

Relative permitivity	39.2	± 5%
Conductivity	1.47 mho/m	± 10%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 5.57 at 1800 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3\%$. The results are normalized to 1W input power.

SAR Measurement

Standard SAR-measurements were performed with the head phantom according to the measurement conditions described in section 1. The results (see figure) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm ³ (1 g) of tissue:	42.8 mW/g
averaged over 10 cm ³ (10 g) of tissue:	21.9 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well. The estimated sensitivities of SAR-values and penetration depths to the liquid parameters are listed in the DASY Application Note 4: 'SAR Sensitivities'.

3. Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.205 ns	(one direction)
Transmission factor:	0.983	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$Re\{Z\} = 50.1 \Omega$
	Im {Ζ} = -1,5 Ω
Return Loss at 1900 MHz	- 34.9 dB

Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with muscle simulating solution of the following electrical parameters at 1900 MHz:

Relative permitivity	53.5	± 5%
Conductivity	1.46 mko/m	± 10%

The DASY3 System (Software version 3.1c) with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 4.85 at 1800 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging. The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to

The dipole input power (forward power) was 250mW \pm 3 %. The results are normalized to 1W input power.

6. SAR Measurement

Standard SAR-measurements were performed with the head phantom according to the measurement conditions described in section 1. The results (see figure) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values are:

averaged over 1 cm³ (1 g) of tissue: 42.4 mW/g averaged over 10 cm³ (10 g) of tissue: 22.0 mW/g

Note: If the liquid parameters for validation are slightly different from the ones used for initial calibration, the SAR-values will be different as well.

Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.205 ns	(one direction)
Transmission factor:	0.983	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$Re\{Z\} = 45.3 \Omega$
	Im {Z} = -1.0 Ω
Return Loss at 1900 MHz	- 25.6 dB

<u>8. Hendling</u>

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Do not apply excessive force to the dipole arms, because they might bend. If the dipole arms have to be bent back, take care to release stress to the soldered connections near the feedpoint; they might come off.

After prolonged use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Ö
Ð
5
N
φ

Cubes (2). Peak: 20.6 mW/g ± 0.02 dB, SAR (1g). 10.7 mW/g ± 0.03 dB, SAR (10g): 5.47 mW/g ± 0.03 dB, (Worst-case extrapolation) Penetration depth. 7.9 (7.4, 9.1) [mm] Probe: ET3DV6 - SN1507; ConvF(5:57.5.57, 5:57) at 1800 MHz: IEEE1528 1900 MHz; σ = 1.47 mf/o/m r_{μ} = 39.2 f = 1.00 g/cm³ Frequency: 1900 MHz; Antenna Input Power: 250 [mW] Generic Twin Phantom; Flat Section; Grid Spacing: Dx = 15.0, Dy = 15.0, Dz = 10.0 Validation Dipole D1900V2 SN:511, d = 10 mm

Powerdrift, 0.00 dB

!

Schmid & Partner Engineering AG Zurich Switzerland

......

.

-

Validation Dipole D1900V2 SN:511, d = 10 mm Frequency: 1900 MHz; Antenna Input Power: 250 [mW]

,

Cubes (2): Peak: 20.0 mW/g ± 0.06 dB, SAR (1g) 10.6 mW/g ± 0.05 dB. SAR (10g): 5.49 mW/g ± 0.04 dB, (Worst-case extrapolation) Penetration depth: 8.7 (7.9, 10.3) [mm] Generic Twin Phantom; Flat Section; Grid Specing: Dx = 15.0, Dy = 15.0, Dz = 10.0 Probe ET3DV6 - SN1507; ConvF(4.85,4.85) at 1800 MHz; **Muscle** 1900 MHz, σ = 1.46 mho/m ε_r = 53.5 ρ = 1.00 **g/**cm³

Powerdrift, 0.01 dB

Schmid & Partner Engineering AG Zurich Switzerland

.

