

SAR Test Report

Report No.: AGC00767180503FH01

FCC ID : P46-VOLT5XL

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Smartphone

BRAND NAME : SURGE

MODEL NAME : VOLT_5XL

CLIENT: Unimax Communications

DATE OF ISSUE: July 12,2018

IEEE Std. 1528:2013

STANDARD(S) : FCC 47CFR § 2.1093

IEEE/ANSI C95.1:2005

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 171

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	To the state of th	July 12,2018	Valid	Initial Release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 3 of 171

	Test Report Certification		
Applicant Name	Unimax Communications		
Applicant Address	18201 McDurmott St. West Suite E,Irvine, CA 92614		
Manufacturer Name	Shenzhen TENSEN Industrial Co., Ltd.		
Manufacturer Address	4th Floor, Yufeng Building, Jinhai Road No.6-9, Xixiang Street, Bao'an District, Shenzhen		
Product Designation	Smartphone		
Brand Name	SURGE		
Model Name	VOLT_5XL		
EUT Voltage	DC3.8V by battery		
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005		
Test Date	June 25,2018 to July 09,2018		
Report Template	AGCRT-US-4G/SAR (2018-01-01)		

Note: The results of testing in this report apply to the product/system which was tested only.

Tested By

Eric Zhou(Zhou Yongkang)

July 09,2018

Angela Li(Li Jiao)

July 12,2018

Forrest Lei(Lei Yonggang)

Authorized By

Forrest Lei(Lei Yonggang)

Authorized Officer

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS	9 10 10
4. SAR MEASUREMENT PROCEDURE	
4.1. SPECIFIC ABSORPTION RATE (SAR) 4.2. SAR MEASUREMENT PROCEDURE 4.3. RF EXPOSURE CONDITIONS	13 15
5. TISSUE SIMULATING LIQUID	17
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	17 18
6. SAR SYSTEM CHECK PROCEDURE	21
6.1. SAR SYSTEM CHECK PROCEDURES	22
7. EUT TEST POSITION	24
7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET. 7.2. CHEEK POSITION	25 25 26
8. SAR EXPOSURE LIMITS	
9. TEST FACILITY	
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	30
12. CONDUCTED POWER MEASUREMENT	33
13. TEST RESULTS	56
13.1. SAR TEST RESULTS SUMMARY	
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	163
ADDENDIV D. CALIDDATION DATA	474

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 5 of 171

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Frequency Band —	Highest Reported	SAR Test Limit (W/Kg)	
Frequency Band	Head	Body-worn	SAR Test Limit (W/Kg)
GSM 850	0.387	0.994	100
PCS 1900	0.250	1.335	The Manual Companies
UMTS Band II	0.618	1.381	Complia es @ ## station of Globa
UMTS Band IV	0.634	1.360	CO
UMTS Band V	0.280	0.485	
LTE Band 2	0.413	1.336	1.6
LTE Band 4	0.735	1.315	The share of the state of the s
LTE Band 5	0.276	0.519	of Colonia Court
LTE Band 12	0.035	0.118	The same of the sa
WIFI 2.4G	0.199	0.138	
Simultaneous Reported SAR	1.519	9	The The state of t
SAR Test Result		PASS	® # John of Colonia

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D06 Hotspot Mode v02r01
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 941225 D05 SAR for LTE Devices v02r05

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an area of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an area of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an area of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an area of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to a sample (s) are retained for 30 days only. The document is in the sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained for 30 days

Page 6 of 171

2. GENERAL INFORMATION

2.1. EUT Description

General Information				
Product Designation	Smartphone			
Test Model	VOLT_5XL			
Hardware Version	A969-37-MB-V2.0			
Software Version	VOLT_5XL_V1.0			
Device Category	Portable			
RF Exposure Environment	Uncontrolled			
Antenna Type	Internal			
GSM and GPRS & EGPRS				
Support Band				
GPRS & EGPRS Type	Class B			
GPRS & EGPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)			
TX Frequency Range	GSM 850 : 820-850MHz; PCS 1900: 1850-1910MHz;			
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz			
Release Version	R99			
Type of modulation	GMSK for GSM/GPRS; GMSK & 8-PSK for EGPRS			
Antenna Gain	GSM850: -0.9dBi; PCS1900: -0.3dBi			
Max. Average Power	GSM850: 31.60dBm; PCS1900: 28.74dBm			
WCDMA	CO CO			
Support Band	□ UMTS FDD Band II □ UMTS FDD Band IV □ UMTS FDD Band V (U.S. Bands) □ UMTS FDD Band I □ UMTS FDD Band III □ UMTS FDD Band VIII (Non-U.S. Bands)			
HS Type	HSPA(HSUPA/HSDPA)			
TX Frequency Range	FDD Band II: 1850-1910MHz; Band IV: 1712.4-1752.6MHz FDD Band V: 820-850MHz			
RX Frequency Range	FDD Band II: 1930-1990MHz; Band IV: 2112.4-5152.6MHz FDD Band V: 869-894MHz			
Release Version	Rel-6			
Type of modulation	HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK			
Antenna Gain	Band II: -0.3dBi; Band IV: -0.7dBi; Band V: -0.9dBi			
Max. Average Power	Band II: 21.69dBm; Band IV: 21.92dBm; Band V: 21.70dBm			

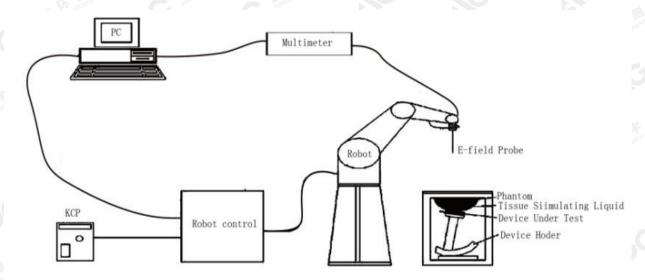
The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 7 of 171

EUI Description (Co	ntinue)	
14-		TIII.

2 NFDD Band 4 NFDD Band 5 NFDD Band 12 17 FDD Band 25 FDD Band 26 41 (U.S. Bands) 1 FDD Band 3 FDD Band 7 FDD Band 8 20 TDD Band 33 TDD Band 34 TDD Band 38 40 FDD Band 42 FDD Band 43 (Non U.S. Bands)		
1 ☐FDD Band 3 ☐FDD Band 7 ☐FDD Band 8 20 ☐TDD Band 33 ☐TDD Band 34 ☐TDD Band 38		
20 TDD Band 33 TDD Band 34 TDD Band 38		
40 FDD Band 42 FDD Band 43 (Non-U.S. Bands)		
1910MHz; Band 4: 1710-1755 MHz; 49MHz;Band 12: 699-716 MHz;		
1990MHz; Band 4: 2110-2155 MHz; 94MHz;Band 12: 729-746 MHz;		
Bi; Band 4: -0.7dBi; Band 5: -0.9dBi; Band 12: -1.2dBi		
Bi; Band 4: -0.9dBi; Band 5: -1.0dBi; Band 12: -1.5dBi		
Band 2:23.19dBm;Band 4:22.87dBm; Band 5: 22.00dBm; Band 12: 25.73dBm		
S A Thomas CO The CO		
2.1 \[\text{V2.1+EDR} \[\text{V3.0} \] \[\text{V3.0+HS} \[\text{V4.0} \] \[\text{V4.1} \]		
Hz The state of th		
〗Π/4-DQPSK 図8-DPSK		
5.659dBm		
C Market State of the State of		
☑802.11b ☑802.11g ☑802.11n(20) ☑802.11n(40)		
Hz # James C C To The Control of the		
n,11g:11.19dBm,11n(20):10.96dBm,11n(40):10.76dBm		
SURGE DLT_5XL apacitance: 3.8 V & 2000mAh		
SURGE DLT_5XL -240V, 50/60Hz, 0.15A Output: DC 5V, 0.7A		
N/A Salar		

Identical Prototype


The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 8 of 171

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 9 of 171

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE2
Manufacture	MVG
Identification No.	SN 08/16 EPGO282
Frequency	0.7GHz-6GHz Linearity:±0.06dB(700MHz-6GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.06dB
Dimensions	Overall length:330mm Length of individual dipoles:2mm Maximum external diameter:8mm Probe Tip external diameter:2.5mm Distance between dipoles/ probe extremity:1mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

☐ High precision (repeatability 0.02 mm)

☐ High reliability (industrial design)

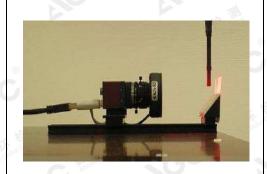
☐ Jerk-free straight movements

□ Low ELF interference (the closed metallic

construction shields against motor control fields)

□ 6-axis controller

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

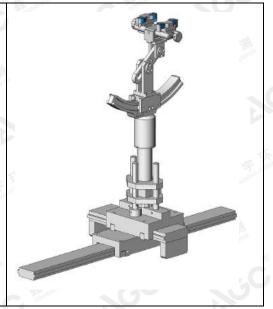

Page 10 of 171

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 11 of 171

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

☐ Left head

□ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 12 of 171

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
σ is the conductivity of the tissue in siemens per metre;
ρ is the density of the tissue in kilograms per cubic metre;

c_h is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt} \mid t = 0$ is the initial time derivative of temperature in the tissue in kelvins per second

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document is a sample (s) are retained for 30 days only. The document is issued by AGC, this document is a sample (s) are retained for 30 days only. The document is issued by AGC, this document is a sample (s) are retained for 30 days only. The document is issued by AGC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained for 30 day

Page 13 of 171

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528 and IEC62209 standards, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 14 of 171

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

			SELVE CO. SELVE SAME		
Maximum zoom sc	an spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]	
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	an graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	grid $\Delta z_{Zoom}(n>1)$: between subsequent points	≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom sca volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

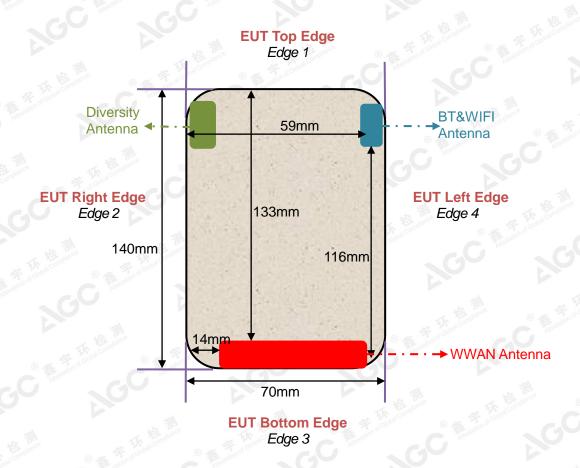
The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago-gent.com.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: AGC00767180503FH01 Page 15 of 171

4.3. RF Exposure Conditions


Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS/EGPRS, WCDMA/HSPA, LTE, BT, WIFI, and support hot spot mode.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the back view)

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Report No.: AGC00767180503FH01 Page 16 of 171

For WWAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Head			
Left Touch	CC M	Yes	7
Left Tilt		Yes	訓 訓
Right Touch		Yes	durie 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Right Tilt	lift,	Yes	Office of the state of the stat
Body	Tolobal Compliant	Altestan	
Back	<25mm	Yes	iii
Front	<25mm	Yes	The state of the s
Hotspot	M	žķ.	
Back	<25mm	Yes	20 GO-
Front	<25mm	Yes	1
Edge 1 (Top)	133mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 2 (Right)	14mm	Yes	E THE PARTY CONTRACTOR OF THE
Edge 3 (Bottom)	2mm	Yes	
Edge 4 (Left)	3mm	Yes	The Management of The Laboration

For WLAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note	
Head	Hon of Global	Attes		
Left Touch		Yes	- E 12 -	
Left Tilt		Yes	The state of the s	
Right Touch		Yes		
Right Tilt	The Global Contin	Yes		
Body	Allestation	(0)		
Back	<25mm	Yes	111 III II	
Front	<25mm	Yes	The state of the s	
Hotspot	The Kanadana	The Compliance	O M. Francisco O M. Marion Co	
Back	<25mm	Yes	G G G - B	
Front	<25mm	Yes	- all st	
Edge 1 (Top)	2mm	Yes	Billion - Karpane Official	
Edge 2 (Right)	59mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR	
Edge 3 (Bottom)	116mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR	
Edge 4 (Left)	1mm	Yes	The second secon	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KCE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attri//www.agc.gett.com.

Page 17 of 171

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

5.1. The composition	of the tissu	e Silliula	ung nquia	Bill State		
Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
750 Head	35	2	0.0	0.0	63	0.0
750 Body	55	# 300	0.0	0.0	44	0.0
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	1	0.0	15	al 0.0	30
1750 Head	52.64	0.36	0.0	47	0.0	0.0
1750 Body	70	W 711	0.0	9	0.0	20
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	1	0.0	9	0.0	20
2450 Head	71.88	0.16	0.0	7.99	0.0	19.97
2450 Body	70		0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528

Target Frequency	he	ad	boo	dy
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
750	41.9	0.89	55.5	0.96
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1750	40.1	1.37	53.4	1.49
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

($\varepsilon r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m3)$

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a trp://www.ago.go.tt.com.

Page 18 of 171

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO

Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant M	leasurement for 750MHz		
C C N	Fr.	Dielectric Pa	rameters (±5%)	Tissue	F Global Co.
	(MHz)	εr 41.9 (39.805-43.995)	δ[s/m] 0.89(0.8455-0.9345)	Temp [°C]	Test time
Head	704	43.85	0.85		
Aftestation C	707.5	43.35	0.86	21.3	July 02 2019
	711	41.68	0.87	21.3	July 02,2018
	750	41.06	0.87	ion of Global Co	F.C Mester
	Fr.	Dielectric Pa	rameters (±5%)	Tissue	
	(MHz)	εr 55.5(52.725-58.275)	δ[s/m]0.96(0.912-1.008)	Temp [oC]	Test time
Body	704	57.32	0.92	_ 1	Compliance @
Dody	707.5	56.69	0.93	0 1 F 100 of C	July 02 2010
	711	55.04	0.97	21.5	July 02,2018
	750	54.56	0.98		III

		Tissue Stimulant M	leasurement for 835MHz		72
Fr. #		Dielectric Par	Dielectric Parameters (±5%)		
	(MHz)	εr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time
	824.2	43.05	0.88	@ F F of Glob	® 5.
Head	826.4	42.63	0.89	Alle station	ACC Autosu
	835	42.17	0.90	21.2	July 05 2019
	836.6	41.77	0.91	21.2	July 05,201
	846.6	41.26	0.92	-mil	TK Compliance
	848.8	40.89	0.93	Spiguoge ®	The support Global C
	Fr.	Dielectric Par	rameters (±5%)	Tissue	Attesta
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time
	824.2	56.38	0.93	litir-	3
Body	826.4	55.71	0.94	Kil poliance	® # 3
	835	55.13	0.95	21.5	huly OF 2011
	836.6	54.69	0.96	21.5	July 05,201
	846.6	54.03	0.97		
	848.8	53.57	0.98		Milita

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 19 of 171

	_	Tissue Stimulant N	leasurement for 835MHz		
Attes	Fr.	Dielectric Pa	rameters (±5%)	Tissue	orne (R. Mar 13)
	(MHz)	εr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time
Head	829	41.35	0.88		
	835	41.06	0.88	21.5	June
	836.5	40.96	0.89	21.5	30,2018
	844	40.40	0.91	8 4	estation of C
~ 指	Fr.	Dielectric Pa	rameters (±5%)	Tissue	_ < 6
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time
Body	829	55.43	0.95	100	11.5
	835	54.89	0.95	21.5	June
	836.5	54.51	0.95	∠1.5	30,2018
	844	53.66	0.97		

		Tissue Stimulant Me	easurement for 1750MHz		
	Fr.	Dielectric Parameters (±5%)			
	(MHz)	εr 40.1 (38.095-42.105)	δ[s/m]1.37(1.3015-1.439)	Temp [°C]	Test time
Head	1712.5	41.38	1.32	-1111	THE THE
	1732.5	40.27	1.36	21.3	July 06 2019
	1750	39.46	1.39	21.3	July 06,2018
	1752.5	39.02	1.40	- C	Attesti
人相	Fr.	Dielectric Parameters (±5%)		Tissue	
	(MHz)	εr 53.4(50.73-56.07)	δ[s/m] 1.49(1.4155-1.5645)	Temp [oC]	Test time
Body	1712.5	55.05	1.44	抓	Compile
	1732.5	54.11	1.48	21.5	July 06,2018
	1750	53.24	1.51	21.3	July 00,2016
	1752.5	52.81	1.53		

		Tissue Stimulant M	easurement for 1750MHz		
	Fr.	Dielectric Pa	rameters (±5%)	Tissue	
The Compliance	(MHz)	εr 40.1 (38.095-42.105)	δ[s/m]1.37(1.3015-1.439)	Temp [°C]	Test time
Head	1720	40.84	1.34	- 7711	· 新
	1732.5	40.35	1.36	22.5	July 00 2019
	1745	39.73	1.38	22.5	July 09,2018
3	1750	39.22	1.41		
三 环	Fr.	Dielectric Pa	rameters (±5%)	Tissue	
(S) Attestation of G	(MHz)	εr 53.4(50.73-56.07)	δ[s/m] 1.49(1.4155-1.5645)	Temp [oC]	Test time
Body	1720	54.73	1.45	® ## Hono	16 000.
	1732.5	54.26	1.47	22.6	huly 00 2010
16 July 19 19 19 19 19 19 19 19 19 19 19 19 19	1745	53.89	1.49	22.6	July 09,2018
K Compile	1750	53.34	1.51	1117:	111

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by GC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 20 of 171

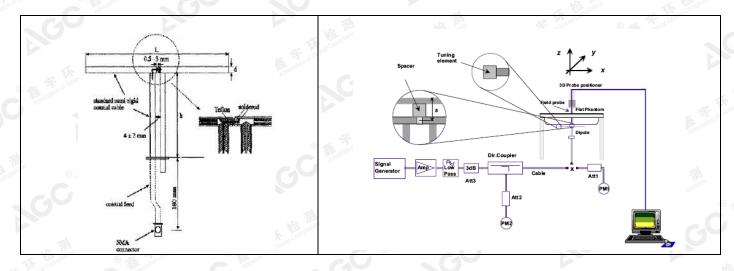
		Tissue Stimulant Me	easurement for 1900MHz		
	Fr.	Dielectric Par	ameters (±5%)	Tissue	Comp. ® # iono
	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [°C]	Test time
	1850.2	41.38	1.35		
Head	1852.4	40.95	1.37	,	W. All
	1880	40.57	1.39	24.7	July 07 2019
	1900	40.06	1.40	21.7	July 07,2018
	1907.6	39.64	1.41	CC	1
	1909.8	39.11	1.43		
The station of the st	Fr. station of	Dielectric Para	ameters (±5%)	Tissue	1
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	Test time
	1850.2	55.11	1.46	non of Glob	
Body	1852.4	54.63	1.48		
8 4	1880	54.07	1.50	24.0	July 04 2040
	1900	53.73	1.51	21.9	July 04,2018
	1907.6	53.35	1.53	T. F	Pal Complian.
	1909.8	52.89	1.55	® # Halion of C	

		Tissue Stimulant Mea	asurement for 1900MHz		
Opal Co.	Fr.	Dielectric Para	ameters (±5%)	Tissue	HE THINGS
CO	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [°C]	Test time
Head	1860	41.06	1.36	a.C	Alle Lives a
	1880	40.67	1.38	21.2	June 25,2018
F Global Coll	1900	40.00	1.40		25,2016
	Fr.	Dielectric Parameters (±5%)		Tissue	E Milance
D. 1	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	Test time
Body	1860	54.16	1.48) "	luna
	1880	53.74	1.50	21.5	June 25,2018
(B) Alle	1900	53.22	1.52		25,2016

		Tissue Stimulant M	easurement for 2450MHz		24 117
lite:	Fr. 🔊	Dielectric Pa	rameters (±5%)	Tissue	_ 50
The Compliance	(MHz)	εr39.2(37.24-41.16)	δ[s/m]1.80(1.71-1.89)	Temp [°C]	Test time
Head	2412	40.66	1.73	Kir plance	® Front of Calif
	2437	39.87	1.75	21.3	June
	2450	39.26	1.77	21.3	29,2018
	2462	38.75	1.80		
® Mary and Gill	Fr.	Dielectric Parameters (±5%)		Tissue	10 All
	(MHz)	er52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [oC]	Test time
Body	2412	54.63	1.88	Allessa	
Med Mance	2437	54.17	1.90	24.5	June
	2450	53.59	1.92	21.5	29,2018
a.C	2462	52.86	1.95	The Kingliance	FA Compile

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 21 of 171

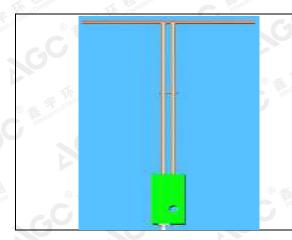

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.



The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 22 of 171

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
750MHz	176	100	6.35
835MHz	161.0	89.8	3.6
1800MHz	71.6	41.7	3.6
1900MHz	68	39.5	3.6
2450MHz	51.5	30.4	3.6

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 23 of 171

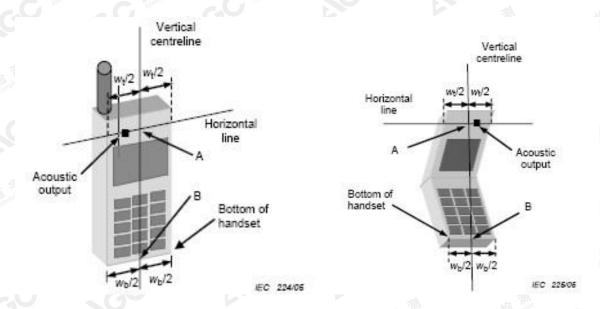
6.2.2. System Check Result

Validation K	it: SN22/	16 DIP 00	t 750MHz&835M 6750-417& SN29 N 29/15DIP 2G45	/15 DIP 0G835-3				
Frequency	Tar	get (W/Kg)	Reference	ce Result 0%)	Tested Value(W/Kg)		Tissue Temp.	Test time
[MHz]	1g	10g	1g 🕠	10g	1g	10g	[°C]	
750	8.65	5.68	7.785-9.515	5.112-6.248	8.99	5.87	21.3	July 02,2018
835	10.04	6.43	9.036-11.044	5.787 -7.073	9.70	6.19	21.2	July 05,2018
835	10.04	6.43	9.036-11.044	5.787 -7.073	10.27	6.18	21.5	June 30,2018
1800	37.43	19.88	33.687-41.173	17.892-21.868	38.31	19.75	21.3	July 06,2018
1800	37.43	19.88	33.687-41.173	17.892-21.868	37.11	19.81	22.5	July 09,2018
1900	41.44	21.33	37.296-45.584	19.197-23.463	42.40	21.36	21.7	July 07,2018
1900	41.44	21.33	37.296-45.584	19.197-23.463	39.03	19.63	21.2	June 25,2018
2450	54.53	24.30	49.077-59.983	21.87-26.730	51.22	23.76	21.3	June 29,2018
System Perf	formance	Check a	t 750MHz & 835N	/Hz &1800MHz &	31900MI	tz &2450	MHz for I	Body
Frequency		get (W/Kg)	J- 11/2 COLL.	ce Result 0%)	- H62	sted (W/Kg)	Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	
750	8.95	5.97	8.055-9.845	5.373-6.567	9.65	6.00	21.5	July 02,2018
835	9.85	6.45	8.865-10.835	5.805-7.095	9.28	5.95	21.5	July 05,2018
835	9.85	6.45	8.865-10.835	5.805-7.095	9.20	5.90	21.5	June 30,2018
1800	36.53	19.80	32.877-40.183	17.82-21.780	37.26	19.20	21.5	July 06,2018
1800	36.53	19.80	32.877-40.183	17.82-21.780	36.10	19.31	22.6	July 09,2018
1900	39.38	20.86	35.442-43.318	18.774-22.946	37.81	19.65	21.9	July 04,2018
1900	39.38	20.86	35.442-43.318	18.774-22.946	37.26	18.89	21.5	June 25,2018
2450	49.92	23.16	44.928-54.912	20.844-25.476	49.41	22.75	21.5	June 29,2018

Note:

(1) We use a CW signal of 18dBm for system check, and then all SAR value are normalized to 1W forward power. The result must be within ±10% of target value.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true;//www.agc.gett.com.

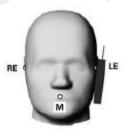

Page 24 of 171

7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front and 4 edges.

7.1. Define Two Imaginary Lines on the Handset

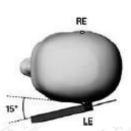
- (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 25 of 171

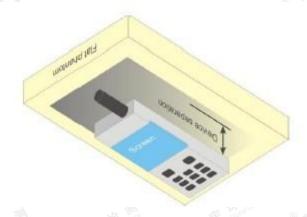
7.2. Cheek Position

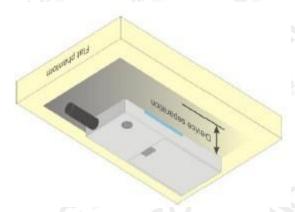
- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost



7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



Page 26 of 171

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 10mm.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

Page 27 of 171

8. SAR EXPOSURE LIMITS

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure		Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)		1.60
Spatial Average SAR (Whole body)		0.08
Spatial Peak SAR (Limbs)	THE -	4.0

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 28 of 171

9. TEST FACILITY

7/10	
Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 29 of 171

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 08/16 EPGO282	Aug. 08,2017	Aug. 07,2018	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No carrequired.	
Liquid	SATIMO	· 环境测 · · · · · · · · · · · · · · · · · · ·	Validated. No cal required.	Validated. No ca required.	
Comm Tester	Agilent-8960	GB46310822	Mar. 01,2018	Feb. 28,2019	
Comm Tester	R&S- CMW500	S/N121209	Jul. 13,2017	Jul. 12,2018	
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019	
Dipole	SATIMO SID750	SN22/16 DIP 0G750-417	Jul. 05,2016	Jul. 04,2019	
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	Jul. 05,2016	Jul. 04,2019	
Dipole	SATIMO SID1800	SN29/15 DIP 1G800-387	Jul. 05,2016	Jul. 04,2019	
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	Jul. 05,2016	Jul. 04,2019	
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	Jul. 05,2016	Jul. 04,2019	
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019	
Directional Couple	Werlatone/ C5571-10	SN99463	Jun. 12,2018	Jun. 11,2019	
Directional Couple	Werlatone/ C6026-10	SN99482	Jun. 12,2018	Jun. 11,2019	
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018	
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 30 of 171

11. MEASUREMENT UNCERTAINTY

Measi	urement u	ncertainty fo	or Dipole a	1	ver 1 gram	/ 10 gram.			1
a	b	С	d	e f(d,k)	f	g	h cxf/e	c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System			100	•	-ail	W. 50	\	· ·	omplia
Probe calibration	E.2.1	5.831	N	1 版	1	1: K Mai Compilar	5.83	5.83	00
Axial Isotropy	E.2.2	0.695	R 😸	√3	√0.5	√0.5	0.28	0.28	00
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	√0.5	√0.5	0.43	0.43	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	E.2.4	0.685	R	√3	1 Kinglian	1	0.40	0.40	8
System detection limits	E.2.4	1.0	R	√3 ∞	1 Globa	1 ® 5 static	0.58	0.58	8
Modulation response	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	00
Response Time	E.2.7	0	R	$\sqrt{3}$	1	A Kilmpliance	0	0	8
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1 8 4	n 1 1 2000	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1 Attention	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with respect to phantom shell	E.6.3	1.4	R	$\sqrt{3}$	1	Allestation of	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	œ
Test sample Related				-700/	W.S.	-11111	~ F/s	bal Compliance	Į.
Test sample positioning	E.4.2	2.6	N	onpliance 1	Joba Con	1	2.6	2.6	00
Device holder uncertainty	E.4.1	3 %	N	1	Alestation 1	1-	3	3	00
Output power variation—SAR drift measurement	E.2.9	5	R	$\sqrt{3}$	1	1	2.89	2.89	00
SAR scaling	E.6.5	5	R	$\sqrt{3}$	1	1, 1	2.89	2.89	<u></u> ∞
Phantom and tissue parameters		Wife St.		长。	mplance	Thomas Compil	8	Altestation of	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1 %	e lation of 1	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	α
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	N
Liquid permittivity measurement	E.3.3	5	N	19 纂	0.23	0.26	1.15	1.30	N
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	o
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	o
Combined Standard Uncertainty		11 THE	RSS	KE JAPA	() May	of Global C	9.79	9.59	
Expanded Uncertainty (95% Confidence interval)	THE ST	Model Combine	K=2	obal Cu	C *****	< G	19.58	19.18	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 31 of 171

а	b	С	d	e e	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	f(d,k) Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	1	(= 75)	2.00				(=75)	(=75)	:IIII
Probe calibration drift	E.2.1.3	0.5	N	1	1	1 :	0.50	0.50	00
Axial Isotropy	E.2.2	0.695	R	$\sqrt{3}$, o O	TO Complied	0.00	0.00	00
Hemispherical Isotropy	E.2.2 ®	1.045	R	√3	0 %	Jun of Gard	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	0	0	0.00	0.00	oc
Linearity	E.2.4	0.685	R	$\sqrt{3}$	0	0	0.00	0.00	_ 00
System detection limits	E.2.4	1.0	R	√3	03	0	0.00	0.00	00
Modulation response	E2.5	3.0	R	$\sqrt{3}$	on of Global	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	1 Alles	0	0	0.00	0.00	00
Response Time	E.2.7	0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	© O	of Globolii O	0.00	0.00	oc
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	ox
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	o
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	7 1	1,5	0.81	0.81	oc
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	00
System check source (dipole)	60							-1111	
Deviation of experimental dipoles	E.6.4	2	Ν	<u> </u>	1 1	1	2 🔨	2	00
Input power and SAR drift measurement	8,6.6.4	5	R	√3	Fron Jobal Com	1	2.89	2.89	o
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters								10	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	<u> </u>	1,5	2.31	2.31	oc
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	Final Co	19	0.84	1.90	1.60	ox
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	N
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	N
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	ox
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	ox
Combined Standard Uncertainty		Attesti	RSS				5.564	5.205	
Expanded Uncertainty (95% Confidence interval)			K=2	liji:		The Compliance	11.128	10.410	

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 32 of 171

System	Validation	uncertainty	tor Dipol	e averaged	d over 1 gra	m / 10 gram	١.		
а	b	С	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System		a.C	Hes						III;
Probe calibration	E.2.1	5.831	N	1	1	1 -	5.83	5.83	œ
Axial Isotropy	E.2.2	0.695	R	√3	moe 1	Th 1 compilar	0.40	0.40	8
Hemispherical Isotropy	E.2.2 ®	1.045	R	√3	0	ion of O	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	E.2.4	0.685	R	$\sqrt{3}$	1	1	0.40	0.40	œ
System detection limits	E.2.4	1.0	R	√3	1 1 mplian	1	0.58	0.58	8
Modulation response	E2.5	3.0	R	√3	0	© 0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	All Alle	1	U 1	0.021	0.021	00
Response Time	E.2.7	0.0	R	√3	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	∞
RF ambient conditions-Noise	E.6.1	3.0	R	√3	e 1 F	not Globar 1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	oo
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	% 1	1,5	0.81	0.81	о
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R ®	√3	15	1	1.33	1.33	00
System check source (dipole)	60		G					-3111	
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	70 1	1 恒	1 1 m	5.00	5.00	ø
Input power and SAR drift measurement	8,6.6.4	5.0	Robal	√3	astation of Tiobal	1	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	œ
Phantom and tissue parameters							Δ	- 1	E Milance
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	Marco 1	TA KE	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	Global C.	e C	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	M
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	o
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty	-	1	RSS			liji:	9.718	9.517	
Expanded Uncertainty (95% Confidence interval)		lin:	K=2	TIME SALE		The Kill Compliance	19.437	19.035	

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 33 of 171

12. CONDUCTED POWER MEASUREMENT GSM BAND

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	> _ C ^ ^ _	The second Care III	1 000 (02.11)	
(C) Milestation of Garage	824.2	31.59	-9	22.59
GSM 850	836.6	31.53	-9 Manuface	22.53
	848.8	31.60	-9	22.60
CDDC 050	824.2	31.44	-9	22.44
GPRS 850 (1 Slot)	836.6	31.37	-9	22.37
(1 3101)	848.8	31.23	-9	22.23
0000 050	824.2	28.58	The Compliance -6 The Theoret	22.58
GPRS 850 (2 Slot)	836.6	28.74	-6 Milestation	22.74
(2 3101)	848.8	28.63	-6	22.63
	824.2	27.27	-4.26	23.01
GPRS 850 (3 Slot)	836.6	27.19	-4.26	22.93
	848.8	27.22	-4.26	22.96
::::::::::::::::::::::::::::::::::::::	824.2	25.41	-3	22.41
GPRS 850 (4 Slot)	836.6	25.47	-3	22.47
(4 3101)	848.8	25.69	-3	22.69
62	824.2	25.07	-9 # delation	16.07
EGPRS 850 (1 Slot)	836.6	25.14	-9	16.14
(1 5101)	848.8	25.35	-9	16.35
S &	824.2	22.09	-6	16.09
EGPRS 850	836.6	22.11	-6	16.11
(2 Slot)	848.8	22.25	-6 ®	16.25
	824.2	21.29	-4.26	17.03
EGPRS 850	836.6	21.22	-4.26	16.96
(3 Slot)	848.8	21.39	-4.26	17.13
	824.2	19.34	-3 templance	16.34
EGPRS 850	836.6	19.19	· -3	16.19
(4 Slot)	848.8	19.41	Ames-u	16.41

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 34 of 171

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <2	> The committee of the	and Compland	Allestation (8) Allestati	on o' Allest
極調	824.2	31.52	-9	22.52
GSM 850	836.6	31.50	-9	22.50
(C) Attestation of	848.8	31.55	-9	22.55
GPRS 850	824.2	31.41	-9	22.41
(1 Slot)	836.6	31.35	-9	22.35
(1000)	848.8	31.21	-9	22.21
CDDC 050	824.2	28.55	-6	22.55
GPRS 850 (2 Slot)	836.6	28.71	-6	22.71
(2 3101)	848.8	28.60	-6 # Maria	22.60
ODDO OFO	824.2	27.23	-4.26	22.97
GPRS 850 (3 Slot)	836.6	27.15	-4.26	22.89
(3 300)	848.8	27.18	-4.26	22.92
GPRS 850 (4 Slot)	824.2	25.36	-3°	22.36
	836.6	25.42	© ##	22.42
(4 SIUL)	848.8	25.61	-3	22.61

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 35 of 171

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	(8) A support Global	(B) The same of Clobal Control	10 60	~GO
oal Comm	1850.2	28.53	-9	19.53
PCS1900	1880	28.65	-9	19.65
	1909.8	28.37	-9	19.37
GPRS1900	1850.2	28.59	- 9	19.59
(1 Slot)	1880	28.74	-9	19.74
	1909.8	28.50	-9	19.50
GPRS1900	1850.2	24.53	₩ -6	18.53
(2 Slot)	1880	24.42	The complete -6	18.42
(2 3101)	1909.8	24.58	-6 Milestation	18.58
ODD04000	1850.2	23.39	-4.26	19.13
GPRS1900 (3 Slot)	1880	23.55	-4.26	19.29
	1909.8	23.52	-4.26	19.26
00004000	1850.2	22.58	® # Front clo_3	19.58
GPRS1900 (4 Slot)	1880	22.83	-3	19.83
(4 3101)	1909.8	22.65	-3	19.65
E O D O Milestation of	1850.2	24.17	-9	15.17
EGPRS1900 (1 Slot)	1880	24.32	-9 # Johnson	15.32
(1 3101)	1909.8	24.54	-9	15.54
- of hardings	1850.2	21.58	-6	15.58
EGPRS1900 (2 Slot)	1880	21.69	-6	15.69
(2 5101)	1909.8	21.72	-6	15.72
E00001005	1850.2	21.55	-4.26	17.29
EGPRS1900 (3 Slot)	1880	21.36	-4.26	17.10
	1909.8	21.28	-4.26	17.02
Allestation	1850.2	20.27	-3	17.27
EGPRS1900	1880	20.49	-3 to mark	17.49
(4 Slot)	1909.8	20.23	-3	17.23

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 36 of 171

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <2	> In the commit	neo Compliance	Allestations (8) Allestati	on o' Allest
極調	1850.2	28.50	-9	19.50
PCS1900	1880	28.63	-9	19.63
	1909.8	28.32	-9	19.32
ODD04000	1850.2	28.53	-9 Completo	19.53
GPRS1900 (1 Slot)	1880	28.70	· 9	19.70
(13101)	1909.8	28.47	-9	19.47
00004000	1850.2	24.51	-6	18.51
GPRS1900 (2 Slot)	1880	24.38	-6 -6	18.38
(2 3101)	1909.8	24.52	The complete -6 F Model Co	18.52
00004000	1850.2	23.35	-4.26	19.09
GPRS1900 (3 Slot)	1880	23.51	-4.26	19.25
(3 5101)	1909.8	23.50	-4.26	19.24
GPRS1900 - (4 Slot) -	1850.2	22.52	-3	19.52
	1880	22.81	· 3	19.81
	1909.8	22.62	-3	19.62

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) - 6 dB

Frame Power = Max burst power (3 Up Slot) - 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc.gett.com.

Page 37 of 171

UMTS BAND HSDPA Setup Configuration:

- •The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- •The RF path losses were compensated into the measurements.
- ·A call was established between EUT and Based Station with following setting:
- (1) Set Gain Factors(β c and β d) parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle (k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- ·The transmitted maximum output power was recorded.

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc (Note5)	βd	βd (SF)	β с /β d	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
Marie dalio 1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note 4)	15/15(Note 4)	64	12/15(Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause

5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .

Note 3: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the c/d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 11/15 and d = 15/15.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true and the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an area of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an area of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an area of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to an area of the sample (s) are retained for 30 days only. The document is issued by AGC, this document to a sample (s) are retained for 30 days only. The document is in the sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained for 30 days

Page 38 of 171

HSUPA Setup Configuration:

- · The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- · A call was established between EUT and Base Station with following setting *:
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3) Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI
- (8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- · The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βс	βd	βd (SF)	βc/βd	βHS (Note 1)	βес	βed (Note 4) (Note 5)	βed (SF)	βed (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
15 Milestation	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	K Taplance	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	- TI	_	5/15	5/15	47/15	4	13	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_c . For sub-test 5, \triangle ACK, \triangle NACK and \triangle CQI = 5/15 with β_{hs} = 5/15 * β_c .

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the c/d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 10/15 and d = 15/15.

Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: Bed cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

The results show this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gott.com.

Report No.: AGC00767180503FH01 Page 39 of 171

UMTS BAND II

WI S BAND II		1 TEL MORE
Mode	Frequency	Avg. Burst Power
mode	(MHz)	(dBm)
WCDMA 1900	1852.4	20.89
RMC	1880	21.66
RIVIC	1907.6	21.69
WCDMA 1000	1852.4	20.51
WCDMA 1900 AMR	1880	20.92
AIVIR	1907.6	20.72
LICDDA	1852.4	19.80
HSDPA	1880	20.58
Subtest 1	1907.6	20.10
LICODA #	1852.4	19.86
HSDPA	1880	20.08
Subtest 2	1907.6	19.81
LIODDA	1852.4	20.72
HSDPA	1880	19.90
Subtest 3	1907.6	20.95
NODDA (1852.4	21.26
HSDPA	1880	21.32
Subtest 4	1907.6	21.40
TO THE TANK THE PARTY OF THE PA	1852.4	21.65
HSUPA	1880	20.06
Subtest 1	1907.6	20.83
LIQUIDA	1852.4	20.74
HSUPA	1880	20.10
Subtest 2	1907.6	20.25
LIGHTDA	1852.4	21.08
HSUPA	1880	20.21
Subtest 3	1907.6	20.09
A LOUIDA MARIA	1852.4	19.93
HSUPA	1880	19.81
Subtest 4	1907.6	19.96
LIQUIDA	1852.4	19.85
HSUPA	1880	19.96
Subtest 5	1907.6	19.98

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC00767180503FH01 Page 40 of 171

UMTS BAND IV

IIS BAND IV		
Mode	Frequency	Avg. Burst Power
- Indu	(MHz)	(dBm)
WCDMA 1700	0 4 1712.5	21.82
RMC	1732.5	21.89
IXIVIO	1752.5	21.92
WCDMA 1700	1712.5	20.74
AMR	1732.5	21.15
AIVIN	1752.5	20.95
HEDDA	1712.5	20.03
HSDPA	1732.5	20.81
Subtest 1	1752.5	20.33
LICODA	1712.5	20.09
HSDPA	1732.5	20.31
Subtest 2	1752.5	20.04
LICDDA	1712.5	20.95
HSDPA	1732.5	20.13
Subtest 3	1752.5	21.18
LICDDA	1712.5	21.49
HSDPA	1732.5	21.55
Subtest 4	1752.5	21.63
LICUIDA	1712.5	21.88
HSUPA	1732.5	20.29
Subtest 1	1752.5	21.06
HOUDA	1712.5	20.97
HSUPA	1732.5	20.33
Subtest 2	1752.5	20.48
LIQUIDA	1712.5	21.31
HSUPA	1732.5	20.44
Subtest 3	1752.5	20.32
LIGUIDA	1712.5	20.16
HSUPA	1732.5	20.04
Subtest 4	1752.5	20.19
c.Claus.	1712.5	20.08
HSUPA	1732.5	20.19
Subtest 5	1752.5	20.21

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 41 of 171

UMTS BAND V

Mode	Frequency	Avg. Burst Power
Wode	(MHz)	(dBm)
WCDMA 850	826.4	21.70
RMC	836.6	21.47
RIVIC	846.6	21.50
WCDMA 950	826.4	20.32
WCDMA 850 AMR	836.6	20.73
AIVIR	846.6	20.53
LICDDA	826.4	20.61
HSDPA	836.6	20.39
Subtest 1	846.6	20.91
HODDA	826.4	20.67
HSDPA	836.6	20.89
Subtest 2	846.6	20.62
HODDA	826.4	20.53
HSDPA	836.6	20.71
Subtest 3	846.6	20.76
8 # 110pp	826.4	21.07
HSDPA	836.6	21.13
Subtest 4	846.6	21.21
A HOURA TE TO SE	826.4	20.46
HSUPA	836.6	20.87
Subtest 1	846.6	21.64
HOURA	826.4	20.55
HSUPA	836.6	20.91
Subtest 2	846.6	21.06
HOUDA	826.4	20.89
HSUPA	836.6	21.02
Subtest 3	846.6	20.90
I CUIDATE TO THE STATE OF THE S	826.4	20.74
HSUPA	836.6	20.62
Subtest 4	846.6	20.77
HOURA	826.4	20.66
HSUPA	836.6	20.77
Subtest 5	846.6	20.79

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 42 of 171

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)
Note: CM=1 for β $_{o}/\beta$ $_{d}$ =12/15, β $_{hs}/\beta$ $_{c}$ =24/15.For all $_{o}$	other combinations of [OPDCH, DPCCH, HS-DPCCH,
F-DPDCH and F-DPCCH the MPR is based on the r	elative CM difference	

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Report No.: AGC00767180503FH01 Page 43 of 171

D 1 . 1 . 1 . 1	M. 1.1.4		RB	T	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	18607	18900	19193
			0	0	22.33	21.80	21.69
		1	3	0	22.31	21.65	21.66
	ico King	ance	5	0	22.28	21.51	21.64
	QPSK		0	0	22.11	21.43	21.25
	Alles	3	2	0	22.18	21.48	21.29
	All The	litte:	3	0	22.24	21.52	21.36
4 48411-	** AE Compliance	5h 6	0 🦂	Shedon 1	21.43	20.79	20.40
1.4MHz	on an entering	ion of C	0	1.0	22.41	21.34	21.04
	< GO	10	3	1	22.39	21.35	20.97
16QAM			5	1 板	22.36	21.33	20.86
	16QAM	# 1	0	(C)	22.31	21.05	20.44
	F M Global Compile	3	2	1	22.36	21.18	20.57
		3	1	22.40	21.26	20.65	
		6	0	2	21.47	20.26	19.96
andwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
andwidth	Modulation	IND SIZE	offset	raiget wii ix	18615	18900	19185
	G Alles		0	0	22.25	21.74	21.48
		1	7	O Tomplance	22.21	21.55	21.46
	Kinghance	The Compile	14 🧐	0	22.17	21.12	21.47
	QPSK	estation of Glob	0	1	21.22	20.23	20.35
	100°	8	4	1	21.29	20.36	20.41
			7	1	21.37	20.57	20.47
2MU-	玉龙	15	10	18 5	21.34	20.67	20.37
3MHz	® ## Glove	Attestall	0	1	22.20	21.41	21.08
) (1	7	1	22.19	21.39	21.25 21.29 21.36 20.40 21.04 20.97 20.86 20.44 20.57 20.65 19.96 Channe 19185 21.48 21.46 21.47 20.35 20.41 20.47 20.37
		1000	14	1	22.18	21.31	20.61
	16QAM	The Compliance	0	1 2	21.32	20.12	19.52
	(a) (a)	8	4	2	21.37	20.24	19.57
	CO AME	< G	7	2	21.39	20.33	19.64
		15	0 -11	2	21.36	20.24	40.75

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Page 44 of 171

Damahari dal	Madulatia	DD -:-	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	MPR	18625	18900	19175
	of Globs		0	0	21.77	21.56	22.50
		1	12	0	21.82	20.97	22.46
	À.	111	24	0	21.88	20.71	22.41
	QPSK	(Sur	0	1	20.74	19.67	20.86
	® Attestation of Gill	12	6	(1	20.83	19.75	20.96
			11	1	20.88	19.82	21.02
CD411-	拉测	25	0	11	20.78	20.06	20.85
5MHz	no Global Co	F Clobal Company	0	of Global 1	23.19	20.94	20.54
		ilion oi	12	1	23.11	21.03	19.96
16QAM		24	1	23.00	21.09	19.79	
	16QAM		0	2 🔬	21.74	19.88	18.84
	The American	12	6	2	21.79	19.92	18.92
ar dalamin Se	C Allestan	11	2	21.85	19.96	18.95	
	25	0	2	21.81	19.76	19.16	
Bandwidth	Modulation	n RB size	RB	Target	Channel	Channel	Channel
sandwidth	Wodulation		offset	MPR	18650	18900	19150
	® The station of Glow		0	0	21.57	21.51	21.73
	G M	1	24	0	21.36	20.69	21.71
	:1117	7	49	0 1/2	21.13	20.02	21.67
	QPSK	The Global Compli	0	Attesta 1 no	20.55	19.76	20.52
	Ot Clops,	25	12	1	20.59	19.79	20.58
	100		25	1	20.63	19.82	20.63
40MU=	. 17	50	0	. 1	20.82	20.15	20.62
10MHz	E Thomas Conti	(a) (d)	0	1	22.45	20.87	20.89
16QAM	® Attestation of G	-0	24	(1)	22.38	20.65	20.15
		9	49	1	22.30	20.44	19.54
	16QAM	- :700	0	2	21.21	19.58	18.86
	ilance Mill	25	12	2	21.34	19.62	18.89
	(S) ###	station of Give	25	2	21.55	19.69	18.93
		50	0	2	21.57	19.85	19.26

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 45 of 171

Dondwildtle	Modulation	DD oins	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	MPR	18675	18900	19125
	of Globs		0	0	21.66	22.23	21.54
		1	37	0	21.28	21.58	21.63
	A	in the second	74	0	20.87	20.13	21.71
	QPSK	Comp. and	0	1	20.06	19.64	20.21
	® Anastation of Gui	36	16	(1	21.14	19.75	20.33
			35	1	20.27	19.87	20.54
45MU-	EMIL TO THE	75	0	KI justo	20.56	20.41	20.51
15MHz	an of Global Co.	F of Global Company	0	of Giobal 1	22.30	20.91	21.54
	Allest	1	37	1	22.32	20.47	20.56
	CO		74	1	22.35	20.24	19.51
	16QAM		0	2 4	21.34	19.02	18.66
	The American	36	16	© 2 d	21.39	19.15	18.78
	ation of Global Co.	C Attestant	35	2	21.48	19.29	18.94
laur		75	0	2	21.45	19.60	19.47
) a m alveri al 4 la	Madulation	DP cizo	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	MPR	18700	18900	19100
	® ## Station of Gion		0	0	22.53	22.68	22.58
	G M	1	49	0	21.45	21.77	21.25
	-011	7	99	O The No	21.18	20.43	21.53
	QPSK	The Global Compli	0	Altesta 1 no	20.12	19.87	20.21
	of Glops.	50	25	1	20.08	19.92	20.33
	100		49	1	20.04	19.96	20.47
20MU-	. 10	100	0	. 1	20.40	20.67	20.44
20MHz	E Thomas Contro	(a) (b)	0	1 8	22.07	20.97	22.03
	® Mestation of G	-0	49	1	22.13	20.63	21.11
		5	99	1	22.30	20.40	19.52
	16QAM	- 3711	0	2	21.17	18.93	18.96
	ilance Mill	50	25	2	21.34	18.99	19.02
	(S) ###	station of Give	49	2	21.42	19.06	19.09
	CO "	100	0	2	21.39	19.42	19.80

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC00767180503FH01 Page 46 of 171

D	NA. 1.1.41		RB	T(1105	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	19957	20175	20393
			0	0	22.87	22.46	21.63
		1	2	0	22.85	22.49	21.62
	松	auce Ma	5	0	22.83	22.53	21.58
	QPSK		0	0	22.43	22.33	21.12
	Atte	3	1	0	22.57	22.39	21.24
		litte:	2	0	22.76	22.45	21.29
4 40011-	The Repulsary	6	0 %	The country of the co	21.90	21.64	20.47
1.4MHz	one O Autest	ion of C	0	1.0	22.06	21.88	21.51
P.C.	COO.	10	2	1	22.01	21.87	21.53
			5	1. 极声	21.97	21.86	21.55
	16QAM	- 4	0	© A Clobal	22.03	21.63	21.23
	F of Global Compile	3	1	1	22.11	21.75	21.33
	ation c		2	1	22.19	21.77	21.39
	6	0	2	21.68	20.75	20.58	
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Danuwium	Woddiation	ND SIZE	offset	Target WFK	19965	20175	20385
	C Miles		0	0	22.66	22.44	21.50
	, in	1	7	Q Complance	22.61	22.49	21.38
	The Films	The Complis	14 🧐	0	22.59	22.55	21.24
	QPSK	estation of Glour	0	1	21.67	21.52	20.47
	100°	8	4	1	21.74	21.58	20.53
			7	1	21.81	21.63	21.58 21.12 21.24 21.29 20.47 21.51 21.53 21.55 21.23 21.33 21.39 20.58 Channe 20385 21.50 21.38 21.24 20.47
3MH-	长	15	1 0	18 5	21.80	21.50	20.40
3MHz	® ## Glob	Allestall	0	1	21.96	21.84	21.61
	J (1	7	1	21.77	21.82	21.62
		litte	14	1	21.69	21.78	21.63
	16QAM	The Compliance	0	1 2	21.43	20.56	20.42
	® 45	8	4	2	21.52	20.65	20.48
	CAC MIN	\ C	7	2	21.56	20.77	20.52
		15	0 ::::	2	21.58	20.69	20.42

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 47 of 171

Donaly i alti-	Modulation	DD oins	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	MPR	19975	20175	20375
	of Globs		0	0	22.83	22.56	21.51
		1	12	0	22.74	22.63	21.36
	À.	111	24	0	22.61	22.67	21.25
	QPSK	ano	0	1	21.64	21.43	20.31
	® Anastation of Gui	12	6	(1	21.69	21.52	20.37
			11	1	21.75	21.55	20.43
ENALL-	MU- 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	0	KI justo	21.74	21.48	20.44
5MHz	an of Global Con.	F of Global Comp	0	of Giobal 1	22.02	22.02	21.39
	The state of the s	1	13	1	21.93	21.96	21.37
			24	1	21.80	21.82	21.38
	16QAM		0	2 🔬	21.12	20.77	20.46
	The state of the s	12	6	© 2 2 00 00 00 00 00 00 00 00 00 00 00 00	21.17	20.79	20.55
	Jion of Global Co.	C Allestan	13	2	21.21	20.82	20.60
		25	0	2	21.37	20.71	20.45
) on duvid4h	Madulation	RB size	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation		offset	MPR	20000	20175	20350
	® Filestation of Glob		0	0	22.53	22.48	21.47
	G M	1	24	0	22.46	22.52	21.03
	:1117	7	49	O The No	22.37	22.55	20.79
	QPSK	The Chopal Compli	0	Altesta 1 no	21.23	21.37	20.02
	of Glops.	25	12	1	21.35	21.42	20.09
	100		25	1	21.48	21.46	20.18
10MU-	. 10	50	0	. 1	21.60	21.47	20.42
10MHz	I I Should Com	(a) #4	0	1 9	21.89	21.91	21.76
	® Attestation of Co.	-C	24	(1)	21.67	21.65	21.71
		9	49	1	21.32	21.49	21.69
	16QAM	- <u>- 70</u>	0	2	20.84	20.13	20.34
	MIN.	25	12	2	20.93	20.35	20.39
	© ##	dation of Gill	25	2	20.98	20.42	20.43
	- CC **	50	0	2	21.38	20.55	20.46

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 48 of 171

Dondwildtle	Modulation	DD oins	RB	Target	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	MPR	20025	20175	20325
	ot Glon.		0	0	22.64	22.08	21.48
		1	37	0	22.35	22.33	21.28
	A	in the second	74	0	22.16	22.63	21.05
	QPSK	ano	0	1	21.24	21.47	20.05
	® Anastation of Gui	36	16	(1	21.38	21.53	20.11
			35	1	21.57	21.60	20.14
45MUL	15MU-	75	0	KI justo	21.67	21.69	20.63
15MHz	an of Global Co.	F of Global Company	0	of Giobal 1	22.26	21.92	21.29
	Allest	1	37	1	21.94	21.64	21.36
	100		74	1	21.63	21.42	21.62
	16QAM		0	2 4	20.56	20.31	20.45
	The American	36	16	© 2 d	20.87	20.39	20.51
	Fion of Global Con	C Attestant	35	2	20.92	20.44	20.55
		75	0	2	21.32	20.55	20.59
ماداد المحادد	Madulation	RB size	RB offset	Target	Channel	Channel	Channel
Bandwidth	Modulation			MPR	20050	20175	20300
	® # Salton of Glov		0	0	22.83	22.76	22.50
	G M	1	49	0	22.25	22.45	21.34
	-Till		99	0	21.83	22.71	21.11
	QPSK	I I Chopal Compli	0	Artesto 1 no	21.22	21.34	19.87
	of Globa &	50	25	1	21.29	21.46	19.95
	100		49	1	21.34	21.52	20.07
201411-		100	0	. 1	21.45	21.57	20.46
20MHz	I Industra	(a) #	0	1 8	22.56	21.95	21.25
	® Allestation of G		49	1	22.03	21.63	21.44
		3	99	1	21.86	21.07	21.79
	16QAM	-700	0	2	20.88	20.01	20.23
	ince Mil	50	25	2	20.93	20.17	20.38
	(S) ###	station of Gru	49	2	20.97	20.23	20.51
	CO "	100	0	2	21.43	20.36	20.54

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 49 of 171

Dondy dale	Modulation	DD oins	RB	Torget MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	20407	20525	Channel 20643 21.14 21.17 20.77 20.85 20.87 19.86 20.49 20.43 20.38 20.05 20.16 20.21 19.36 Channel 20635 20.94 20.99 21.03 19.89 19.92 19.96 19.85 20.49 20.41 19.03
	Ot. Colon.		0	0	20.51	21.34	21.14
		1	2	0	20.49	21.33	21.15
	A :	920	5	0	20.47	21.34	21.17
	QPSK	and	0	0	20.33	21.12	20.77
	® Attestation of Gu	3	1	0	20.39	21.23	20.85
			2	0	20.41	21.26	21.17 20.77 20.85 20.87 19.86 20.49 20.43 20.38 20.05 20.16 20.21 19.36 Channel 20635 20.94 20.99 21.03 19.89 19.92 19.96 19.85
4 48411-	THE MANOR	6	0	大程"。	19.48	20.49	19.86
1.4MHz	of Global Co.	EV Clopal Count	0	of Global 1	21.96	19.46	20.49
	- C Market	1	2	1	21.99	19.45	20.43
	CO		5	1	22.00	19.43	20.38
	16QAM		0	17	21.87	19.27	20.05
	The Hallance	3	30001 1	® ## 101 Civil	21.93	19.31	20.16
	Fion of Global Co.	G Altestan	2	1	21.96	19.36	20.38 20.05 20.16 20.21 19.36 Channel 20635
		6	0	2	21.07	18.35	19.36
) on duri dili	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Bandwidth	Wodulation	KD SIZE	offset	Target MPR 20415		20525	20635
	® ## Station of Glos	~ GC	0	0	20.45	21.42	20.94
	G ^m	1	7	0 10	20.47	21.37	20.99
	litir:	W 7	14	0	20.50	21.32	21.03
	QPSK	E Shopal Compila	0	Attestation of 1	19.45	20.34	19.89
	Ol Clops.	8	4	1	19.49	20.40	19.92
	100		7	1	19.52	20.44	19.96
OML!-		15	0	. 1	19.46	20.35	19.85
3MHz	The Marie	0 Z F	3/0	1 Mestalion of	21.82	19.53	20.55
	(B) Allestation of Grand	Altestati	7	64	21.87	19.57	20.49
		3	14	1	21.91	19.60	20.41
	16QAM	1007;	0	2	20.89	18.35	19.03
	AND STATE	8	4	2	20.96	18.42	19.18
	(C) (Market)	ation of Glov	7	2	21.07	18.49	19.25
		15	0	2	20.98	18.40	19.22

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 50 of 171

Donalus Islati	Madulatian	DD oins	RB	Torget MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB size	offset	Target MPR	20425	20525	20625
	Ot. Colon.		0	0	20.60	21.70	21.09
		1	12	0	20.75	21.55	21.14
	A :	<u> </u>	24	0	20.98	21.24	21.18
	QPSK	pi billio	0	1	19.62	20.24	19.88
	® Attestation of G	12	6	0 1	19.73	20.32	19.95
			11	1	19.77	20.37	20.05
EMIL-	THE MANOR	25	0	T 12 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19.56	20.43	19.90
5MHz	Not Global Co.	For Global Come	0	of Global 1	20.41	19.74	20.49
	- C Allest	1	12	1	20.58	20.07	20.29
	CO		24	1	20.78	20.13	20.19
	16QAM		0	2	19.97	18.75	19.05
	To Manage	12	6	2	20.02	18.83	19.21
	Find of Global Co.	C Attestati	11	2	21.06	18.88	20.19 19.05 19.21 19.27 19.31 Channel 20600 21.12
		25	0	2	20.96	18.57	19.31
Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
sandwidth	Wodulation	RD Size	offset	Target MPK	20450	20525	20600
	® Managarian of Glov	~ GC	0	0	20.62	21.73	21.12
	G ^m	1	24	0	20.76	21.58	21.17
	:111	TE SU	49	0	20.99	21.25	21.22
	QPSK	E Global Complies	0	Attestation of 1	19.64	20.25	19.92
	of Clope, ©	25	12	1	19.77	20.36	19.98
	100		25	1	19.79	20.41	20.07
40MU=		50	0	. 1	19.59	20.39	19.93
10MHz	I India Com	0 a 4	3/0	1 [®] Martalion d	20.42	19.71	20.51
	® Milestation of G.		24	(1)	20.61	20.04	20.27
			49	1	20.81	20.16	20.22
	16QAM	lik:	0	2	19.99	18.78	19.06
	in in the second	25	12	2	20.05	18.86	19.23
	® ##	ation of Giv	25	2	21.08	18.91	19.31
C,C	_ (1	50	0	2	20.97	18.55	19.33

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 51 of 171

Pop duri dul	Modulation	DD oins	RB	Torget MDD	Channel	Channel	Channel	
Bandwidth	Modulation	RB size	offset	Target MPR	23017	23095	23173	
	of Globa.		0	0	25.37	21.90	22.83	
		1	2	0	25.44	21.87	22.64	
	<u>)</u>	<u> </u>	5	0	25.49	21.85	22.46	
	QPSK		0	0	25.21	21.92	22.12	
	© Allestation of Gu	3	1	0	25.29	21.98	22.18	
			2	0	25.36	22.01	22.24	
4 4MU-	THE THE	6	0	1 1 1 E	24.46	21.50	21.43	
1.4MHz	Jol Glopal Co.	* Clopal Coun.	0 0	of Global 1	23.83	24.39	21.31	
	- C Milest	1	2	1	23.56	24.42	21.30	
	CO		5	1	23.41	24.45	21.28	
	16QAM		0	17	23.23	24.28	21.06	
	The partier of	3	300001	® # of Coon	23.31	24.33	21.13	
	ion of Global Co.	C Altestati	2	1	23.39	24.39	21.18	
		6	0	2	22.67	23.31	20.67	
	Madulation	DD ci-c	RB	Toward MDD	Channel	Channel	Channel	
andwidth	Modulation	RB size	offset	Target MPR	23025 23095		23165	
	® # Station of Glo	CC	0	0	25.48	22.58	23.11	
	G ATT	1	7	0 1	25.56	22.03	22.87	
	linz	T T	14	0	25.73	21.94	22.05	
	QPSK	E Global Compile	0	Attoristion of 1	24.75	21.45	21.12	
	of Glopps, ©	estation of 8	4	1	24.82	21.53	21.26	
	~GO		7	1	24.87	21.57	21.34	
OMILI-		15	0	. 1	24.71	21.51	21.46	
3MHz	IN ASSESSED	0 Z F	3/0	1 Mestalion of	24.03	24.68	21.60	
	® The station of G.		7	64	23.77	24.69	21.55	
			14	1	22.98	24.71	21.41	
	16QAM	lin:	0	2	22.12	23.66	20.45	
	Mills Mills	8	4	2	22.36	23.72	20.53	
	© 45	ation of Gio	7	2	22.40	23.75	20.55	
				2	22.59	23.65	20.39	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 52 of 171

Bandwidth	Modulation	RB size	RB	Target MPR	Channel	Channel	Channel
Januwium	Woddiation	IND SIZE	offset	raiget wir ix	23035	23095	Channel 23155 23.78 23.02 22.07 21.11 21.18 21.26 21.64 21.51 21.34 21.02 20.35 20.39 20.45 20.47 Channel 23130 23.88 23.07 22.56 21.23 21.21 21.33 21.59 21.53
	of Glore		0	0	25.64	22.66	23.78
		1	12	0	25.57	22.13	23.02
	<u>)</u>	<i>III</i>	24	O F	25.31	21.92	22.07
	QPSK	plant	0	1 market states	24.56	21.15	21.11
	® Attestation of G	12	6	1	24.62	21.29	21.18
			11	1	24.68	21.38	21.11 21.18 21.26 21.64 21.51 21.34 21.02 20.35 20.39 20.45 20.47 Channel 23130 23.88 23.07 22.56 21.23 21.21 21.33
ENALL-	THE MANOR	25	0	在 "P"	24.65	21.56	21.64
5MHz	not Global Co.	FN Gobal Comp	0	of Global 1	24.43	24.90	21.51
	Allost Market	1	12	1	23.57	24.67	21.34
	CO		24	1	22.86	24.51	21.02
	16QAM		0	2	22.06	23.51	20.35
	Kindle Co	12	6	2	22.12	23.57	20.39
	Fion of Global Co.	G Autostatu	11	2	22.18	23.61	20.35 20.39 20.45 20.47 Channel
		25	0	2	22.65	23.58	20.47
ما داده ادرینا ما داده	Madulation	RB size	RB	Target MDD	Channel	Channel	Channel
Bandwidth	Modulation	RB Size	offset			23095	23130
	® Maria station of Glove	CC	0	0	25.66	23.63	23.88
	G ATTE	1	24	0 👊	25.55	22.15	23.07
	e till	TF 7	49	0	25.33	21.95	22.56
	QPSK	The Popular Complies	0	Allocation of 1	24.59	21.17	21.23
	Ol Clopa,	25	12	1	24.64	21.31	21.21
	100		25	1	24.71	21.42	21.33
40041-		50	0	. 1	24.63	21.54	21.59
10MHz	I I NE	· · · · · · · · · · · · · · · · · · ·	3/0	1 [®] Filestation M	24.45	24.92	21.53
	® Allestation of Gu		24	69	23.61	24.69	21.37
			49	1	22.84	24.53	21.14
	16QAM	liji;	0	2	22.02	23.56	20.38
	July Succe	25	12	2	22.09	23.63	20.41
	(B) ##	ation of Glov	25	2	22.15	23.65	20.47
a C		50	0	2	22.62	23.61	20.49

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 53 of 171

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3.3-1 of the 3GPP TS36.101.

Table 6.2.3.3-1 Maximum Power Reduction (MPR) for Power class3

Modulation		Maximum Power Reduction (MPR) for Power[RB]								
Modulation 1.4MHz	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz	MPR(dB)			
QPSK	>5	>4 94	>8	>12	>16	>18	≤1			
16QAM	≤5	≤4	≤8	≤12	≤16	≤18	≤1			
16QAM	>5	>4	>8	>12	>16	>18	≤2			

The allowed A-MPR values specified below in Table 6.2.4.3-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".3

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 54 of 171

Table 6.2.4.3-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Network Signaling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)		
NS_01	6.6.2.1.1	Table 5.2-1	1.4,3,5,10,15,20	Table 5.4.2-1	N/A		
o a Globi			3	>5	≤1,		
		0.4.40.00	5	>6	N/A ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 .2.4.3-4 ≤1 N/A Table 6.2.4.3-2 ≤3 ≤1 ≤2 Table 6.2.4.3-3 Table 6.2.4.3-5 Table 6.2.4.3-6 Table 6.2.4.3-7 Table 6.2.4.3-9 Table 6.2.4.3-10 Table 6.2.4.3-12 2.4.3-13 N/A ≤1 ≤4 Table 6.2.4.3-15		
NS_03	6.6.2.2.3.1	2,4,10, 23,	10	>6			
	liti:	25,35,36	15	15 >8			
	Kingliance	® Mestation of ®	20	>10	≤1		
NC 04	000000	44 6 0	5	>6	≤1		
NS_04	6.6.2.2.3.2	41	10, 15, 20	Table 6	5.2.4.3-4		
NS_05	6.6.3.3.3.1	1	10,15,20	≥ 50	≤ 1		
NS_06	6.6.2.2.3.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.4.2-1	N/A		
NS_07	6.6.2.2.3.3 6.6.3.3.3.2	13	10	Table 6.2.4.3-2	Table 6.2.4.3-2		
NS_08	6.6.3.3.3.3	19	10, 15	> 44	≤ 3		
	000004	24	10.45	> 40	≤1		
NS_09	6.6.3.3.3.4	21	10, 15	> 55	≤ 2		
NS_10		20	15, 20	Table 6.2.4.3-3	Table 6.2.4.3-3		
NS_11	6.6.2.2.1 6.6.3.3.13	231	1.4, 3, 5, 10,15,20	Table 6.2.4.3-5	Table 6.2.4.3-5		
NS_12	6.6.3.3.5	26	1.4, 3, 5	Table 6.2.4.3-6	Table 6.2.4.3-6		
NS_13	6.6.3.3.6	26	5	Table 6.2.4.3-7	Table 6.2.4.3-7		
NS_14	6.6.3.3.7	26	10, 15	Table 6.2.4.3-8	Table 6.2.4.3-8		
NS_15	6.6.3.3.8	26	1 1 2 5 10 15	Table 6.2.4.3-9	Table 6.2.4.3-9		
143_15	0.0.3.3.0	© 45 20	1.4, 3, 5, 10, 15	Table 6.2.4.3-10	Table 6.2.4.3-10		
NS_16	6.6.3.3.9	27	3, 5, 10	Table 6.2.4.3-11, Table 6.	Table 6.2.4.3-12 2.4.3-13		
NC 17	6.6.3.3.10	28	5, 10	Table 5.4.2-1	N/A		
NS_17	6.6.3.3.11	28	5 John	≥ 2	≤ 1		
NS_18	K-ollence The Con	Jiance ® A talion of Ch	10, 15, 20	≥ 1	≤ 4		
NS_19	(S) And and all clops	ALC: Alle	10, 15, 20	Table 6.2.4.3-15	Table 6.2.4.3-1		
NS_20	Artesta		5, 10, 15, 20	Table 6.2.4.3-14	Table 6.2.4.3-14		
	G		III		Ellopal Comp.		
NS 20	-01	-37 <u>1</u>	Will mallance	The Compilar	® station of		

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 55 of 171

WIFI

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
711	(a) The standard colonal colon	4 01	2412	12.79
802.11b	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	06		
		11	2462	12.79 12.79 12.91 9.11 11.19 10.92 9.05 10.96 10.82 10.42
.0		01	2412	9.11
802.11g	6	06	2437	11.19
	The Market Co.	11 September 1	2462	10.92
Figure Clobs	of Global	01	2412	9.05
802.11n(20)	6.5	06	2437	10.96
		11	2462	10.82
1000	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	03	2422	10.42
802.11n(40)	13.5	06	2437	Power(dBm) 12.79 12.79 12.91 9.11 11.19 10.92 9.05 10.96 10.82
	(8) Milestation of	09	2452	10.76

Bluetooth_V4.0(BR/EDR)

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
Somplianos That Com	O Alles tation	2402	2.899
GFSK	39	2441	3.233
60	78	2480	3.323
	0	2402	1.792
π /4-DQPSK	39	2441	1.992
S &	78	2480	1.531
ATTO STORY	0	2402	1.232
8-DPSK	39	2441	1.306
	78	2480	1.126

Bluetooth_V4.0(BLE)

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	# 0	2402	5.311
GFSK	19	2440	5.638
	39	2480	5.659

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 56 of 171

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 10mm from the phantom, and 4 Edges SAR was performed with the device 10mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 5. Per KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- Per KDB 941225 D06 V02r01, When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:
 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 8. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result
- 9. Per KDB 941225 D05v02r03, start with the largest channel bandwidth and measure SAR for QPSK with 1RB allocation using the RB offset and required test channel combination with highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 10. Per KDB 941125 D05v02r03, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

GC

Page 57 of 171

- 11. Per KDB 941125 D05v02r03. For QPSK with 100% RB allocation. SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1RB allocation and the highest reported SAR is >1.45 W/Kg, the remaining required test channels must also be tested.
- 12. Per KDB 941125 D05v02r03. 16QAM output power for each RB allocation configuration is not 1/2 dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤1.45W/Kg, Per KDB 941225 D05v02r02, 16QAM SAR testing is not required.
- 13. Per KDB 941125 D05v02r03. Smaller bandwidth output power for each RB allocation configuration is >not 1/2 dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤1.45W/Kg. Per KDB 941125 D05v02r03, smaller bandwidth SAR testing is not required.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 58 of 171

13.1.3. Test Result

SAR MEASUREMEN	NT	
----------------	----	--

Depth of Liquid (cm):>15 Relative Humidity (%): 51.2

Product: Smartphone

Test Mode: GSM850 with GMSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card	The Compliance		Allestan		Artestation	Altes			
Left Cheek	voice	190	836.6	-0.12	0.335	31.70	31.53	0.348	1.6
Left Tilt	voice	190	836.6	0.53	0.216	31.70	31.53	0.225	1.6
Right Cheek	voice	190	836.6	-0.26	0.372	31.70	31.53	0.387	1.6
Right Tilt	voice	190	836.6	0.05	0.220	31.70	31.53	0.229	1.6
Body back	voice	128	824.2	-0.17	0.771	31.70	31.59	0.791	1.6
Body back	voice	190	836.6	-0.04	0.776	31.70	31.53	0.807	1.6
Body back	voice	251	848.8	0.28	0.798	31.70	31.60	0.817	1.6
Body front	voice	190	836.6	-0.30	0.468	31.70	31.53	0.487	1.6
-100	*E - 1111	4	* Clopal Cours	® ## #5	Global	C Alles	60		
Body back	GPRS-3 slot	128	824.2	-0.33	0.987	27.30	27.27	0.994	1.6
Body back	GPRS-3 slot	190	836.6	-0.17	0.962	27.30	27.19	0.987	1.6
Body back	GPRS-3 slot	251	848.8	0.09	0.976	27.30	27.22	0.994	1.6
Body front	GPRS-3 slot	190	836.6	-0.25	0.644	27.30	27.19	0.661	1.6
Edge 2(Right)	GPRS-3 slot	190	836.6	0.63	0.527	27.30	27.19	0.541	1.6
Edge 3(Bottom)	GPRS-3 slot	190	836.6	-0.05	0.239	27.30	27.19	0.245	1.6
Edge 4(Left)	GPRS-3 slot	190	836.6	0.18	0.251	27.30	27.19	0.257	1.6

Note:

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

[•] When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[•]The test separation for body back, body front and Edges is 10mm of all above table.

Page 59 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15

Product: Smartphone

Test Mode: PCS1900 with GMSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card		illi)	R # 17	Global	F Global Con	© A alion of Globe	-C	Atte	
Left Cheek	voice	661	1880.0	-0.23	0.247	28.70	28.65	0.250	1.6
Left Tilt	voice	661	1880.0	0.15	0.131	28.70	28.65	0.133	1.6
Right Cheek	voice	661	1880.0	0.07	0.240	28.70	28.65	0.243	1.6
Right Tilt	voice	661	1880.0	-0.22	0.102	28.70	28.65	0.103	1.6
Body back	voice	661	1880.0	0.35	0.697	28.70	28.65	0.705	1.6
Body front	voice	661	1880.0	-0.19	0.302	28.70	28.65	0.305	1.6
CC PILL	C Alles		0				III:	THE SAL	
Body back	GPRS-4 slot	512	1850.2	-0.08	1.214	22.90	22.58	1.307	1.6
Body back	GPRS-4 slot	661	1880	0.38	1.094	22.90	22.83	1.112	1.6
Body back	GPRS-4 slot	810	1909.8	-0.17	1.006	22.90	22.65	1.066	1.6
Body front	GPRS-4 slot	661	1880.0	-0.29	0.492	22.90	22.83	0.500	1.6
Body back+Ear.	GPRS-4 slot	512	1850.2	-0.17	1.240	22.90	22.58	1.335	1.6
Body back+Ear.	GPRS-4 slot	661	1880	-0.14	1.159	22.90	22.83	1.178	1.6
Body back+Ear.	GPRS-4 slot	810	1909.8	0.05	1.004	22.90	22.65	1.063	1.6
Edge 2(Right)	GPRS-4 slot	661	1880.0	-0.28	0.231	22.90	22.83	0.235	1.6
Edge 3(Bottom)	GPRS-4 slot	661	1880.0	0.03	0.617	22.90	22.83	0.627	1.6
Edge 4(Left)	GPRS-4 slot	661	1880.0	0.30	0.227	22.90	22.83	0.231	1.6

Note:

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gett.com.

⁻ When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[•]The test separation for body back, body front and Edges is 10mm of all above table.

Page 60 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15

Product: Smartphone

Test Mode: WCDMA Band II with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	9400	1880	-0.18	0.387	21.70	21.66	0.391	1.6
Left Tilt	RMC 12.2kbps	9400	1880	0.25	0.276	21.70	21.66	0.279	1.6
Right Cheek	RMC 12.2kbps	9400	1880	-0.13	0.612	21.70	21.66	0.618	1.6
Right Tilt	RMC 12.2kbps	9400	1880	-0.18	0.168	21.70	21.66	0.170	1.6
Body back	RMC 12.2kbps	9262	1852.4	-0.22	1.146	21.70	20.89	1.381	1.6
Body back	RMC 12.2kbps	9400	1880	0.35	1.066	21.70	21.66	1.076	1.6
Body back	RMC 12.2kbps	9538	1907.6	0.28	0.958	21.70	21.69	0.960	1.6
Body front	RMC 12.2kbps	9400	1880	-0.17	0.593	21.70	21.66	0.598	1.6
Edge 2(Right)	RMC 12.2kbps	9400	1880	0.06	0.235	21.70	21.66	0.237	1.6
Edge 3(Bottom)	RMC 12.2kbps	9400	1880	-0.23	0.617	21.70	21.66	0.623	1.6
Edge 4(Left)	RMC 12.2kbps	9400	1880	0.04	0.306	21.70	21.66	0.309	1.6

Note:

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498. • The test separation for body back, body front and Edges is 10mm of all above table.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com.

Page 61 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 54.4

Product: Smartphone

Test Mode: WCDMA Band IV with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	8662	1732.5	-0.35	0.618	22.00	21.89	0.634	1.6
Left Tilt	RMC 12.2kbps	8662	1732.5	0.17	0.337	22.00	21.89	0.346	1.6
Right Cheek	RMC 12.2kbps	8662	1732.5	-0.08	0.602	22.00	21.89	0.617	1.6
Right Tilt	RMC 12.2kbps	8662	1732.5	0.29	0.252	22.00	21.89	0.258	1.6
Body back	RMC 12.2kbps	8562	1712.5	-0.56	1.305	22.00	21.82	1.360	1.6
Body back	RMC 12.2kbps	8662	1732.5	0.28	1.142	22.00	21.89	1.171	1.6
Body back	RMC 12.2kbps	8763	1752.5	-0.73	1.267	22.00	21.92	1.291	1.6
Body front	RMC 12.2kbps	8662	1732.5	0.15	0.951	22.00	21.89	0.975	1.6
Body back+Ear.	RMC 12.2kbps	8562	1712.5	0.08	1.179	22.00	21.82	1.229	1.6
Body back+Ear.	RMC 12.2kbps	8662	1732.5	-0.19	1.244	22.00	21.89	1.276	1.6
Body back+Ear.	RMC 12.2kbps	8763	1752.5	-0.22	1.188	22.00	21.92	1.210	1.6
Edge 2(Right)	RMC 12.2kbps	8662	1732.5	-0.36	0.333	22.00	21.89	0.342	1.6
Edge 3(Bottom)	RMC 12.2kbps	8662	1732.5	0.41	0.690	22.00	21.89	0.708	1.6
Edge 4(Left)	RMC 12.2kbps	8662	1732.5	0.28	0.551	22.00	21.89	0.565	1.6

Note:

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

-The test separation for body back, body front and Edges is 10mm of all above table.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 62 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 51.2

Product: Smartphone

Test Mode: WCDMA Band V with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	4183	836.6	-0.35	0.266	21.70	21.47	0.280	1.6
Left Tilt	RMC 12.2kbps	4183	836.6	0.19	0.186	21.70	21.47	0.196	1.6
Right Cheek	RMC 12.2kbps	4183	836.6	-0.28	0.237	21.70	21.47	0.250	1.6
Right Tilt	RMC 12.2kbps	4183	836.6	-0.17	0.128	21.70	21.47	0.135	1.6
Body back	RMC 12.2kbps	4183	836.6	-0.05	0.460	21.70	21.47	0.485	1.6
Body front	RMC 12.2kbps	4183	836.6	0.56	0.302	21.70	21.47	0.318	1.6
Edge 2(Right)	RMC 12.2kbps	4183	836.6	-0.23	0.297	21.70	21.47	0.313	1.6
Edge 3(Bottom)	RMC 12.2kbps	4183	836.6	0.27	0.125	21.70	21.47	0.132	1.6
Edge 4(Left)	RMC 12.2kbps	4183	836.6	-0.03	0.165	21.70	21.47	0.174	1.6

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back, body front and Edges is 10mm of all above table.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 63 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 53.3

Product: Smartphone

Test Mode: LTE Band 2

вм			Test M			Freq.	Power	SAR	Max. Tune up	Meas. output	Scaled	Limit
MHz	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	SAR (W/Kg)	(W/kg)
V		Left Cheek	1	0	18900	1880	-0.35	0.332	22.70	22.68	0.334	1.6
	下 格	Left Tilt	1	0	18900	1880	0.19	0.193	22.70	22.68	0.194	1.6
	on of Global C	Right Cheek	15.0	0	18900	1880	-0.05	0.411	22.70	22.68	0.413	1.6
		Right Tilt	1	0	18900	1880	-0.27	0.139	22.70	22.68	0.140	1.6
	(G)	Body back	1	0	18700	1860	-0.64	1.285	22.70	22.53	1.336	1.6
		Body back	1 1111	0	18900	1880	-0.58	0.977	22.70	22.68	0.982	1.6
20	QPSK	Body back	Fr 1 1 100	0 %	19100	1900	-0.23	1.145	22.70	22.58	1.177	1.6
20	QFSK	Body front	1	0	18900	1880	0.06	0.495	22.70	22.68	0.497	1.6
		Body back+ Ear.	10	0	18700	1860	-0.56	1.266	22.70	22.53	1.317	1.6
		Body back+ Ear.	1	0	18900	1880	0.15	0.970	22.70	22.68	0.974	1.6
		Body back+ Ear.	1 🔬	0	19100	1900	-0.08	1.189	22.70	22.58	1.222	1.6
	Co Co	Edge 2(Right)	® #1 Fraid of C	0	18900	1880	-0.18	0.230	22.70	22.68	0.231	1.6
	® %	Edge 3(Bottom)	1	0	18900	1880	0.23	0.420	22.70	22.68	0.422	1.6
	C ATT	Edge 4(Left)	1	0	18900	1880	0.09	0.299	22.70	22.68	0.300	1.6

Note:

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

[•] When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

[•]The test separation for body back, body front and Edges is 10mm of all above table.

Page 64 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 52.8

Product: Smartphone

Test Mode: LTE Band 4

ВМ			Test M	ode		Freg.	Power	SAR	Max. Tuneup	Meas. output	Scaled	Limit
MHz	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	SAR (W/Kg)	(W/kg)
	:5	Left Cheek	1	0	20175	1732.5	-0.56	0.424	22.90	22.76	0.438	1.6
	TK KEL	Left Tilt	plance 1	0	20175	1732.5	-0.38	0.331	22.90	22.76	0.342	1.6
	n of Global	Right Cheek	1	0	20175	1732.5	0.29	0.712	22.90	22.76	0.735	1.6
	(Right Tilt	1	0	20175	1732.5	-0.13	0.256	22.90	22.76	0.264	1.6
		Body back	1	0	20050	1720	0.87	1.165	22.90	22.83	1.184	1.6
		Body back	1, 7	. 0	20175	1732.5	-1.41	1.273	22.90	22.76	1.315	1.6
	- 4	Body back	F/1 a Comp	0	20300	1745	-0.85	1.051	22.90	22.50	1.152	1.6
	Attestal	Body front	lation of 1	0	20050	1720	0.26	0.827	22.90	22.83	0.840	1.6
20	QPSK	Body front	1	0	20175	1732.5	-0.08	0.809	22.90	22.76	0.836	1.6
	Qi Oit	Body front	1	0 🧌	20300	1745	-0.32	0.846	22.90	22.50	0.928	1.6
		Body back+ Ear.	1	0	20050	1720	0.01	1.155	22.90	22.83	1.174	1.6
	® Æ	Body back+ Ear.	C 1 Artestation	0	20175	1732.5	-0.29	1.247	22.90	22.76	1.288	1.6
	C Alles	Body back+ Ear.	1	0	20300	1745	0.17	1.057	22.90	22.50	1.159	1.6
	/	Edge 2(Right)	1	0	20175	1732.5	-0.06	0.310	22.90	22.76	0.320	1.6
	天 Kenphan	Edge 3(Bottom)	compliance	0	20175	1732.5	0.53	0.662	22.90	22.76	0.684	1.6
	of Globe	Edge 4(Left)	1	0	20175	1732.5	0.27	0.372	22.90	22.76	0.384	1.6

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

•The test separation for body back, body front and Edges is 10mm of all above table.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 65 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 52.2

Product: Smartphone

Test Mode: LTE Band 5

ВМ	МОР	Danisia	Test M	ode	Ol:	Freq.	Power	SAR (1g)	Max. Tuneup	Meas. output	Scaled	Limit
MHz	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(W/kg)	Power (dBm)	Power (dBm)	SAR (W/Kg)	(W/kg)
		Left Cheek	1	0 🧳	20525	836.5	-0.04	0.211	21.80	21.73	0.214	1.6
	IN KEL	Left Tilt	⁸⁰⁰⁰⁸ 1	0	20525	836.5	0.15	0.148	21.80	21.73	0.150	1.6
	on of Globs	Right Cheek	1	0	20525	836.5	-0.08	0.272	21.80	21.73	0.276	1.6
		Right Tilt	1	0	20525	836.5	-0.19	0.140	21.80	21.73	0.142	1.6
10	QPSK	Body back	1	0	20525	836.5	0.27	0.511	21.80	21.73	0.519	1.6
		Body front	1 June	0	20525	836.5	-0.36	0.328	21.80	21.73	0.333	1.6
	8 E.	Edge 2(Right)	1 300 1 m	0	20525	836.5	-0.05	0.313	21.80	21.73	0.318	1.6
	Allest	Edge 3(Bottom)	1	0	20525	836.5	-0.21	0.122	21.80	21.73	0.124	1.6
		Edge 4(Left)	1	0	20525	836.5	0.11	0.170	21.80	21.73	0.173	1.6

Note:

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498. • The test separation for body back, body front and Edges is 10mm of all above table.

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KCE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com.

Page 66 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 48.8

Product: Smartphone

Test Mode: LTE Band 12

ВМ	мор	Danisia	Test M	ode	Ol:	Freq.	Power	SAR	Max. Tuneup	Meas. output	Scaled	Limit
MHz	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(1g) (W/kg)	Power (dBm)	Power (dBm)	SAR (W/Kg)	(W/kg)
		Left Cheek	1	0 🧳	23095	707.5	-0.38	0.022	25.66	23.63	0.035	1.6
	IN KEL	Left Tilt	ance 1	0	23095	707.5	-0.37	0.017	25.66	23.63	0.027	1.6
B ## 1	on of Globa	Right Cheek	10	0	23095	707.5	0.19	0.022	25.66	23.63	0.035	1.6
Alles		Right Tilt	1	0	23095	707.5	-0.22	0.014	25.66	23.63	0.022	1.6
10	QPSK	Body back	1	0	23095	707.5	0.05	0.074	25.66	23.63	0.118	1.6
		Body front	The files	0	23095	707.5	-0.16	0.039	25.66	23.63	0.062	1.6
	(R) ##	Edge 2(Right)	F Globa Tourn	0	23095	707.5	0.07	0.023	25.66	23.63	0.037	1.6
	Allest	Edge 3(Bottom)	1	0	23095	707.5	-0.33	0.009	25.66	23.63	0.014	1.6
C		Edge 4(Left)	1	0	23095	707.5	-0.52	0.023	25.66	23.63	0.037	1.6

Note:

• When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back, body front and Edges is 10mm of all above table.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 67 of 171

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 50.7

Product: Smartphone

Test Mode:802.11b

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	DTS	11	2462	-0.36	0.070	13.00	12.91	0.071	1.6
Left Tilt	DTS	11	2462	-0.18	0.054	13.00	12.91	0.055	1.6
Right Cheek	DTS	11	2462	0.29	0.195	13.00	12.91	0.199	1.6
Right Tilt	DTS	11	2462	-0.05	0.095	13.00	12.91	0.097	1.6
Body back	DTS	11	2462	-0.24	0.135	13.00	12.91	0.138	1.6
Body front	DTS	11	2462	0.52	0.041	13.00	12.91	0.042	1.6
Edge 1 (Top)	DTS	11	2462	-0.36	0.020	13.00	12.91	0.020	1.6
Edge 4(Left)	DTS	11	2462	-0.09	0.022	13.00	12.91	0.022	1.6

Note:

- According to KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- · All of above "DTS" means data transmitters.
- •The test separation for body back, body front and Edges is 10mm of all above table.

Repeated SAR

Product: Smartphone

Test Mode: GSM850& PCS1900 with GMSK modulation & WCDMA Band IV &WCDMA Band IV with QPSK modulation

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	Once SAR (1g) (W/kg)	Power Drift (<±5%)	Twice SAR (1g) (W/kg)	Power Drift (<±5%)	Third SAR (1g) (W/kg)	Limit W/kg
Body back	GPRS-3 slot	128	824.2	-0.36	0.973			-		1.6
Body back+Ear.	GPRS-4 slot	512	1850.2	-0.11	1.195				-	1.6
Body back	RMC 12.2kbps	9262	1852.4	-0.26	1.143		3	<u> </u>	- Tr	1.6
Body back	RMC 12.2kbps	8562	1712.5	-0.52	1.277		The Compi	(E) The state of the	1.6

SAR MEASUREMENT

Product: Smartphone

Test Mode: LTE Band 2& LTE Band 4

ВМ			Test Mode		Ol:			Freg.	Power	Once SAR	Power	Twice SAR	Power	Third SAR	Limit
MHz	MOD	Position	UL RB Allocation	UL RB START	Ch.	(MHz)	Drift (<±5%)	(1g) (W/kg)	Drift (<±5%)	(1g) (W/kg)	Drift (<±5%)	(1g) (W/kg)	(W/kg)		
20	QPSK	Body back	Allesta 1	0	18700	1860	-0.62	1.132		11 TH		K Kinpliance	1.6		
20	WESK	Body back	1	0	20175	1732.5	-1.46	1.238	The of the state o	oal Compile	B Stations	Glopal Co	1.6		

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 68 of 171

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

NO	Simultaneous state		Portable Handse	et
NO	Simultaneous state	Head	Body-worn	Hotspot
K Trollio	GSM(voice)+WLAN 2.4GHz (data)	Yes	Yes	-
2	GSM(voice)+Bluetooth(data)	-	Yes	Kil pliance
3	GSM (Data) + WLAN 2.4GHz (data)	<u> </u>	Yes	Yes
4	GSM (Data) + Bluetooth(data)	- 4	Yes	Yes
5	WCDMA+WLAN 2.4GHz (data)	Yes	Yes	Yes
6	WCDMA+Bluetooth(data)	_	Yes	Yes
7	LTE + WLAN 2.4GHz (data)	Yes	Yes	Yes
8	LTE + Bluetooth(data)	TK Compliance	Yes	Yes

NOTE

- 1. WIFI and BT share the same antenna, and cannot transmit simultaneously.
- 2. Simultaneous with every transmitter must be the same test position.
- 3. KDB 447498 D01, BT SAR is excluded as below table.
- 4. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 10mm for body-worn SAR.
- 5. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:
 - [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where
 - f(GHz) is the RF channel transmit frequency in GHz
 - Power and distance are rounded to the nearest mW and mm before calculation³¹
 - The result is rounded to one decimal place for comparison
 - The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 6. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 7. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a trp://www.ago.go.tt.com.

Page 69 of 171

8. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion

	Estimat	ted SAR	Max Power inc Toler		Separation Distance (mm)	Estimated SAR (W/kg)
			dBm	mW	Distance (IIIII)	(VV/Kg)
ĺ	BT	Head	6	3.981	0	0.167
	DI C	Body	6	3.981	10	0.084

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 70 of 171

Sum of the SAR for GSM 850 &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			71 a 8AD	SPLSR
		GSM 850	WI-Fi DTS Band	Bluetooth	Σ1-g SAR (W/Kg)	(Yes/No)
The Compile	Left Touch	0.348	0.071		0.419	No
Head	Left Tilt	0.225	0.055		0.280	No
(voice)	Right Touch	0.387	0.199		0.586	No
	Right Tilt	0.229	0.097		0.326	No
A Kindlings	Rear	0.817	0.138		0.955	No
Body-worn		0.817		0.084	0.901	No
(voice)	Front	0.487	0.042		0.529	No
		0.487		0.084	0.571	No
	极。	0.994		0.084	1.078	No
Body-worn	Rear	0.994	0.138		1.132	No
(Data)	Cont	0.661		0.084	0.745	- No
	Front	0.661	0.042		0.703	No
Body-worn (Hotspot)	Edge 4	0.257	0.022		0.279	No
	Edge 4	0.257		0.084	0.341	No

Note:

- -According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- -SPLSR mean is "The SAR to Peak Location Separation Ratio

Sum of the SAR for GSM 1900 &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			71 ~ CAD	CDI CD
		PCS 1900	WI-Fi DTS Band	Bluetooth	Σ1-g SAR (W/Kg)	SPLSR (Yes/No)
	Left Touch	0.250	0.071		0.321	No
Head 🦪	Left Tilt	0.133	0.055		0.188	No
(voice)	Right Touch	0.243	0.199		0.442	No
	Right Tilt	0.103	0.097		0.200	No
	Rear	0.705	0.138		0.843	No
Body-worn (voice)		0.705		0.084	0.789	No
	Front	0.305	0.042		0.347	No
		0.305		0.084	0.389	No
	Date	1.307		0.084	1.391	No
Body-worn	Rear	1.307	0.138		1.445	No
(Data)	- FILL	0.500		0.084	0.584	No
	Front	0.500	0.042		0.542	No
Body-worn (Hotspot)	Edge 4	0.231	0.022		0.253	No
	Edge 4	0.231		0.084	0.315	No No

Note:

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio "

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 71 of 171

Sum of the SAR for WCDMA Band II &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			71 ~ CAD	SPLSR
		WCDMA Band II	Wi-Fi DTS Band	Bluetooth	Σ1-g SAR (W/Kg)	(Yes/No)
bal Compile	Left Touch	0.391	0.071		0.462	No
® # station of Cl	Left Tilt	0.279	0.055		0.334	No
Head	Right Touch	0.618	0.199		0.817	No
	Right Tilt	0.170	0.097		0.267	No No
Body-worn	Rear	1.381	0.138		1.519	No
	Front	0.598	0.042		0.640	No
	Edge 4	0.309	0.022		0.331	No 🥖
	Rear	1.381		0.084	1.465	No
	Front	0.598		0.084	0.682	No
	Edge 4	0.309	୍ଦ	0.084	0.393	No

Note:

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio "

Sum of the SAR for WCDMA Band IV &Wi-Fi & BT:

RF Exposure Conditions	Test	Simultane	ous Transmissio	71 ~ CAD	SPLSR	
	Position	WCDMA Band IV	Wi-Fi DTS Band	Bluetooth	Σ1-g SAR (W/Kg)	(Yes/No)
F of Global Co.	Left Touch	0.634	0.071		0.705	No
Attestation Lload C	Left Tilt	0.346	0.055		0.401	No No
Head	Right Touch	0.617	0.199		0.816	No
	Right Tilt	0.258	0.097		0.355	No
Body-worn	Rear	1.360	0.138		1.498	No
	Front	0.975	0.042		1.017	No
	Edge 4	0.565	0.022		0.587	No
	Rear	1.360	0	0.084	1.444	No
	Front	0.975		0.084	1.059	No
	Edge 4	0.565		0.084	0.649	No

Note:

- -According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- -SPLSR mean is "The SAR to Peak Location Separation Ratio"

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 72 of 171

Sum of the SAR for WCDMA Band V &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			Σ1-g SAR	SPLSR
		WCDMA Band V	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
abai Compile	Left Touch	0.280	0.071		0.351	No
® Frailin of Cl	Left Tilt	0.196	0.055		0.251	No
Head	Right Touch	0.250	0.199		0.449	No
	Right Tilt	0.135	0.097		0.232	No No
K Kinghlance	Rear	0.485	0.138		0.623	No
	Front	0.318	0.042		0.360	No
Body-worn	Edge 4	0.174	0.022		0.196	No
	Rear	0.485		0.084	0.569	No
	Front	0.318		0.084	0.402	No
	Edge 4	0.174	of	0.084	0.258	No

Note:

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio"

Sum of the SAR for LTE Band 2 &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			Σ1-g SAR	SPLSR
		LTE Band 2	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
The Compliance	Left Touch	0.334	0.071		0.405	No
The second	Left Tilt	0.194	0.055		0.249	, No
Head	Right Touch	0.413	0.199		0.612	No
	Right Tilt	0.140	0.097		0.237	No
Body-worn	Rear	1.336	0.138		1.474	No
	Front	0.497	0.042		0.539	No
	Edge 4	0.300	0.022		0.322	No
	Rear	1.336		0.084	1.420	No
	Front	0.497		0.084	0.581	No
	Edge 4	0.300		0.084	0.384	No

Note:

- ·According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio "

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 73 of 171

Sum of the SAR for LTE Band 4 &Wi-Fi & BT:

RF Exposure Conditions	Test	Simultaneo	us Transmissio	Σ1-g SAR	SPLSR	
	Position	LTE Band 4	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
bal Compile	Left Touch	0.438	0.071		0.509	No
® Station of Gif	Left Tilt	0.342	0.055		0.397	No
Head	Right Touch	0.735	0.199		0.934	No
	Right Tilt	0.264	0.097		0.361	No
The Compliance	Rear	1.315	0.138		1.453	No
alion of Global ®	Front	0.928	0.042		0.970	No
Dadwysan	Edge 4	0.384	0.022		0.406	No No
Body-worn	Rear	1.315		0.084	1.399	No
	Front	0.928		0.084	1.012	No
手手	Edge 4	0.384		0.084	0.468	No

Note:

- According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio "

Sum of the SAR for LTE Band 5 &Wi-Fi & BT:

RF Exposure	Test	Simultaneo	us Transmissio	Σ1-g SAR	SPLSR	
Conditions	Position	LTE Band 5	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
The Compliance	Left Touch	0.214	0.071		0.285	No
Head	Left Tilt	0.150	0.055		0.205	, No
пеаа	Right Touch	0.276	0.199		0.475	No
	Right Tilt	0.142	0.097		0.239	No
	Rear	0.519	0.138		0.657	No
	Front	0.333	0.042		0.375	No .
D. A. L.	Edge 4	0.173	0.022		0.195	No
Body-worn	Rear	0.519		0.084	0.603	No
	Front	0.333		0.084	0.417	No
	Edge 4	0.173		0.084	0.257	No

Note:

- -According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- -SPLSR mean is "The SAR to Peak Location Separation Ratio"

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 74 of 171

Sum of the SAR for LTE Band 12 &Wi-Fi & BT:

DE Evnocuro	Test	Simultaneo	us Transmissio	on Scenario	Σ1-g SAR	SPLSR
RF Exposure Conditions	Position	LTE Band 12	Wi-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
bal Compile	Left Touch	0.035	0.071		0.106	No
© Stallon of Cl	Left Tilt	0.027	0.055		0.082	No
Head	Right Touch	0.035	0.199		0.234	No
	Right Tilt	0.022	0.097		0.119	No
The Compliance	Rear	0.118	0.138		0.256	No
	Front	0.062	0.042		0.104	No
Body-worn	Edge 4	0.037	0.022		0.059	No
	Rear	0.118		0.084	0.202	No
	Front	0.062		0.084	0.146	No
	Edge 4	0.037		0.084	0.121	No

Note:

·SPLSR mean is "The SAR to Peak Location Separation Ratio "

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

Page 75 of 171

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: July 02,2018

System Check Head 750 MHz

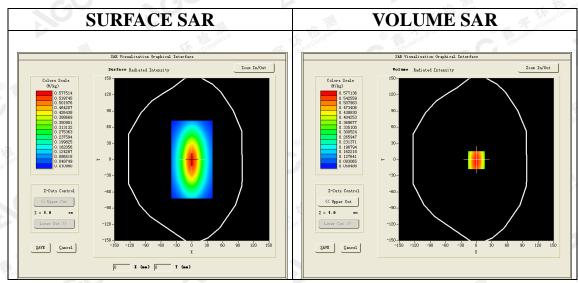
DUT: Dipole 750 MHz Type: SID 750

Communication System CW; Communication System Band: D750 (750.0 MHz); Duty Cycle: 1:1; Conv.F=1.61 Frequency: 750 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.87$ mho/m; $\epsilon = 41.06$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.0, Liquid temperature (°C): 21.3

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

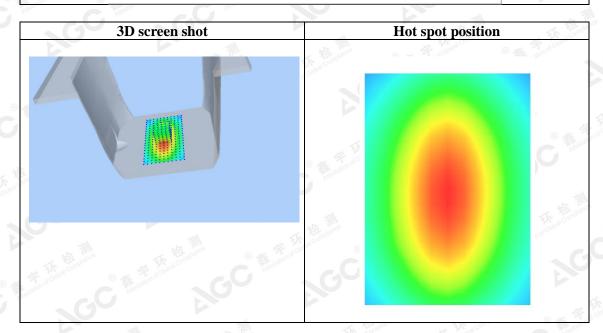
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 750MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 750MHz Head/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Maximum location: X=1.00, Y=-1.00 SAR Peak: 0.78 W/kg

West of	
SAR 10g (W/Kg)	0.370125
SAR 1g (W/Kg)	0.566954

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC

Report No.: AGC00767180503FH01 Page 76 of 171

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.7959	0.5810	0.3977	0.2795	0.1983	0.1429	0.1075
下校 柳	0.8-						
	0.7-	\mathbf{Y}					
	0.6-						
	(2) 20.5 80.4						
	0.4- % % 0.3-						
	0.2-						
						56	
	0.1-∏ 0.	02.55.07.5	12.5 17.	.5 22.5 2	27.5 32.5	40.0	
				Z (mm)		-3.5	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Date: July 02,2018

Page 77 of 171

Test Laboratory: AGC Lab System Check Body 750 MHz

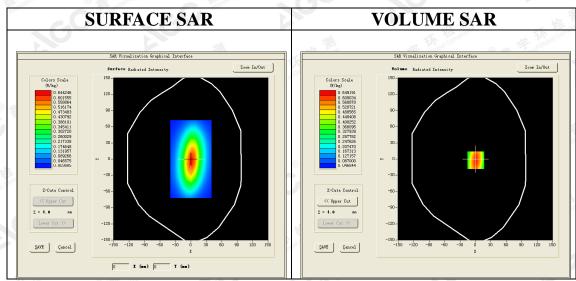
DUT: Dipole 750 MHz Type: SID 750

Communication System CW; Communication System Band: D750 (750.0 MHz); Duty Cycle: 1:1; Conv.F=1.66 Frequency: 750 MHz; Medium parameters used: f = 750 MHz; $\sigma = 0.98$ mho/m; $\epsilon r = 54.56$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$):22.0, Liquid temperature ($^{\circ}$): 21.5

SATIMO Configuration:


· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

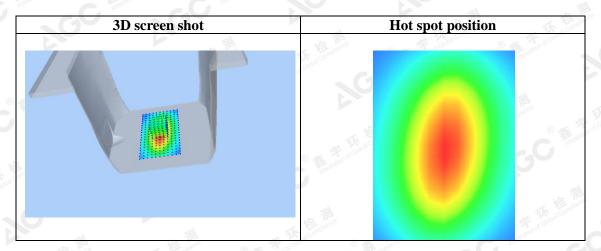
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 750MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 750MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=2.00, Y=-2.00 SAR Peak: 0.90 W/kg

SAR 10g (W/Kg)	0.378543
SAR 1g (W/Kg)	0.608906

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC 8

Report No.: AGC00767180503FH01 Page 78 of 171

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.9022	0.6419	0.4056	0.2663	0.1775	0.1206	0.0813
(W/Kg)		红 10mm	ance	Kil mailance	Autestation	8 %	tation of
45. 700	0.9-						
The Compile	0.8-	\downarrow					
lestation of C		$\Lambda \sqcup \bot$					
	₩ 0.6-	\rightarrow	\square				
litte:	(%/kg (%/%)						
Compliance	€ ₹ 0.4-	++	\Box				
© ## #	ν						
Allestan	0.2-	+++	++				
	0.1-					Tr.	
1000		02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
FA Global Comp.			:	Z (mm)			
a silon o'	(8)						

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Date: July 05,2018

Page 79 of 171

Test Laboratory: AGC Lab System Check Head 835 MHz

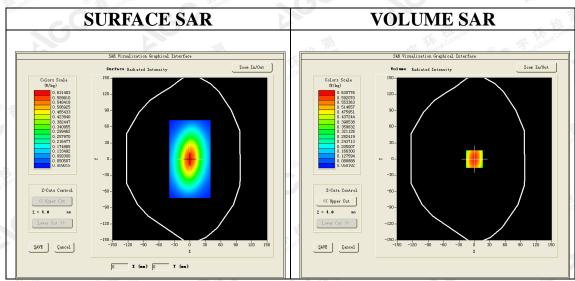
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.74 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.90$ mho/m; $\epsilon r = 42.17$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 21.2

SATIMO Configuration:

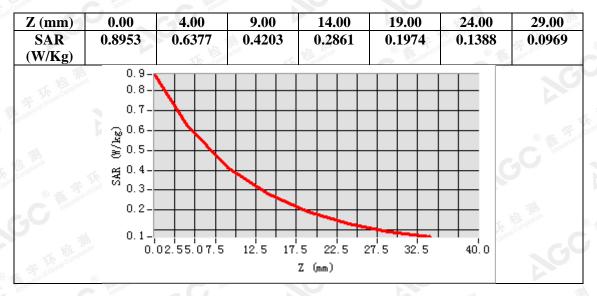

· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

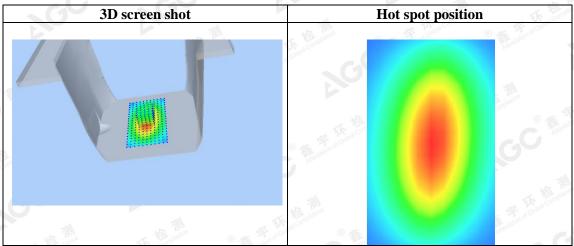
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


Maximum location: X=0.00, Y=1.00 SAR Peak: 0.90 W/kg


SAR 10g (W/Kg)	0.390534
SAR 1g (W/Kg)	0.611795

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 80 of 171

The results spowth this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Date: July 05,2018

Page 81 of 171

Test Laboratory: AGC Lab System Check Body 835 MHz

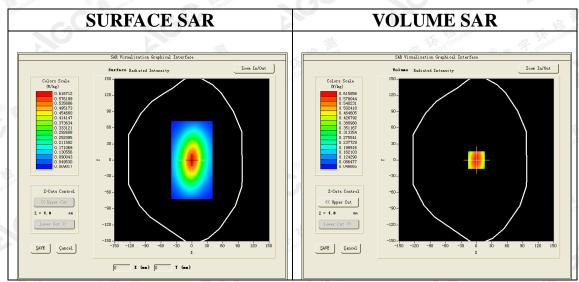
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.81 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon = 55.13$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.1, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:


· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

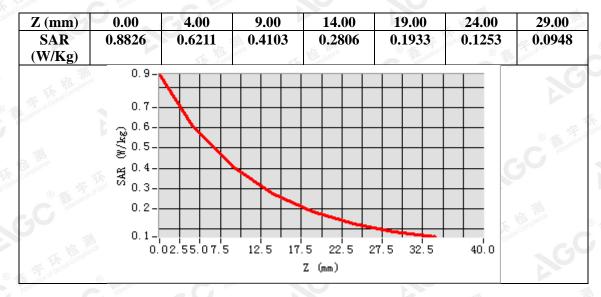
· Phantom: SAM twin phantom

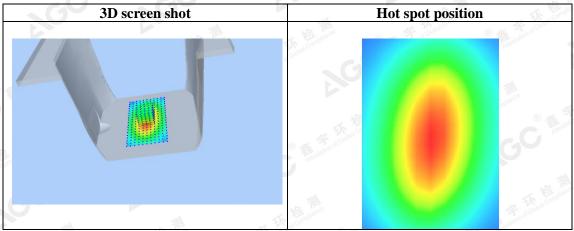
Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.88 W/kg

SAR 10g (W/Kg)	0.375186
SAR 1g (W/Kg)	0.585742


The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Attestation of Global Compliance

GC 8

Page 82 of 171

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Date: June 30,2018

Page 83 of 171

Test Laboratory: AGC Lab System Check Head 835 MHz

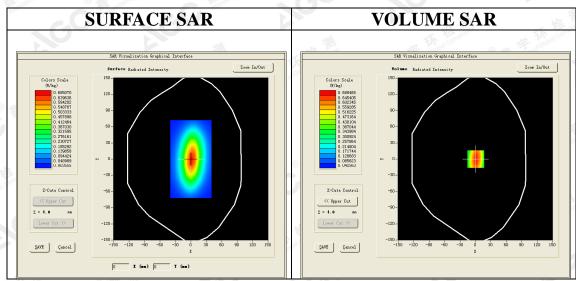
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.74 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.88$ mho/m; $\epsilon r = 41.06$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.8, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:


· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

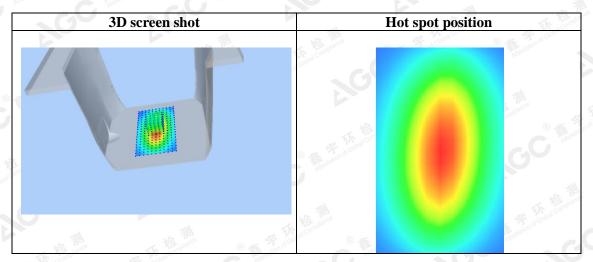
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=1.00, Y=1.00 SAR Peak: 0.99 W/kg


SAR 10g (W/Kg)	0.390123
SAR 1g (W/Kg)	0.647934

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC00767180503FH01 Page 84 of 171

0.00	4.00	9.00	14.00	19.00	24.00	29.00
1.0002	0.6810	0.4226	0.2733	0.1785	0.1199	0.0803
1.0-						
	\mathcal{A}				_	
₩ 0.4-					+ 6	
0.2- 0.1-			+		X (300)	
	02.55.07.5			.7.5 32.5	40.0	
	1.0002 1.0- 0.8- 0.8- 28/ 8/ 0.6- 0.4- 0.2- 0.1-	1.0002 0.6810 1.0002 0.8- 0.8- 0.8- 0.8- 0.2-	1.0002 0.6810 0.4226	1.0002 0.6810 0.4226 0.2733	1.0002 0.6810 0.4226 0.2733 0.1785	1.0002 0.6810 0.4226 0.2733 0.1785 0.1199

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Date: June 30,2018

Page 85 of 171

Test Laboratory: AGC Lab System Check Body 835 MHz

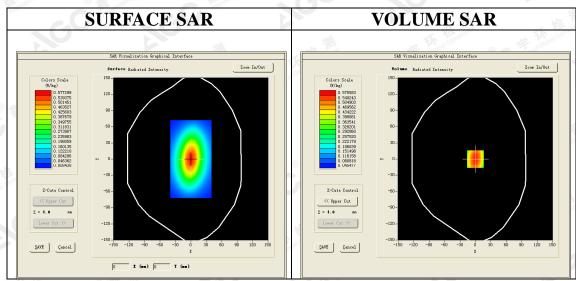
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.81 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon = 54.89$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):21.8, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:


· Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.80 W/kg

SAR 10g (W/Kg)	0.372156
SAR 1g (W/Kg)	0.580441

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

GC 8

Report No.: AGC00767180503FH01 Page 86 of 171

0.00	4.00	9.00	14.00	19.00	24.00	29.00
0.8051	0.5811	0.3856	0.2637	0.1815	0.1300	0.0902
0.8-		1111		1111		
0.7-	\longrightarrow	++++	+	+		
0.6-	\longrightarrow	++++		++++		
-0.5 کی	$+\lambda+$	++++	\perp	++++		
11 4 -1	$++\lambda$					
% % 0.3-		\mathbf{M}				
0.2-						
					56	
	00 55 07 5	10 5 17 1		7 5 20 5	40.0	
gree U.	02.55.07.5			(1.5 32.5	40.0	
	0.8051 0.8- 0.7- 0.6- 0.5- 0.4- 0.3- 0.2-	0.8051 0.5811 0.8- 0.7- 0.6- 0.6- 0.4- 0.4- 0.3- 0.2-	0.8051 0.5811 0.3856 0.8 -	0.8051 0.5811 0.3856 0.2637	0.8051 0.5811 0.3856 0.2637 0.1815 0.8 -	0.8051 0.5811 0.3856 0.2637 0.1815 0.1300

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Date: July 06,2018

Page 87 of 171

Test Laboratory: AGC Lab System Check Head 1750MHz

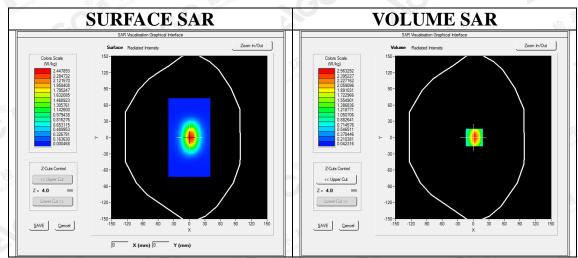
DUT: Dipole 1800 MHz; Type: SID 1800

Communication System: CW; Communication System Band: D1700 (1750.0 MHz); Duty Cycle:1:1; Conv.F=1.99 Frequency: 1750 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.39 \text{ mho/m}$; $\epsilon = 39.46$; $\epsilon = 1000 \text{ kg/m}$

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 21.9, Liquid temperature ($^{\circ}$ C): 21.3

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

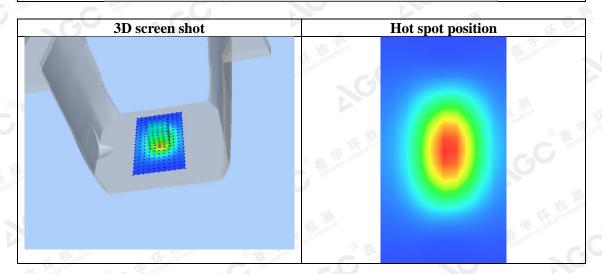
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1750MHz Head/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 1750MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=2.00, Y=0.00 SAR Peak: 4.06 W/kg


SAR 10g (W/Kg)	1.246280			
SAR 1g (W/Kg)	2.417394			

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC00767180503FH01 Page 88 of 171

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	4.0594	2.5633	1.4103	0.8125	0.4693	0.2745	0.1618
	4.1-						
	3.5	$\overline{}$					
	3.0-	$\overline{}$					
	© 2.5-	+					
	~ ~ =						
	් 1.5 1.0	1					
	0.5						
	0.1-			7-1-	┿┿┷┆	(Glop	
TA KEL	0.0	2.5 5.0 7.5 1		20.0 25.0 7 (mm)	30.0 35.	0 40.0	
allon of Globa				Z (mm)			

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Date: July 06,2018

Page 89 of 171

Test Laboratory: AGC Lab System Check Body 1750MHz

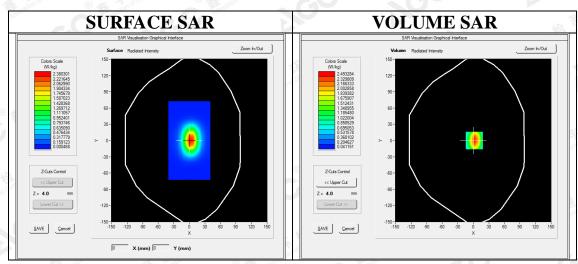
DUT: Dipole 1800 MHz; Type: SID 1800

Communication System: CW; Communication System Band: D1700 (1750.0 MHz); Duty Cycle:1:1; Conv.F=2.05 Frequency: 1750MHz; Medium parameters used: f = 1750MHz; $\sigma = 1.51 \text{ mho/m}$; $\epsilon r = 53.24$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 21.9, Liquid temperature ($^{\circ}$ C): 21.5

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

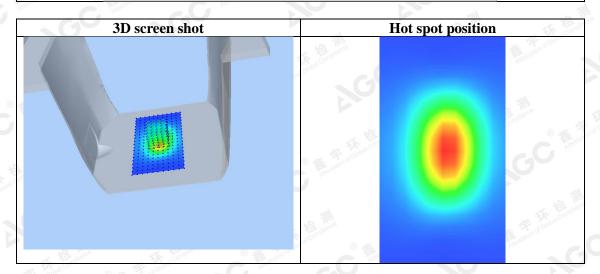
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1750MHz Body/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 1750MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=2.00, Y=0.00 SAR Peak: 3.95 W/kg


SAR 10g (W/Kg)	1.211706
SAR 1g (W/Kg)	2.351167

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC00767180503FH01 Page 90 of 171

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	3.9510	2.4933	1.3706	0.7889	0.4561	0.2666	0.1576
(11/118)	4.0-	3:A" . CO"		- any			~ 6
That complian	3.5-	\longrightarrow			++++		
	3.0-	\longrightarrow			++++		
	⊋ 2.5-	$+\!$					
	® 2.5 № 2.0	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		\perp			
	€ 8 1.5-	$++\lambda$		+++	++++		
	1.0-		\mathbb{N}		+++		
	0.5-	+	++	+	++++	56	
A 7	0.1-			200	+-		
The Global Compile	0.0	2.5 5.0 7.5 1		20.0 25.0 Z (mm)	30.0 35.	0 40.0	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Date: July 09,2018

Page 91 of 171

Test Laboratory: AGC Lab System Check Head 1750MHz

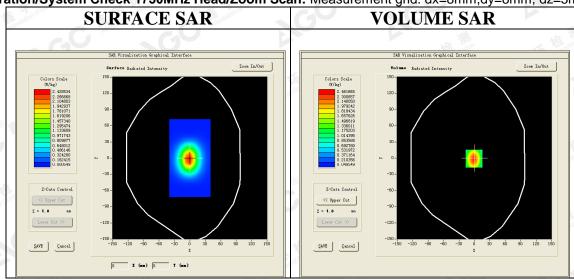
DUT: Dipole 1800 MHz; Type: SID 1800

Communication System: CW; Communication System Band: D1700 (1750.0 MHz); Duty Cycle:1:1; Conv.F=1.99 Frequency: 1750 MHz; Medium parameters used: f = 1750 MHz; $\sigma = 1.41 mho/m$; $\epsilon r = 39.22$; $\rho = 1000 kg/m^3$;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 23.1, Liquid temperature ($^{\circ}$ C): 22.5

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

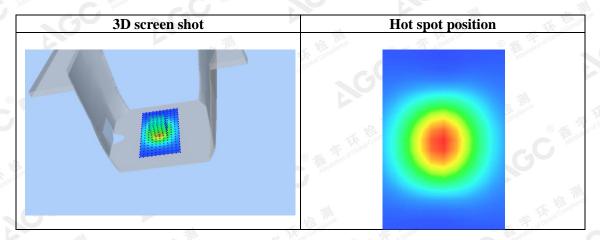
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1750MHz Head/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 1750MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=0.00, Y=0.00 SAR Peak: 3.87 W/kg


SAR 10g (W/Kg)	1.250125
SAR 1g (W/Kg)	2.341744

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC00767180503FH01 Page 92 of 171

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	3.8956	2.4611	1.3759	0.7985	0.4677	0.2726	0.1653
校 河	3.9- 3.5-						
F of Global Comp.	3.0-	$\overline{}$					
Atestation,							
-Till	(2) 2.5- (2) 2.0-						
Compliance	€ 1.5-	$\perp \mid \setminus$					
· · · · · · · · · · · · · · · · · · ·	1.0-	`	$\downarrow\downarrow\downarrow$				
F.C Anosa	0.5-			\bot			
	0.1-				┿┿	Clops No	
The stand Global Compile	0.	02.55.07.5	12.5 17.	5 22.5 2 Z(mm)	27.5 32.5	40. 0	

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Date: July 09,2018

Page 93 of 171

Test Laboratory: AGC Lab System Check Body 1750MHz

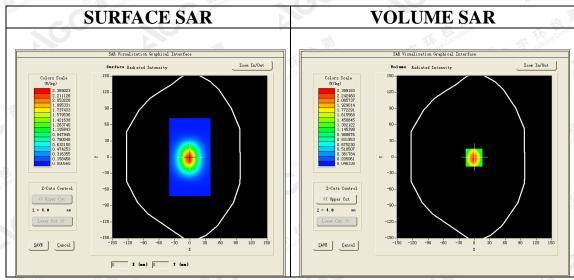
DUT: Dipole 1800 MHz; Type: SID 1800

Communication System: CW; Communication System Band: D1700 (1750.0 MHz); Duty Cycle:1:1; Conv.F=2.05 Frequency: 1750MHz; Medium parameters used: f = 1750MHz; $\sigma = 1.51 \text{ mho/m}$; $\epsilon r = 53.34$; $\rho = 1000 \text{ kg/m}^3$;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C): 23.1, Liquid temperature ($^{\circ}$ C): 22.6

SATIMO Configuration:

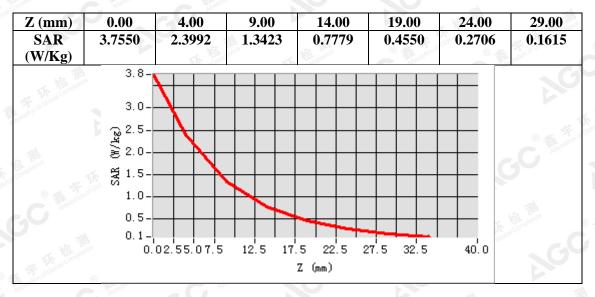

Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

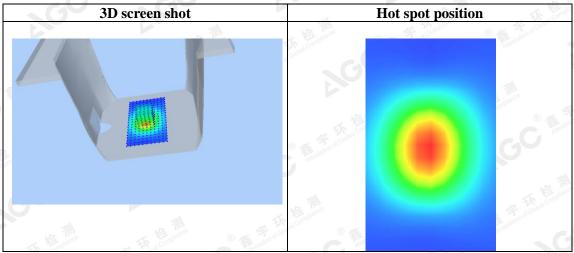
Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1750MHz Body/Area Scan: Measurement grid: dx=8mm,dy=8mm Configuration/System Check 1750MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


Maximum location: X=-1.00, Y=-1.00 SAR Peak: 3.74 W/kg


SAR 10g (W/Kg)	1.218178	astation.
SAR 1g (W/Kg)	2.277954	0

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 94 of 171

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Date: July 07,2018

Page 95 of 171

Test Laboratory: AGC Lab System Check Head 1900MHz

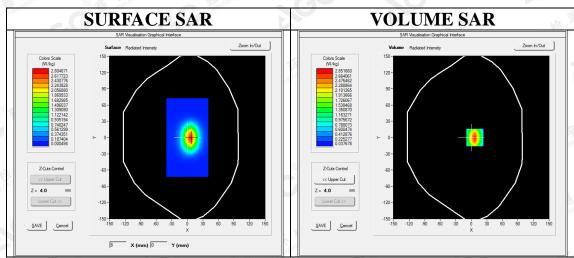
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.32 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 40.06$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.1, Liquid temperature (°C): 21.7, Relative Humidity (%):56.4

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=7.00, Y=0.00 SAR Peak: 4.55 W/kg

SAR 10g (W/Kg)	1.347859
SAR 1g (W/Kg)	2.675242

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC00767180503FH01 Page 96 of 171

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	4.5670	2.8517	1.5390	0.8681	0.4893	0.2822	0.1618
A	4.57-						
Ton of Global Compiler	4.00-	$\forall +$					
Nostro-	© 3.00-	+					
Compliance	% SAR 2.00−	$+ \uparrow \setminus$					
-C Milestollo	1.00-	+++					
人物	0.09-	0 2.5 5.0 7.51		20.0 25.0	30.0 35.	0 40.0	
The chopal Co.				Z (mm)			

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Date: July 04,2018

Page 97 of 171

Test Laboratory: AGC Lab System Check Body 1900MHz

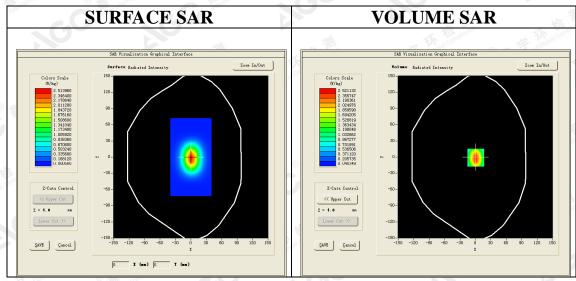
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.39 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ mho/m; $\epsilon r = 53.73$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.3, Liquid temperature (°C): 21.9, Relative Humidity (%): 50.6

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

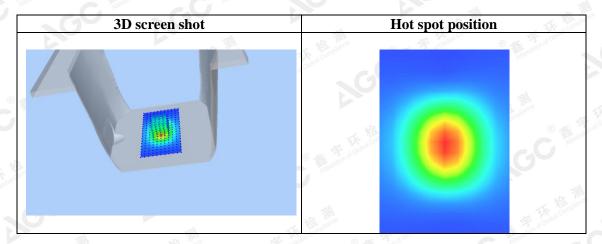
Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=1.00, Y=-1.00 SAR Peak: 4.00 W/kg


SAR 10g (W/Kg)	1.240135
SAR 1g (W/Kg)	2.385771

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC00767180503FH01 Page 98 of 171

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	4.0044	2.5236	1.3821	0.7875	0.4503	0.2628	0.1549
	4.0-						
K Global Compile	3.5-	+++					
destation of	3.0-	\rightarrow					
	(¥) 2.5- (≹) 2.0-	$\rightarrow \rightarrow \rightarrow$	++++				
ALL SILLS	≥ 2.0-	$+ \mathcal{N}$					
Compliano	% ₹ 1.5-	$++\lambda$					
® A talion	1.0-						
E.C. Allee	0.5-						
	0.1-				┿┷┷	Glops A	
TK KEL PA	o.	02.55.07.5	12.5 17.		27.5 32.5	40.0	
The state of Global Co				Z (mm)			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Date: June 25,2018

Page 99 of 171

Test Laboratory: AGC Lab System Check Head 1900MHz

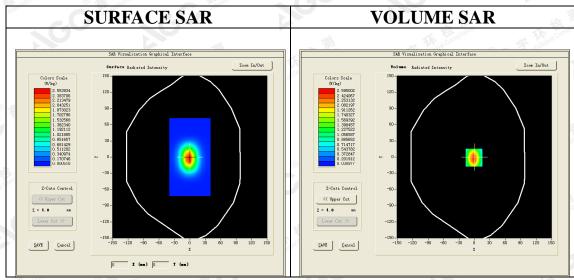
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.32 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 40.00$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.8, Liquid temperature (°C): 21.2

SATIMO Configuration:


Probe: SSE2; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=-0.00, Y=-0.00 SAR Peak: 4.19 W/kg

SAR 10g (W/Kg)	1.238774
SAR 1g (W/Kg)	2.462418

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.