

No. 1 Workshop, M-10, Middle section, Science & Report No.: HR/2019/1000502

Technology Park, Nanshan District, Shenzhen, Page: 1 of 77

Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Email: ee.shenzhen@sgs.com

FCC TEST REPORT

Application No.: HR/2019/10005

Applicant: Unimax communications

Address of Applicant 18201 McDurmott St.West Suite E,Irvine,CA 92614.

Manufacturer: Unimax communications

Address of Manufacturer 18201 McDurmott St.West Suite E,Irvine,CA 92614.

Factory: Unimax communications

Address of Factory 18201 McDurmott St.West Suite E,Irvine,CA 92614.

EUT Description: Smartphone
Model No.: U683CL
Trade Mark: UMX

FCC ID: P46-U683CL

Standards: 47 CFR FCC Part 2, Subpart J

47 CFR Part 15, Subpart C

Test Method ANSI C63.4(2014)

ANSI C63.10 (2013)

Date of Receipt: 2019/1/10

Date of Test: 2019/1/10 to 2019/1/24

Date of Issue: 2019/1/24

Test Result: PASS *

Authorized Signature:

Derele yang

Derek Yang

Wireless Laboratory Manager

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: HR/2019/1000502

Page: 2 of 77

1 Version

Revision Record						
Version Chapter Date Modifier Remark						
00		2019/1/24		Original		

Authorized for issue by:		
Tested By	Nike Yu	2019/1/24
	(Mike Hu) /Project Engineer	Date
Checked By	David Chen	2019/1/24
	(David Chen) /Reviewer	Date

Report No.: HR/2019/1000502

Page: 3 of 77

2 Test Summary

Test Item	Test Requirement	Test method	Test Result	Result
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 4.2	PASS
Conducted Peak Output Power	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.3	PASS
20dB Emission Bandwidth & 99% Occupied Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.4	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.6	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 4.7	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 4.8	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 4.9	PASS
Radiated Spurious emissions	15.247(d) ;15.205/15.209	ANSI C63.10 (2013)	Clause 4.10	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d) ;15.205/15.209	ANSI C63.10 (2013)	Clause 4.11	PASS

Report No.: HR/2019/1000502

Page: 4 of 77

Contents

1	VERSION	2
2	2 TEST SUMMARY	3
3		5
•	3.1 CLIENT INFORMATION	
	3.2 TEST LOCATION	
	3.3 TEST FACILITY	
	3.4 GENERAL DESCRIPTION OF EUT.	
	3.5 TEST ENVIRONMENT	
	3.6 DESCRIPTION OF SUPPORT UNITS	
4	TEST RESULTS AND MEASUREMENT DATA	8
	4.1 Antenna Requirement	8
	4.2 AC POWER LINE CONDUCTED EMISSIONS	8
	4.3 CONDUCTED PEAK OUTPUT POWER	12
	4.3.1 Test Results	
	4.3.2 Test plots	
	4.4 20DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	19
	4.4.1 Test Results	
	4.4.1 Test plots	
	4.5 CARRIER FREQUENCIES SEPARATION	
	4.5.1 Test Results	
	4.5.2 Test plots:	
	4.6 HOPPING CHANNEL NUMBER	
	4.6.1 Test Results	
	4.6.2 Test plots	
	4.7 DWELL TIME	
	4.7.1 Test Results	
	4.7.2 Test plots	
	4.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	4.8.1 Test plots	
	4.9 SPURIOUS RF CONDUCTED EMISSIONS	
	4.9.1 Test plots	
	4.10 Radiated Spurious Emission	
	4.10.2 Transmitter Emission above 1GHz	
	4.10.2 Transmitter Emission above 1G/12	
	4.11.1 Test plots	
5	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	75
6		
7	PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	77

Report No.: HR/2019/1000502

Page: 5 of 77

3 General Information

3.1 Client Information

Applicant:	Unimax communications	
Address of Applicant:	18201 McDurmott St.West Suite E,Irvine,CA 92614.	
Manufacturer:	Unimax communications	
Address of Manufacturer:	18201 McDurmott St.West Suite E,Irvine,CA 92614.	
Factory:	Unimax communications	
Address of Factory:	18201 McDurmott St.West Suite E,Irvine,CA 92614.	

3.2 Test Location

Company:	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch
Address:	No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China
Post code:	518057
Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
E-mail:	ee.shenzhen@sgs.com

3.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.: HR/2019/1000502

Page: 6 of 77

3.4 General Description of EUT

EUT Description::	Smartphone	
Model No.:	U683CL	
Trade Mark:	UMX	
Hardware Version:	Q5007-MB-V1.0	
Software Version:	U683CL_01.01.01.111634	
Operation Frequency:	2400MHz~2483.5MHz fc = 2402 MHz + N * 1 MHz, where: -fc = "Operating Frequency" in MHz, -N = "Channel Number" with the range from 0 to 78.	
Bluetooth Version:	V2.0/3.0	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Sample Type:	□ Portable Device, □ Module	
Antenna Type:	☐ External, ☑ Integrated	
Antenna Gain:	1.2dBi	
Power Supply AC/DC Adapter; Battery PoE:; Other:		

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No.: HR/2019/1000502

Page: 7 of 77

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle

frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

3.5 Test Environment

Operating Environment			
Temperature:	24.0 °C		
Humidity: 55 % RH			
Atmospheric Pressure:	101.30 KPa		

3.6 Description of Support Units

The EUT has been tested independent unit.

Report No.: HR/2019/1000502

Page: 8 of 77

4 Test results and Measurement Data

4.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
Otanidara regulientent.	1 47 OT KT alt 100 000001 10.2007247(0)

15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.2dBi.

4.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
	[Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average	
Limit:	0.15-0.5	66 to 56*	56 to 46*	
LIIIIIL.	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarith	nm of the frequency.		
Test Procedure:	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielded room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The lish 1 was placed 0.8 m from the boundary of the 			

Report No.: HR/2019/1000502

Page: 9 of 77

	mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.			
Test Setup:	Shielding Room Test Receiver LISN2 + AC Mains Ground Reference Plane			
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel. Charge + Transmitting mode.			
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Charge + Transmitting mode Only the worst case is recorded in the report.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			

Report No.: HR/2019/1000502


Page: 10 of 77

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

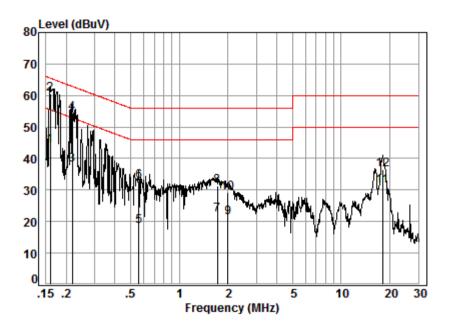
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room

Condition: Line Job No. : 10005

Test mode: d


		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.16	0.01	9.66	35.02	44.69	55.25	-10.56	Average
2	0.16	0.01	9.66	51.68	61.35	65.25	-3.90	QP
3	0.22	0.03	9.66	28.56	38.25	53.01	-14.76	Average
4	0.22	0.03	9.66	45.28	54.97	63.01	-8.04	QP
5	0.53	0.06	9.67	7.51	17.24	46.00	-28.76	Average
6	0.53	0.06	9.67	20.85	30.58	56.00	-25.42	QP
7	1.37	0.12	9.73	9.12	18.97	46.00	-27.03	Average
8	1.37	0.12	9.73	18.56	28.41	56.00	-27.59	QP
9	1.99	0.16	9.72	7.97	17.85	46.00	-28.15	Average
10	1.99	0.16	9.72	16.21	26.09	56.00	-29.91	QP
11	18.14	0.23	10.16	20.36	30.75	50.00	-19.25	Average
12	18.14	0.23	10.16	25.76	36.15	60.00	-23.85	QP

Report No.: HR/2019/1000502

Page: 11 of 77

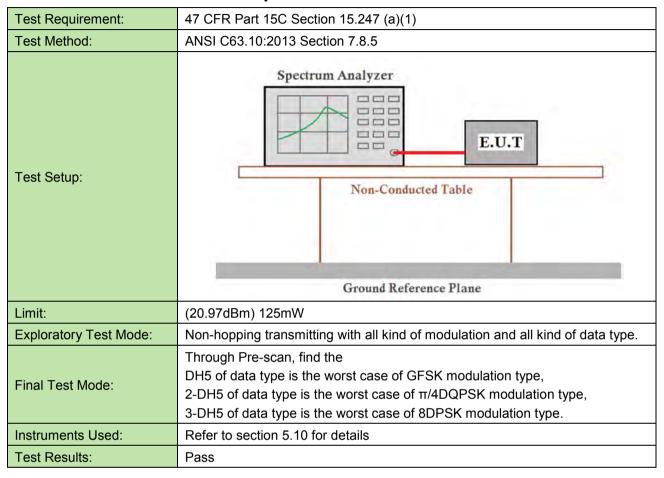
Neutral line:

Site : Shielding Room

Condition: Neutral Job No. : 10005

Test mode: d

		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.16	0.01	9.63	34.44	44.08	55.52	-11.44	Average
2	0.16	0.01	9.63	50.87	60.51	65.52	-5.01	QP
3	0.22	0.03	9.64	28.33	38.00	52.88	-14.88	Average
4	0.22	0.03	9.64	44.89	54.56	62.88	-8.32	QP
5	0.56	0.07	9.64	8.88	18.59	46.00	-27.41	Average
6	0.56	0.07	9.64	23.28	32.99	56.00	-23.01	QP
7	1.72	0.14	9.70	12.52	22.36	46.00	-23.64	Average
8	1.72	0.14	9.70	21.61	31.45	56.00	-24.55	QP
9	2.00	0.16	9.69	11.41	21.26	46.00	-24.74	Average
10	2.00	0.16	9.69	19.29	29.14	56.00	-26.86	QP
11	18.04	0.23	10.20	20.82	31.25	50.00	-18.75	Average
12	18.04	0.23	10.20	26.02	36.45	60.00	-23.55	QP


Remarks:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: HR/2019/1000502

Page: 12 of 77

4.3 Conducted Peak Output Power

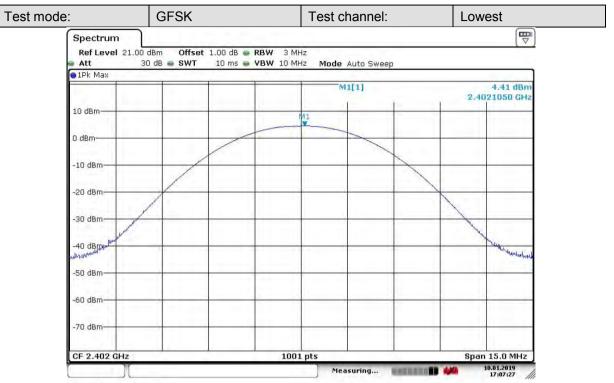
Report No.: HR/2019/1000502

Page: 13 of 77

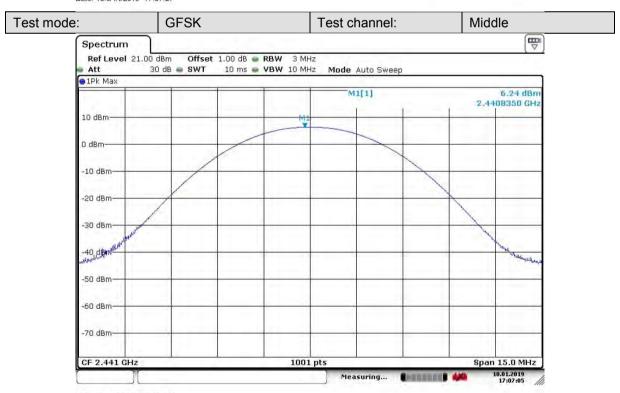
4.3.1 Test Results

Measurement Data of Average power:

	GFSK mode				
Test channel	Average Output Power (dBm)	Result			
Lowest	3.04	Report purpose only			
Middle	4.81	Report purpose only			
Highest	3.52	Report purpose only			
	π/4DQPSK mode				
Test channel	Average Output Power (dBm)	Result			
Lowest	1.57	Report purpose only			
Middle	3.32	Report purpose only			
Highest	2.03	Report purpose only			
	8DPSK mode				
Test channel	Average Output Power (dBm)	Result			
Lowest	1.56	Report purpose only			
Middle	3.31	Report purpose only			
Highest	2.02	Report purpose only			


Measurement Data of Peak power:

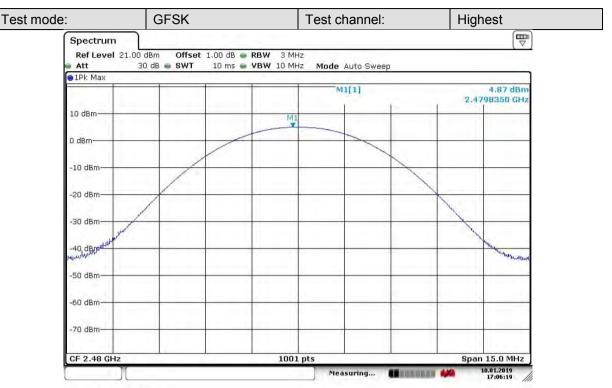
GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	4.41	20.97	Pass			
Middle	6.24	20.97	Pass			
Highest	4.87	20.97	Pass			
	π/4DQPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	5.45	20.97	Pass			
Middle	7.24	20.97	Pass			
Highest	5.88	20.97	Pass			
	8DPSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	5.67	20.97	Pass			
Middle	7.47	20.97	Pass			
Highest	6.11	20.97	Pass			


Report No.: HR/2019/1000502

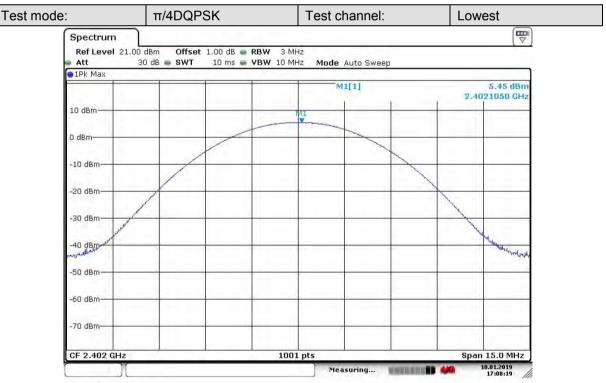
Page: 14 of 77

4.3.2 Test plots

Date: 10.JAN.2019 17:07:27



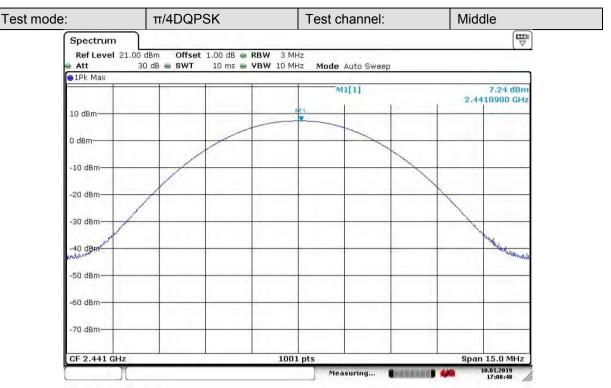
Date: 10.JAN.2019 17:07:06



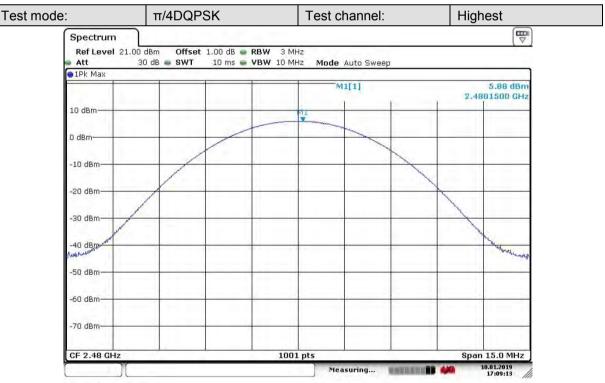
Report No.: HR/2019/1000502

Page: 15 of 77

Date: 10.JAN.2019 17:06:19



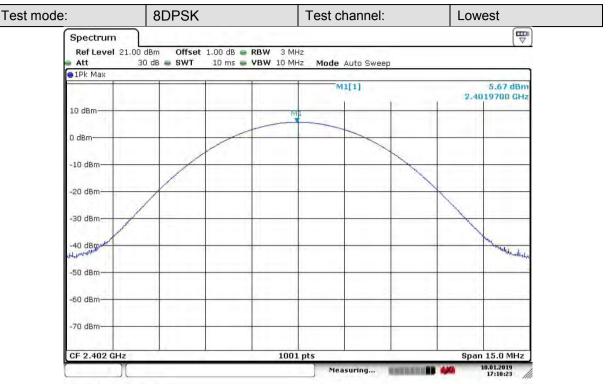
Date: 10.JAN.2019 17:08:20



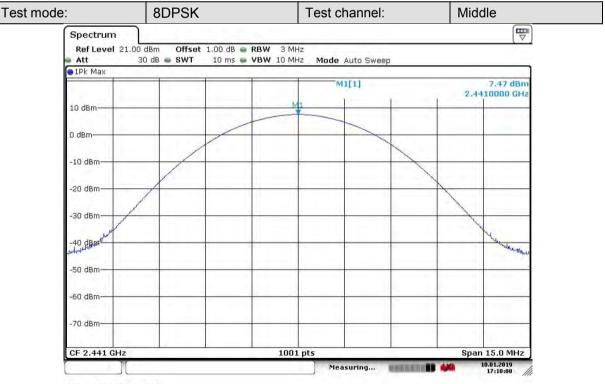
Report No.: HR/2019/1000502

Page: 16 of 77

Date: 10.JAN.2019 17:08:48



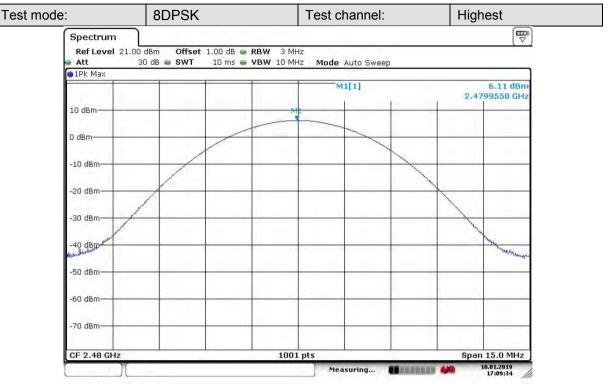
Date: 10.JAN.2019 17:09:14



Report No.: HR/2019/1000502

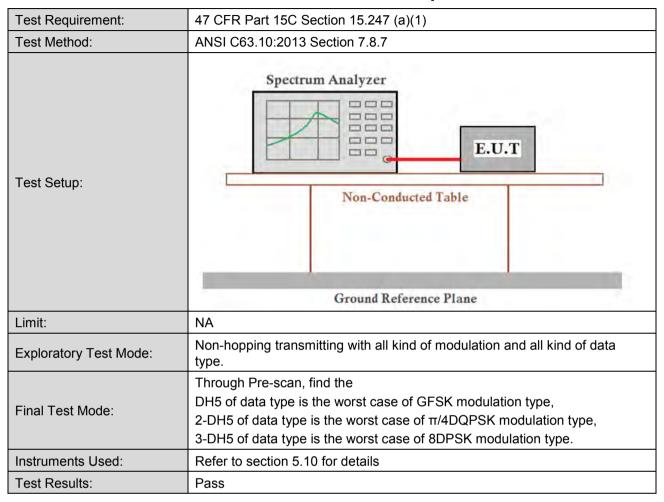
Page: 17 of 77

Date: 10.JAN.2019 17:10:24



Date: 10.JAN.2019 17:10:01

Report No.: HR/2019/1000502

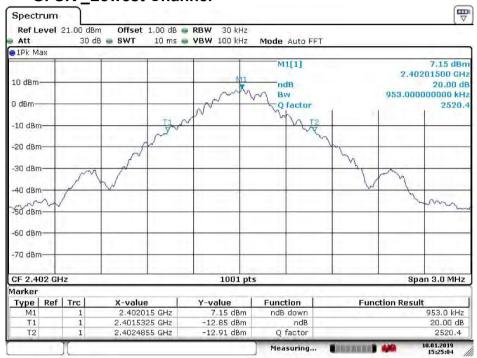

Page: 18 of 77

Report No.: HR/2019/1000502

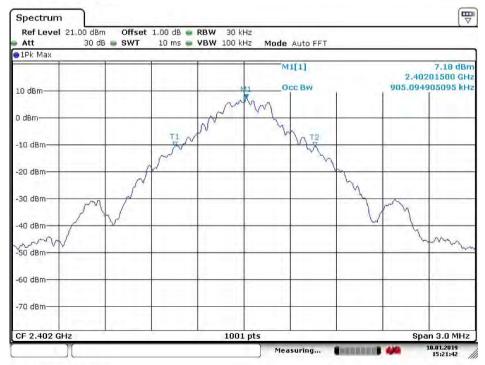
Page: 19 of 77

4.4 20dB Emission Bandwidth & 99% Occupied Bandwidth

4.4.1 Test Results


Mode	Test Channel	99% Occupied Bandwidth (KHz)	20dB Emission Bandwidth (KHz)	Result
	Lowest	905.09	953.00	Pass
GFSK	Middle	908.09	953.00	Pass
	Highest	908.09	953.00	Pass
	Lowest	1174.83	1279.70	Pass
π/4DQPSK	Middle	1177.82	1282.70	Pass
	Highest	1177.82	1282.70	Pass
	Lowest	1174.83	1282.70	Pass
8DPSK	Middle	1174.83	1282.70	Pass
	Highest	1174.83	1282.70	Pass

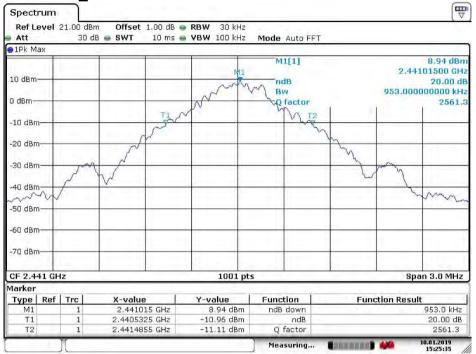
Report No.: HR/2019/1000502


Page: 20 of 77

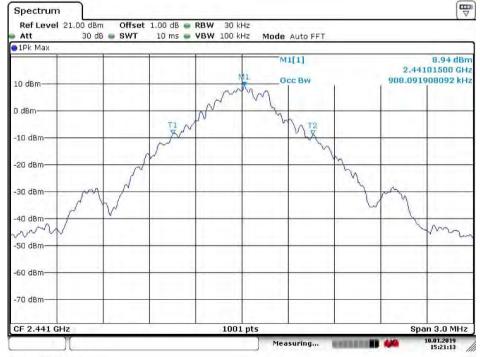
4.4.1 Test plots

4.4.1.1 GFSK Lowest Channel

Date: 10.JAN.2019 15:25:05



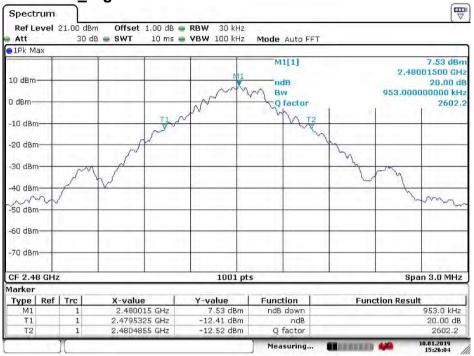
Date: 10.JAN.2019 15:21:42


Report No.: HR/2019/1000502

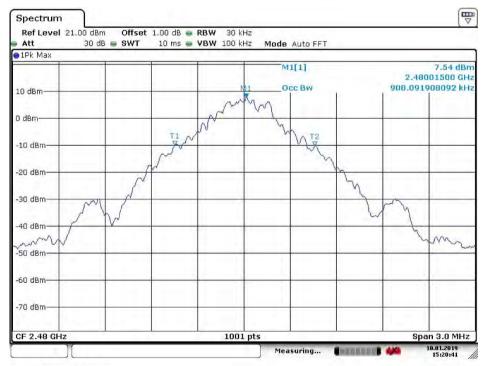
Page: 21 of 77

4.4.1.2 GFSK Middle Channel

Date: 10.JAN.2019 15:25:35



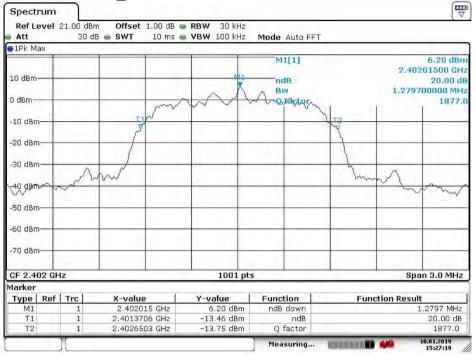
Date: 10.JAN.2019 15:21:13


Report No.: HR/2019/1000502

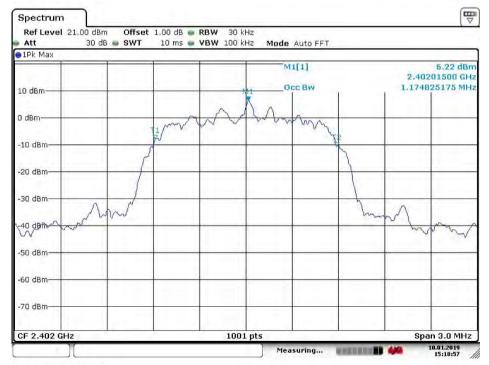
Page: 22 of 77

4.4.1.3 GFSK _Highest Channel

Date: 10 JAN.2019 15:26:04



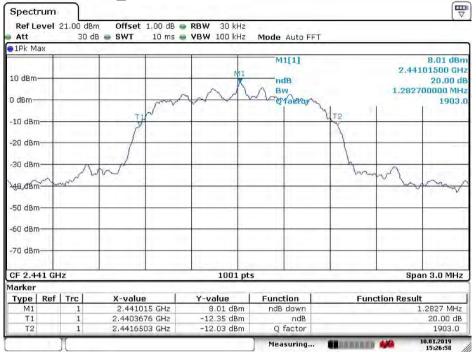
Date: 10.JAN.2019 15:20:42


Report No.: HR/2019/1000502

Page: 23 of 77

4.4.1.4 π/4DQPSK _Lowest Channel

Date: 10.JAN.2019 15:27:20



Date: 10.JAN.2019 15:18:57

Report No.: HR/2019/1000502

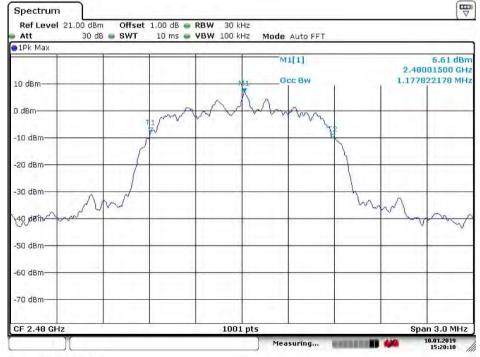
Page: 24 of 77

4.4.1.5 $\pi/4DQPSK_Middle\ Channel$

Date: 10.JAN.2019 15:26:58



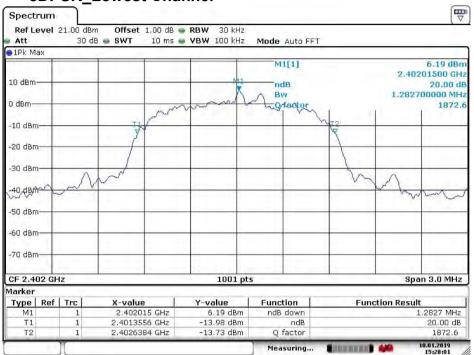
Date: 10.JAN.2019 15:19:40


Report No.: HR/2019/1000502

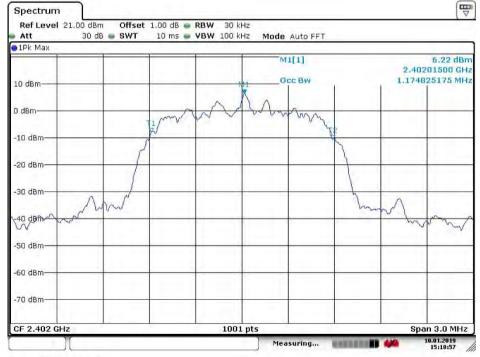
Page: 25 of 77

4.4.1.6 π/4DQPSK _Highest Channel

Date: 10.JAN.2019 15:26:29



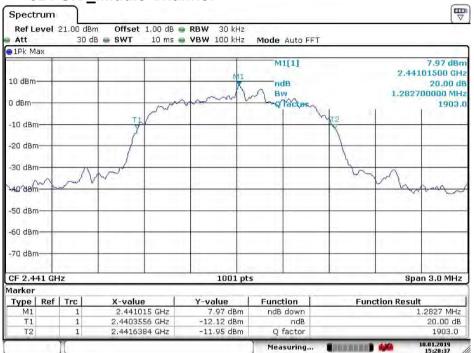
Date: 10.JAN.2019 15:20:10


Report No.: HR/2019/1000502

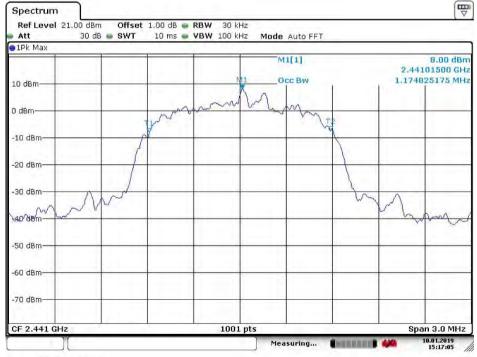
Page: 26 of 77

4.4.1.7 8DPSK Lowest Channel

Date: 10.JAN.2019 15:28:00



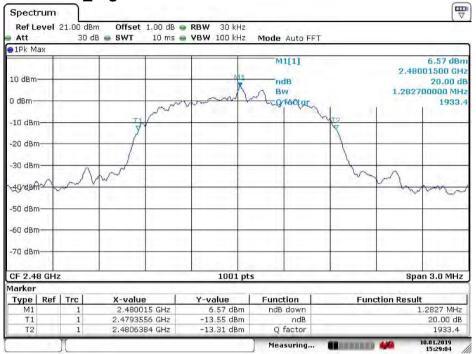
Date: 10.JAN.2019 15:18:57


Report No.: HR/2019/1000502

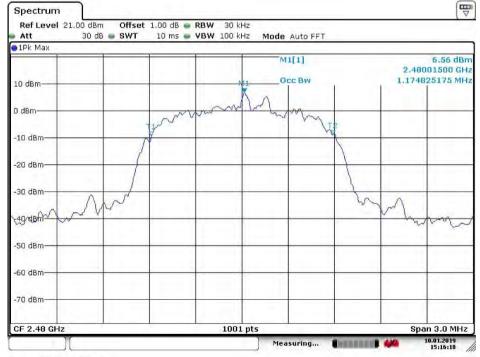
Page: 27 of 77

4.4.1.8 8DPSK Middle Channel

Date: 10.JAN.2019 15:28:37



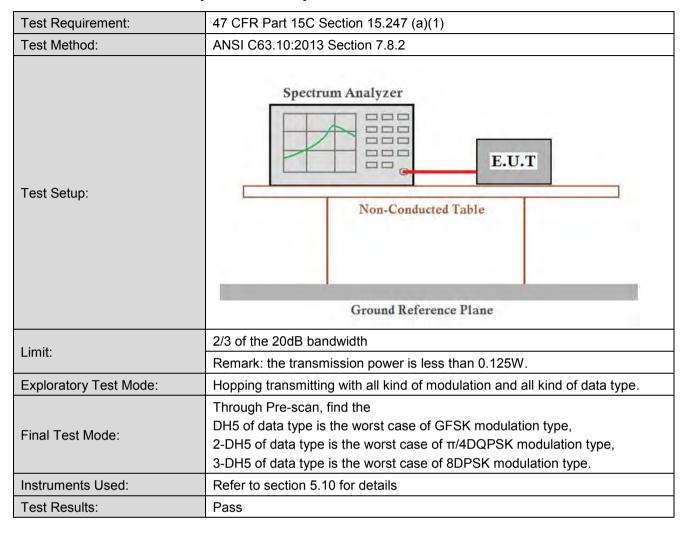
Date: 10.JAN.2019 15:17:06


Report No.: HR/2019/1000502

Page: 28 of 77

4.4.1.9 8DPSK Highest Channel

Date: 10.JAN.2019 15:29:05


Date: 10.JAN.2019 15:16:18

Report No.: HR/2019/1000502

Page: 29 of 77

4.5 Carrier Frequencies Separation

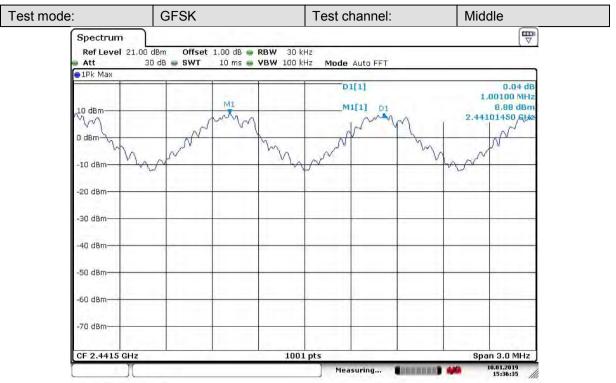
Report No.: HR/2019/1000502

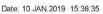
Page: 30 of 77

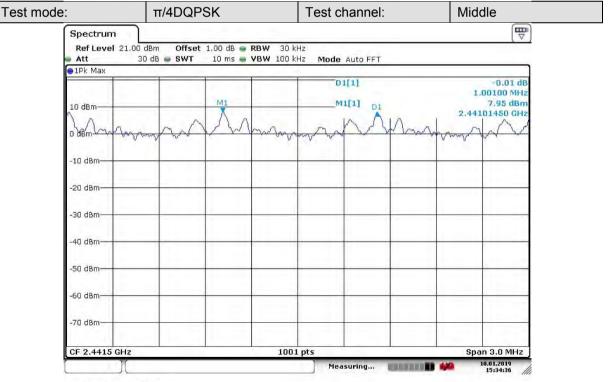
4.5.1 Test Results

GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Middle	1001	635.33	Pass		
π/4DQPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Middle	1001	855.13	Pass		
8DPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result		
Middle	1001	855.13	Pass		

Remark: According to section 6.4,

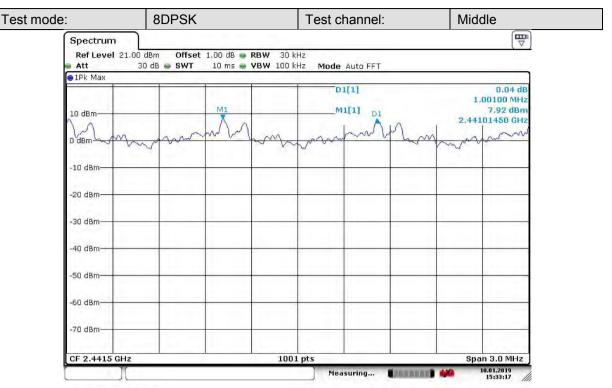

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	953.00	635.33
π/4DQPSK	1282.70	855.13
8DPSK	1282.70	855.13




Report No.: HR/2019/1000502

Page: 31 of 77

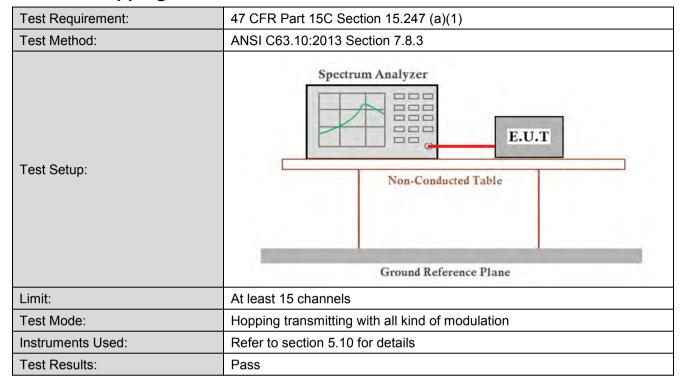
4.5.2 Test plots:



Date: 10.JAN.2019 15:34:36

Report No.: HR/2019/1000502

Page: 32 of 77



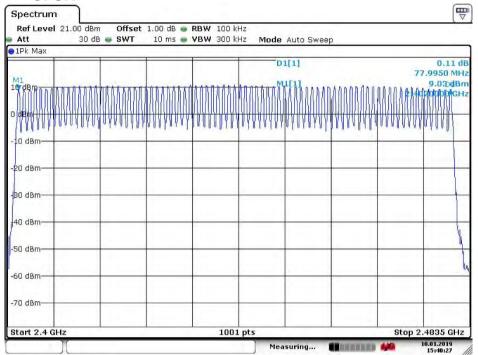
Date: 10.JAN.2019 15:33:17

Report No.: HR/2019/1000502

Page: 33 of 77

4.6 Hopping Channel Number

4.6.1 Test Results

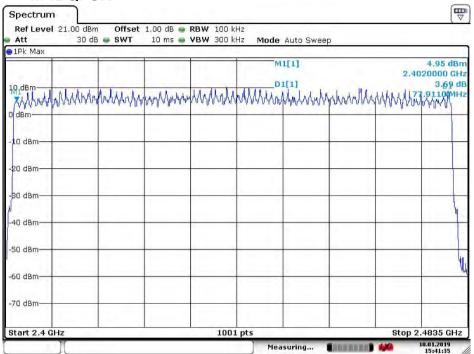

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

Report No.: HR/2019/1000502

Page: 34 of 77

4.6.2 Test plots

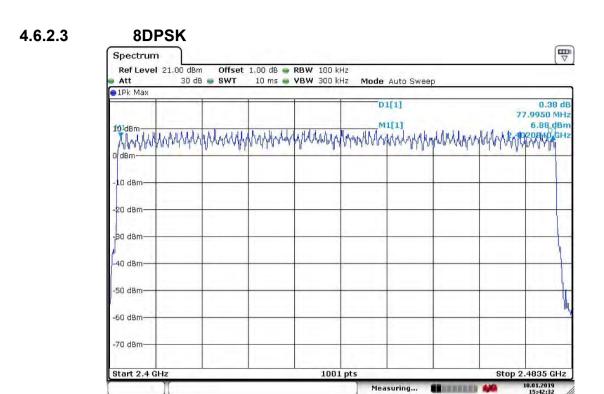
4.6.2.1 GFSK


Date: 10.JAN.2019 15:40:27

Report No.: HR/2019/1000502

Page: 35 of 77

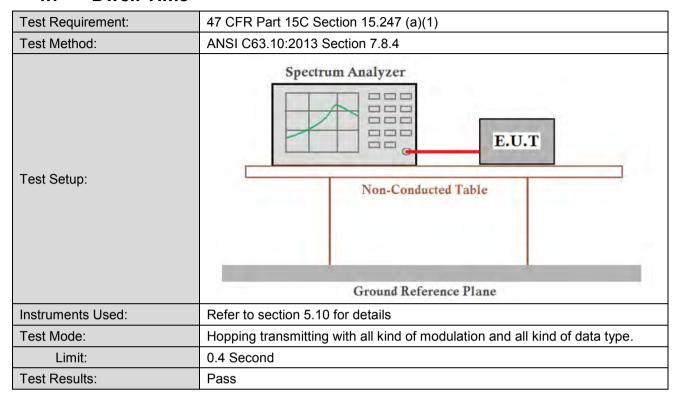
4.6.2.2 $\pi/4DQPSK$


Date: 10.JAN.2019 15:41:35

Measuring...

Report No.: HR/2019/1000502

Page: 36 of 77


Date: 10 JAN 2019 15:42:32

Report No.: HR/2019/1000502

Page: 37 of 77

4.7 Dwell Time

Report No.: HR/2019/1000502

Page: 38 of 77

4.7.1 Test Results

Operation Modes	On time (ms) on one channel
DH1	0.405
DH3	1.667
DH5	2.934
2-DH1	0.408
2-DH3	1.676
2-DH5	2.924
3-DH1	0.409
3-DH3	1.661
3-DH5	2.919

Bluetooth Time of Occupancy Calculation

Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600 hops/s, since 1x/EDR modes use 5 transmit and 1 receive slot, for a total of 6 slots, the Bluetooth transmitter is actually hopping at a rate of 1600/6=266.67 hops/slot

400ms x 79 Channel = 31.6 s (Time of Occupancy Limit)

Worst case BT has 266.67 hops/second (for 1x/EDR modes with DH5 operation)

266.67 hops/second/79 channels=3.38 hops/second (# of hops/second on one channel)

3.38 hops/second/channel*31.6seconds=106.67 hops (#hops over a 31.6 second period)

106.67 hops *2.934 ms/channel =312.97 ms(worst case dwell time for one channel in 1x/EDR modes)

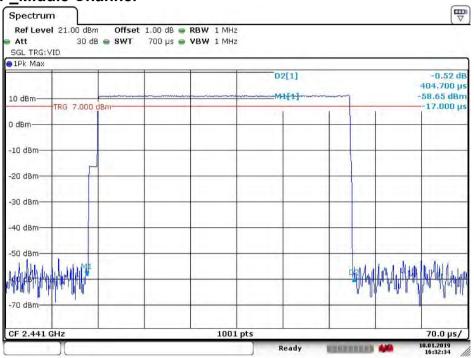
With AFH, the number of channels is reduced to a minimum of 20 channels and the channel hopping rate is reduced by 50% to 800hops/s, AFH mode also uses 6 slots so the Bluetooth transmitter hops at a rate of 800/6=133.3 hops/s/slot

400ms x 20 Channel = 8 s (Time of Occupancy Limit)

Worst case BT has 133.3 hops/second/slot (for AFH mode with DH5 operation)

133.3 hops/second/20 channels=6.67 hops/second (#hops/second on one channel)

6.67 hops/second *8seconds=53.34 hops (#hops over a 8 seconds period)

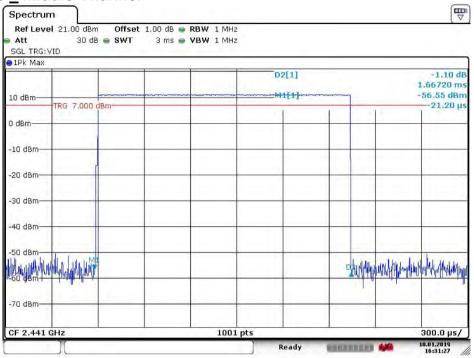

53.34 hops x2.934 ms/channel=156.50 ms(worst case dwell time for one channel in AFH mode)

Report No.: HR/2019/1000502

Page: 39 of 77

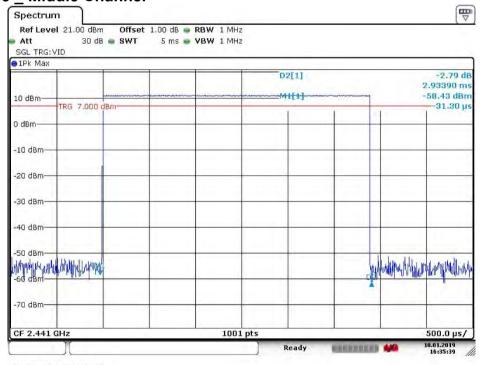
4.7.2 Test plots

4.7.2.1 DH1 Middle Channel



Date: 10.JAN.2019 16:32:34

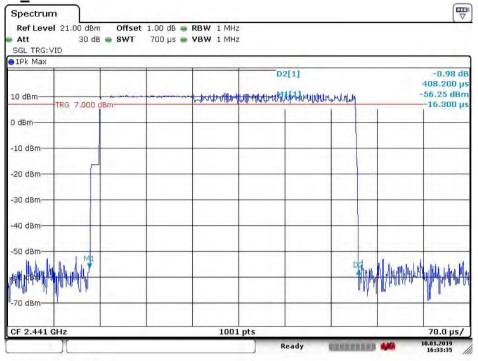
Report No.: HR/2019/1000502


Page: 40 of 77

4.7.2.2 DH3 Middle Channel

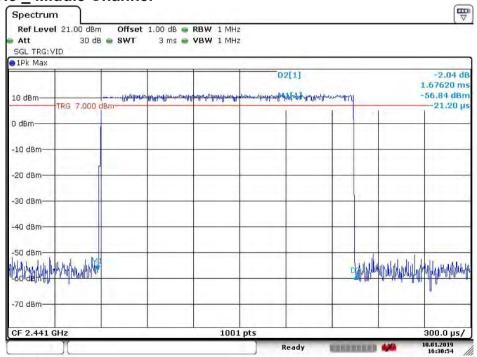
Date: 10.JAN.2019 16:31:28

4.7.2.3 DH5 Middle Channel



Date: 10.JAN.2019 16:35:39

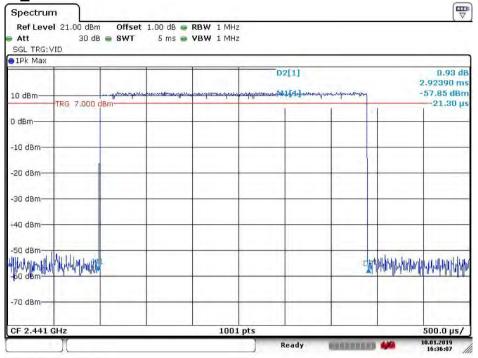
Report No.: HR/2019/1000502


Page: 41 of 77

4.7.2.4 2DH1 Middle Channel

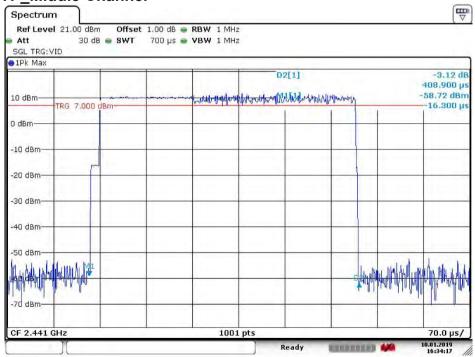
Date: 10.JAN.2019 16:33:35

4.7.2.5 2DH3 Middle Channel



Date: 10.JAN.2019 16:30:54

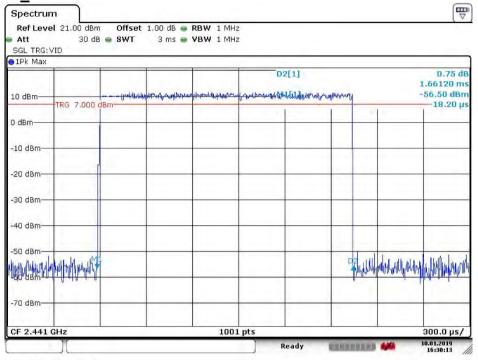
Report No.: HR/2019/1000502


Page: 42 of 77

4.7.2.6 2DH5 Middle Channel

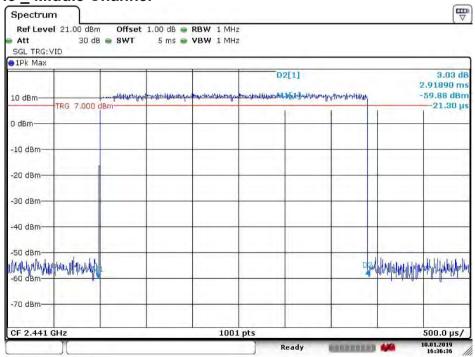
Date: 10.JAN.2019 16:36:07

4.7.2.7 3DH1 Middle Channel



Date: 10.JAN.2019 16:34:18

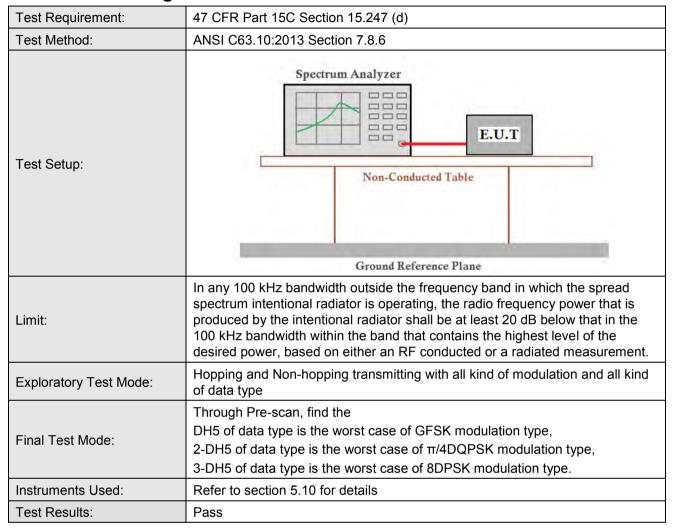
Report No.: HR/2019/1000502


Page: 43 of 77

4.7.2.8 3DH3 _ Middle Channel

Date: 10.JAN.2019 16:30:13

4.7.2.9 3DH5 Middle Channel

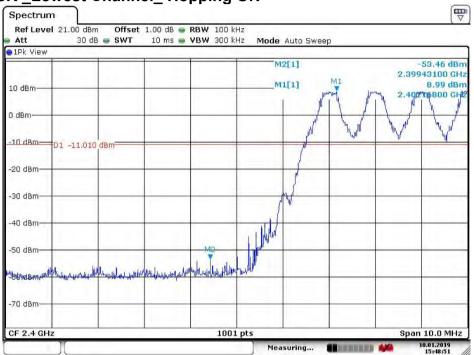


Date: 10.JAN.2019 16:36:36

Report No.: HR/2019/1000502

Page: 44 of 77

4.8 Band-edge for RF Conducted Emissions

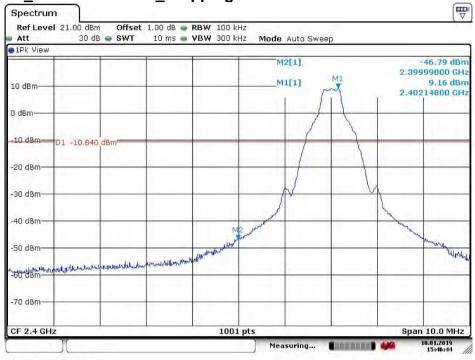


Report No.: HR/2019/1000502

Page: 45 of 77

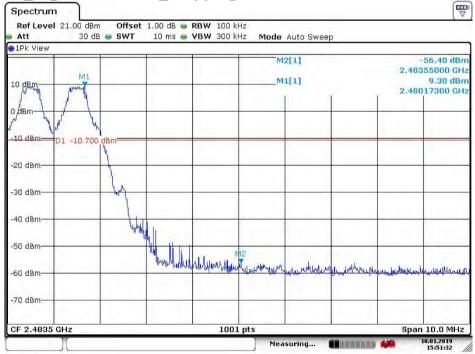
4.8.1 Test plots

4.8.1.1 GFSK Lowest Channel Hopping ON



Date: 10.JAN.2019 15:48:51

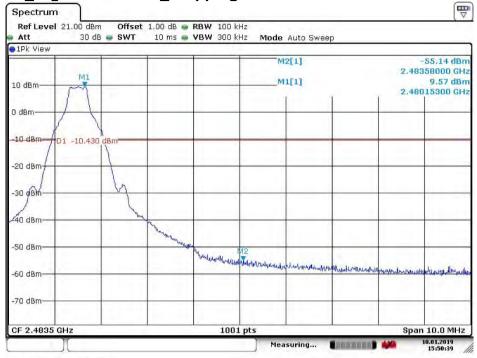
Report No.: HR/2019/1000502


Page: 46 of 77

4.8.1.2 GFSK _Lowest Channel_ Hopping OFF

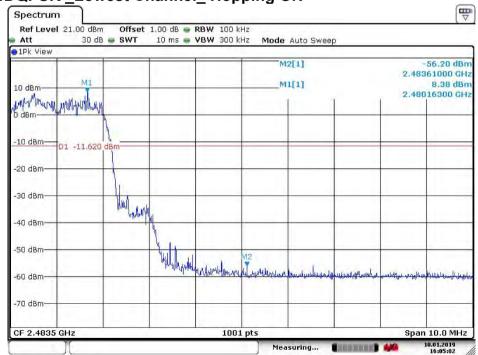
Date: 10.JAN.2019 15:46:44

4.8.1.3 GFSK _Highest Channel_ Hopping ON



Date: 10.JAN.2019 15:51:32

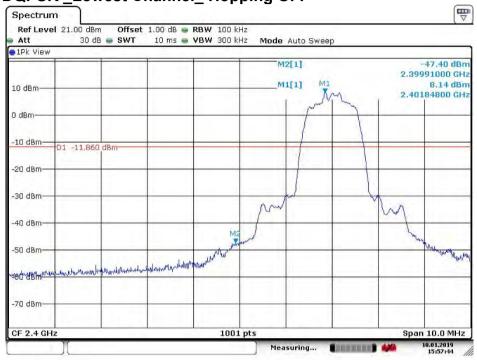
Report No.: HR/2019/1000502


Page: 47 of 77

4.8.1.4 GFSK _Highest Channel_ Hopping OFF

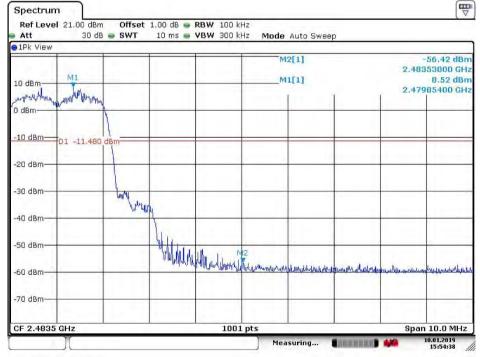
Date: 10.JAN.2019 15:50:40

4.8.1.5 π/4DQPSK _Lowest Channel_ Hopping ON



Date: 10.JAN.2019 16:05:03

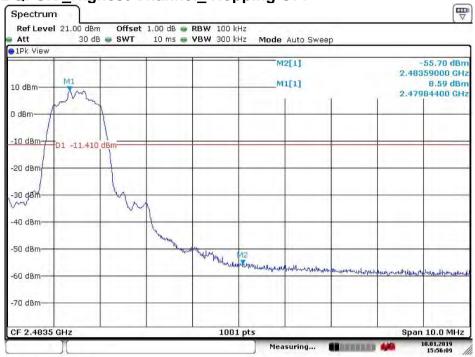
Report No.: HR/2019/1000502


Page: 48 of 77

4.8.1.6 π/4DQPSK _Lowest Channel_ Hopping OFF

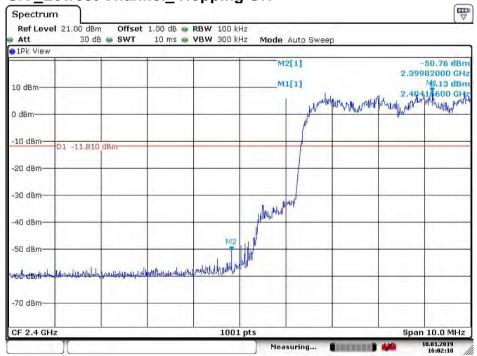
Date: 10.JAN.2019 15:57:45

4.8.1.7 π/4DQPSK _Highest Channel_ Hopping ON



Date: 10.JAN.2019 15:54:38

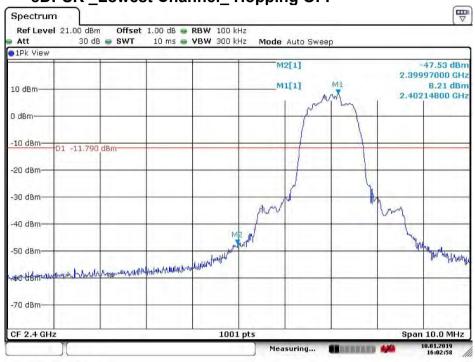
Report No.: HR/2019/1000502


Page: 49 of 77

4.8.1.8 π/4DQPSK _Highest Channel_ Hopping OFF

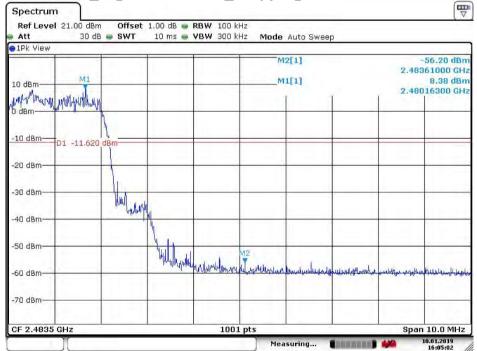
Date: 10.JAN.2019 15:56:09

4.8.1.9 8DPSK _Lowest Channel_ Hopping ON



Date: 10.JAN.2019 16:02:10

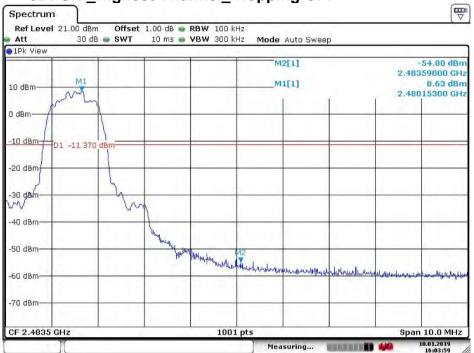
Report No.: HR/2019/1000502


Page: 50 of 77

4.8.1.10 8DPSK _Lowest Channel_ Hopping OFF

Date: 10.JAN.2019 16:02:59

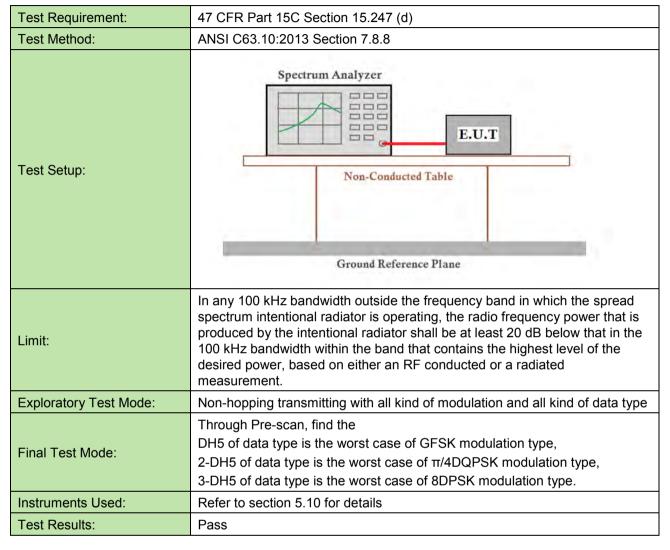
4.8.1.11 8DPSK _Highest Channel_ Hopping ON


Date: 10.JAN.2019 16:05:03

Report No.: HR/2019/1000502

Page: 51 of 77

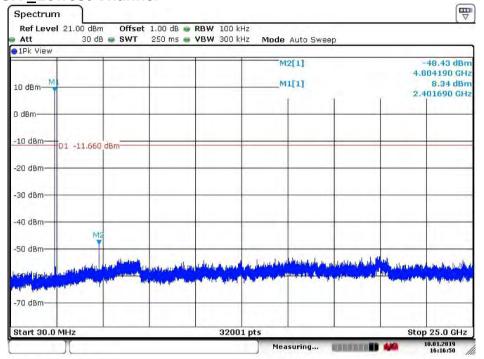
4.8.1.12 8DPSK _Highest Channel _ Hopping OFF


Date: 10.JAN.2019 16:04:00

Report No.: HR/2019/1000502

Page: 52 of 77

4.9 Spurious RF Conducted Emissions

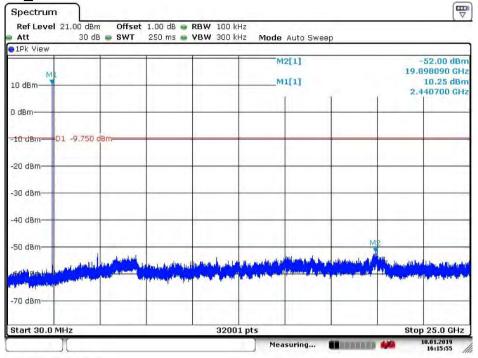


Report No.: HR/2019/1000502

Page: 53 of 77

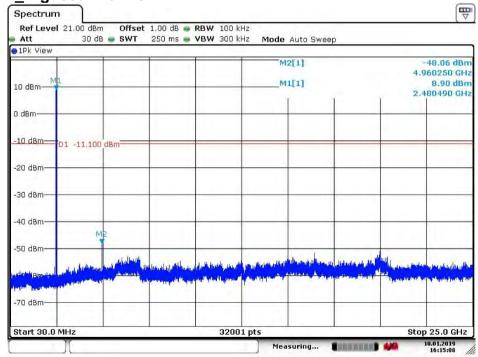
4.9.1 Test plots

4.9.1.1 GFSK _Lowest Channel



Date: 10.JAN.2019 16:16:50

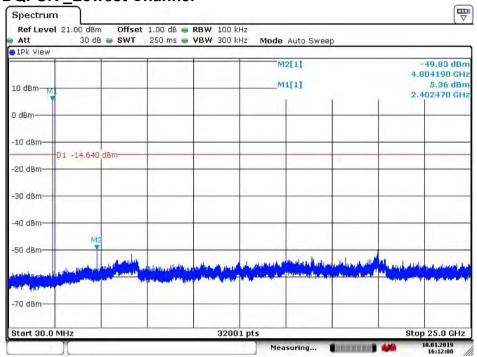
Report No.: HR/2019/1000502


Page: 54 of 77

4.9.1.2 GFSK _Middle Channel

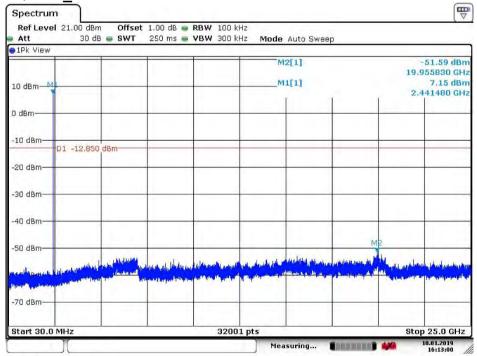
Date: 10.JAN.2019 16:15:56

4.9.1.3 GFSK _Highest Channel



Date: 10.JAN.2019 16:15:08

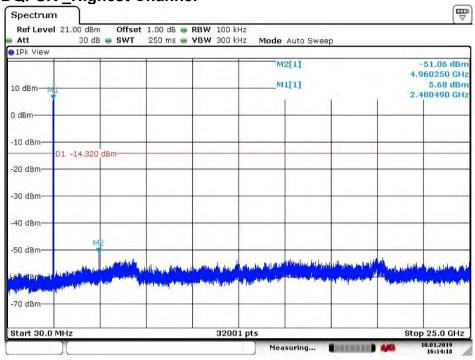
Report No.: HR/2019/1000502


Page: 55 of 77

4.9.1.4 π/4DQPSK Lowest Channel

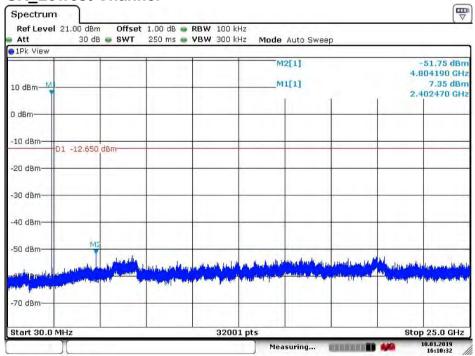
Date: 10.JAN.2019 16:12:00

4.9.1.5 π/4DQPSK Middle Channel



Date: 10.JAN.2019 16:13:00

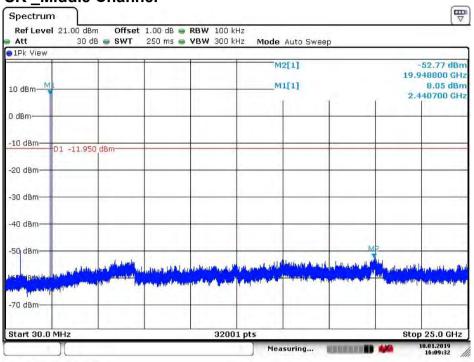
Report No.: HR/2019/1000502


Page: 56 of 77

4.9.1.6 π/4DQPSK _Highest Channel

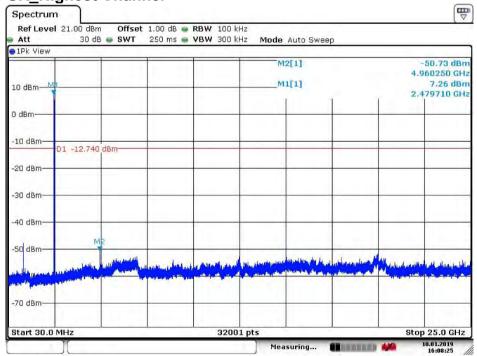
Date: 10.JAN.2019 16:14:18

4.9.1.7 8DPSK Lowest Channel



Date: 10.JAN.2019 16:10:32

Report No.: HR/2019/1000502


Page: 57 of 77

4.9.1.8 8DPSK Middle Channel

Date: 10.JAN.2019 16:09:33

4.9.1.9 8DPSK_Highest Channel

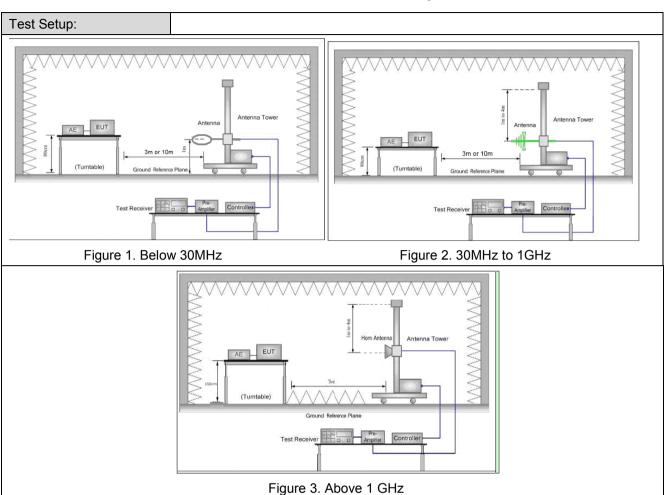
Date: 10.JAN.2019 16:08:26

Report No.: HR/2019/1000502

Page: 58 of 77

Remark:

Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


4.10 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15	.209 and 15.205						
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anec	hoic Chamb	oer)				
	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
Deseiver Setur	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak			
Receiver Setup:	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
		Peak	1MHz	10Hz	Average			
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/ m	Remark	Measuremen t distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	-	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Remark: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							

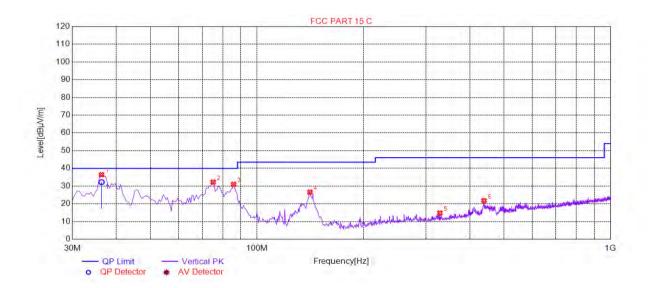
Report No.: HR/2019/1000502

Page: 59 of 77

Report No.: HR/2019/1000502

Page: 60 of 77

Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel (2490MHz), the middle channel (2441MHz), the Highest channel (2490MHz) i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. 					
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode.					
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					

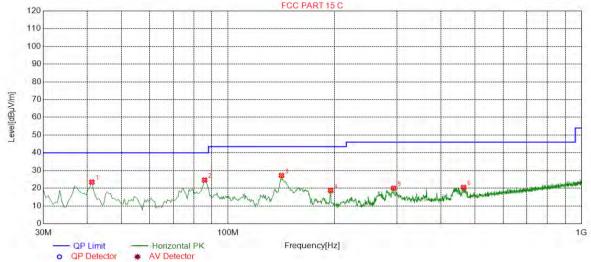


Report No.: HR/2019/1000502

Page: 61 of 77

4.10.1 Radiated Emission below 1GHz

4.10.1.1 Charge + Transmitting, Vertical

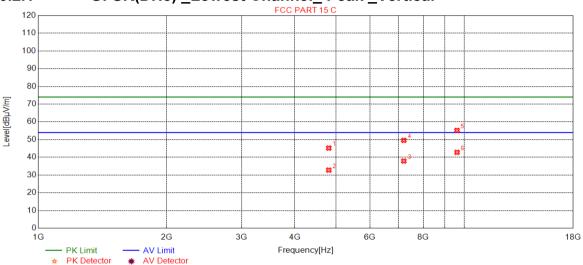

Suspe	Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	36.3082	36.39	-32.34	40.00	3.61	100	360	Vertical		
2	75.1276	32.24	-35.04	40.00	7.76	200	236	Vertical		
3	85.8029	30.97	-34.44	40.00	9.03	100	104	Vertical		
4	141.1206	26.58	-35.16	43.50	16.92	200	11	Vertical		
5	328.9095	14.80	-27.02	46.00	31.20	200	2	Vertical		
6	438.5743	21.78	-24.09	46.00	24.22	100	170	Vertical		

Report No.: HR/2019/1000502

Page: 62 of 77

4.10.1.2 Charge + Transmitting, Horizontal

Suspe	Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	41.1606	23.49	-30.94	40.00	16.51	200	182	Horizontal		
2	85.8029	24.59	-34.44	40.00	15.41	200	182	Horizontal		
3	141.6058	27.22	-35.14	43.50	16.28	200	257	Horizontal		
4	194.9825	18.77	-31.35	43.50	24.73	100	266	Horizontal		
5	293.9720	19.99	-28.03	46.00	26.01	100	90	Horizontal		
6	463.8069	20.48	-23.54	46.00	25.52	200	116	Horizontal		

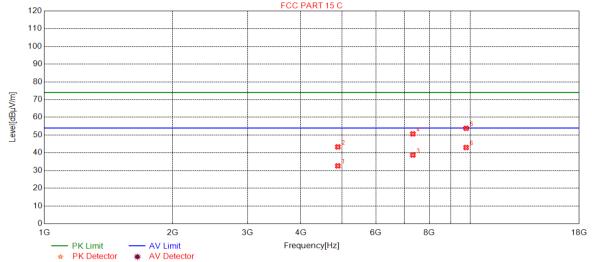


Report No.: HR/2019/1000502

Page: 63 of 77

4.10.2 Transmitter Emission above 1GHz

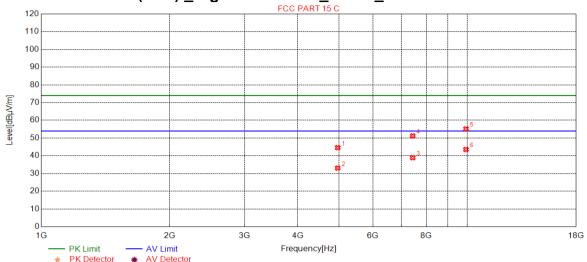
4.10.2.1 GFSK(DH5) _Lowest Channel_ Peak _Vertical


Suspe	Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	4804.0000	45.22	7.31	74.00	28.78	150	188	Vertical		
2	4804.0000	32.78	7.31	54.00	21.22	150	207	Vertical		
3	7206.0000	37.91	13.98	54.00	16.09	150	188	Vertical		
4	7206.0000	49.58	13.98	74.00	24.42	150	120	Vertical		
5	9608.0000	55.16	17.88	74.00	18.84	150	210	Vertical		
6	9608.0000	42.82	17.88	54.00	11.18	150	194	Vertical		

Report No.: HR/2019/1000502

Page: 64 of 77

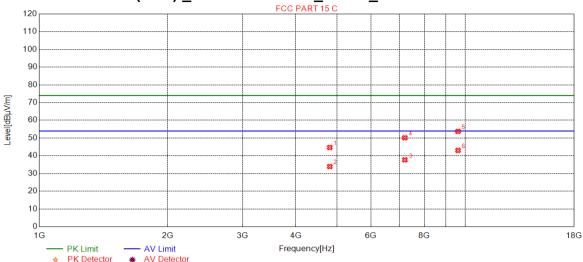
4.10.2.2 GFSK(DH5) _Middle Channel_ Peak _Vertical


Suspe	Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	4884.00	32.62	7.53	54.00	21.38	150	145	Vertical		
2	4884.00	43.32	7.53	74.00	30.68	150	298	Vertical		
3	7326.00	38.73	14.34	54.00	15.27	150	337	Vertical		
4	7326.00	50.67	14.34	74.00	23.33	150	164	Vertical		
5	9768.00	53.83	18.32	74.00	20.17	150	269	Vertical		
6	9768.00	42.98	18.32	54.00	11.02	150	252	Vertical		

Report No.: HR/2019/1000502

Page: 65 of 77

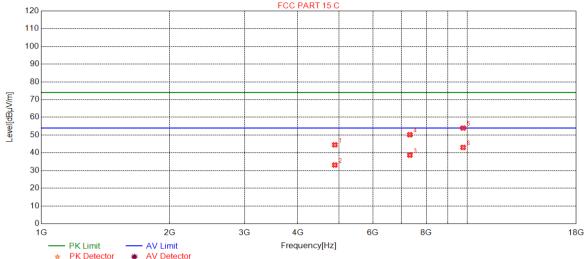
4.10.2.3 GFSK(DH5) _Highest Channel_ Peak _Vertical


Susp	Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	4960.00	44.60	7.74	74.00	29.40	150	174	Vertical		
2	4960.00	33.05	7.74	54.00	20.95	150	193	Vertical		
3	7440.00	38.93	14.78	54.00	15.07	150	145	Vertical		
4	7440.00	51.22	14.78	74.00	22.78	150	346	Vertical		
5	9920.00	55.13	19.06	74.00	18.87	150	320	Vertical		
6	9920.00	43.55	19.06	54.00	10.45	150	64	Vertical		

Report No.: HR/2019/1000502

Page: 66 of 77

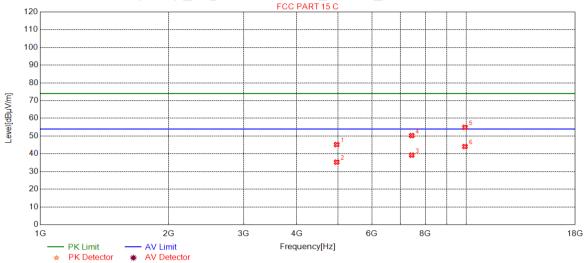
4.10.2.4 GFSK(DH5) _Lowest Channel_ Peak _Horizontal


Suspe	Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity		
1	4804.0000	44.69	7.31	74.00	29.31	150	9	Horizontal		
2	4804.0000	33.94	7.31	54.00	20.06	150	327	Horizontal		
3	7206.0000	37.70	13.98	54.00	16.30	150	240	Horizontal		
4	7206.0000	50.17	13.98	74.00	23.83	150	202	Horizontal		
5	9608.0000	53.77	17.88	74.00	20.23	150	235	Horizontal		
6	9608.0000	43.03	17.88	54.00	10.97	150	354	Horizontal		

Report No.: HR/2019/1000502

Page: 67 of 77

4.10.2.5 GFSK(DH5) _Middle Channel_ Peak _ Horizontal


Suspe	Suspected List								
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	4884.0000	44.49	7.53	74.00	29.51	150	273	Horizontal	
2	4884.0000	33.10	7.53	54.00	20.90	150	42	Horizontal	
3	7326.0000	38.70	14.34	54.00	15.30	150	186	Horizontal	
4	7326.0000	50.18	14.34	74.00	23.82	150	177	Horizontal	
5	9768.0000	53.95	18.32	74.00	20.05	150	187	Horizontal	
6	9768.0000	43.02	18.32	54.00	10.98	150	255	Horizontal	

Report No.: HR/2019/1000502

Page: 68 of 77

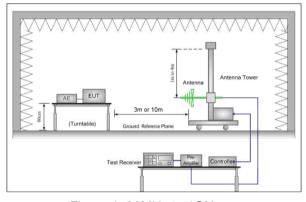
4.10.2.6 GFSK(DH5) _Highest Channel_ Peak _ Horizontal

Suspe	Suspected List								
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	4960.0000	45.19	7.74	74.00	28.81	150	100	Horizontal	
2	4960.0000	35.29	7.74	54.00	18.71	150	340	Horizontal	
3	7440.0000	39.24	14.78	54.00	14.76	150	340	Horizontal	
4	7440.0000	50.28	14.78	74.00	23.72	150	206	Horizontal	
5	9920.0000	54.92	19.06	74.00	19.08	150	125	Horizontal	
6	9920.0000	44.08	19.06	54.00	9.92	150	312	Horizontal	

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 2) Scan from 9kHz to 25GHz, the disturbance between 9KHz to 30MHz and 18GHz to 25GHz was very low, and the above harmonics were the highest point could be found when testing. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.
- 4) All Modes have been tested, but only the worst case data displayed in this report.

Report No.: HR/2019/1000502

Page: 69 of 77

4.11 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Site:	Measurement Distance: 3m or 10m (Semi-Anechoic Chamber)						
	Frequency	Limit (dBuV/m @3m)	Remark				
	30MHz-88MHz	40.0	Quasi-peak Value				
	88MHz-216MHz	43.5	Quasi-peak Value				
Limit:	216MHz-960MHz	46.0	Quasi-peak Value				
	960MHz-1GHz	54.0	Quasi-peak Value				
	Above 1CH	54.0	Average Value				
	Above 1GHz	74.0	Peak Value				
Test Setup:							

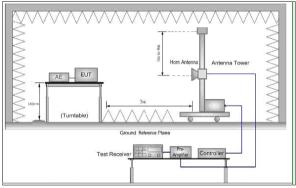


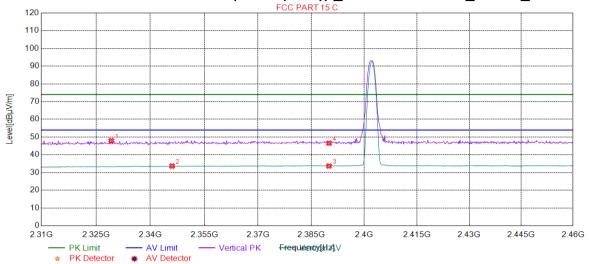
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: HR/2019/1000502

Page: 70 of 77

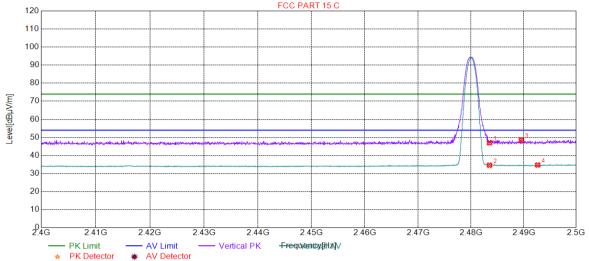
Test Procedure:	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. 			
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Charge + Transmitting mode.			
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Charge + Transmitting mode, Only the worst case is recorded in the report.			
Instruments Used:	Refer to section 5.10 for details			
Test Results:	Pass			



Report No.: HR/2019/1000502

Page: 71 of 77

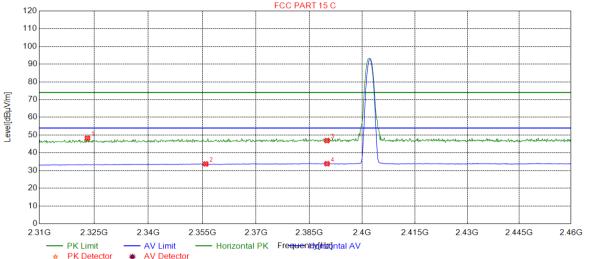
4.11.1 Test plots


Suspected ListSuspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2329.2192	47.96	0.98	74.00	26.04	150	155	Vertical	
2	2346.0360	33.65	1.05	54.00	20.35	150	197	Vertical	
3	2390.0000	33.68	1.25	54.00	20.32	150	346	Vertical	
4	2390.0000	46.55	1.25	74.00	27.45	150	137	Vertical	

Report No.: HR/2019/1000502

Page: 72 of 77

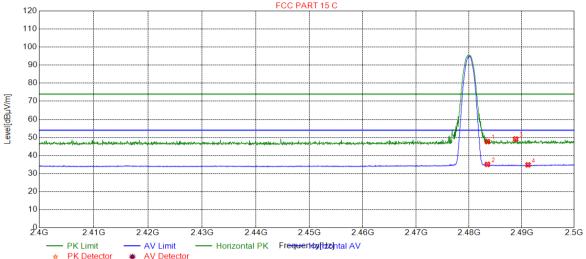
4.11.1.2 Worst Case Mode (GFSK(DH5)) _Highest Channel_ Peak _Vertical


Suspected List								
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.5000	46.97	1.52	74.00	27.03	150	325	Vertical
2	2483.5000	34.58	1.52	54.00	19.42	150	332	Vertical
3	2489.5448	48.42	1.54	74.00	25.58	150	268	Vertical
4	2492.6463	34.70	1.55	54.00	19.30	150	125	Vertical

Report No.: HR/2019/1000502

Page: 73 of 77

4.11.1.3 Worst Case Mode (GFSK(DH5)) _Lowest Channel_ Peak _Horizontal


Suspected List									
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	2323.2132	48.21	0.95	74.00	25.79	150	273	Horizontal	
2	2355.9459	33.70	1.10	54.00	20.30	150	326	Horizontal	
3	2390.0000	46.87	1.25	74.00	27.13	150	308	Horizontal	
4	2390.0000	33.83	1.25	54.00	20.17	150	35	Horizontal	

Report No.: HR/2019/1000502

Page: 74 of 77

4.11.1.4 Worst Case Mode (GFSK(DH5)) _Highest Channel_ Peak _ Horizontal

Suspected List								
NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.5000	47.65	1.52	74.00	26.35	150	236	Horizontal
2	2483.5000	35.04	1.52	54.00	18.96	150	202	Horizontal
3	2488.8444	49.10	1.54	74.00	24.90	150	251	Horizontal
4	2491.1956	34.78	1.55	54.00	19.22	150	106	Horizontal

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor All Modes have been tested, but only the worst case data displayed in this report.

Report No.: HR/2019/1000502

Page: 75 of 77

5 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Total RF power, conducted	±0.75dB	
2	RF power density, conducted	±2.84dB	
3	Spurious emissions, conducted	±0.75dB	
4	Radiated Spurious emission test	±4.5dB (30MHz-1GHz)	
4	Radiated Spurious emission test	±4.8dB (1GHz-25GHz)	
5	Conduct emission test	±3.12 dB(9KHz- 30MHz)	
6	Temperature test	±1°C	
7	Humidity test	±3%	
8	DC and low frequency voltages	±0.5%	

Report No.: HR/2019/1000502

Page: 76 of 77

6 Equipment List

Conducted Emission							
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Duedate		
rest Equipment	Manufacturer	Wiodel No.	inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)		
Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017/5/10	2020/5/9		
LISN	Rohde & Schwarz	ENV216	SEM007-01	2018/9/2	2019/9/2		
LISN	ETS-LINDGREN	Feb-16	SEM007-02	2018/4/2	2019/4/1		
Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A		
Coaxial Cable	SGS	N/A	SEM024-01	2018/7/12	2019/7/11		
2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2-02	EMC0122	2018/2/14	2019/2/13		
EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2018/4/2	2019/4/1		

RF conducted test								
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Duedate			
rest Equipment	Manufacturer	Woder No.	inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)			
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2018/9/2	2019/9/2			
Signal Analyzer	Rohde & Schwarz	FSV	W025-05	2018/3/13	2019/3/12			
Coaxial Cable	SGS	N/A	SEM031-01	2018/7/13	2019/7/12			
Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A			
Signal Generator	KEYSIGHT	N5173B	SEM006-05	2018/9/2	2019/9/2			
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2018/9/2	2019/9/2			
	RE	in Chamber						
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date	Cal.Due date			
rest Equipment	Manufacturer	Woder No.	inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)			
3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017/8/5	2020/8/4			
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM025-01	2018/7/12	2019/7/11			
MXE EMI Receiver (20Hz- 8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2018/9/2	2019/9/2			
BiConiLog Antenna (26- 3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017/6/27	2020/6/26			
Pre-amplifier (0.1-1.3GHz)	Agilent Technologies	8447D	SEM005-01	2018/4/2	2019/4/1			

RE in Chamber								
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)			
10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2018/3/31	2021/3/30			
EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2018/4/2	2019/4/1			
Trilog-Broadband Antenna(25M-2GHz)	Schwarzbeck	VULB9168	SEM003-18	2016/6/29	2019/6/28			
Pre-amplifier (9k-1GHz)	Sonoma	310N	SEM005-03	2018/4/13	2019/4/12			
Loop Antenna (9kHz-30MHz)	ETS-Lindgren	6502	SEM003-08	2017/8/22	2020/8/21			
Measurement Software	AUDIX	e3 V8.2014-6-27	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM029-01	2018/7/12	2019/7/11			

Report No.: HR/2019/1000502

Page: 77 of 77

RE in Chamber								
Toot Equipment		Model No.	Inventory No	Cal. date	Cal.Due date			
Test Equipment	Manufacturer	woder No.	Inventory No.	(yyyy-mm-dd)	(yyyy-mm-dd)			
3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2018/3/13	2021/3/12			
Measurement Software	AUDIX	e3V8.2014-6-27	N/A	N/A	N/A			
Coaxial Cable	SGS	N/A	SEM026-01	2018/7/12	2019/7/11			
EXA Signal Analyzer (10Hz- 26.5GHz)	Agilent Technologies Inc	N9010A	SEM004-09	2018/4/13	2019/4/12			
BiConiLog Antenna (26- 3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017/6/27	2020/6/26			
Horn Antenna (0.8-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2018/4/13	2021/4/12			
Pre-amplifier(0.1-1.3GHz)	HP	8447D	SEM005-02	2018/9/2	2019/9/2			
Low Noise Amplifier(100MHz-18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2018/9/27	2019/9/27			
Pre-amplifier(18-26GHz)	Rohde & Schwarz	CH14-H052	SEM005-17	2018/4/2	2019/4/1			
Band filter	N/A	N/A	SEM023-01	N/A	N/A			

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for HR/2019/10005.

The End