

Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power input to the antenna

G = antenna gain

R = distance

Conducted output power:	24.00	(dBm)
Tune up tolerance	2.00	(dB)
Number of carriers	1	(N)
	398	(mW)
	0.398	(W)
Antenna gain:	8.0	(dBi)
Maximum antenna gain:	6.3	(numeric)
EIRP	2.51	(W)
ERP	1.53	(W)
Distance:	25	(cm)
Duty Cycle:	100	(%)
Frequency:	894	(MHz)
MPE Limit:	0.60	(mW/cm^2)
Power density:	0.32	(mW/cm^2)
	3.2	(W/m^2)
Margin	2.70	(dB)