

Test report

320935-3TRFWL

Date of issue: May 2, 2017

Applicant:

fiplex

Product:

BI-DIRECTIONAL AMPLIFIER

Model:

DH4L00-M

FCC ID:

P3TDH4L00-M

Specification:

FCC 47 CFR Part 90

PRIVATE LAND MOBILE RADIO SERVICES

Test location

Company name	Nemko Canada Inc.
Address	303 River Road
City	Ottawa
Province	Ontario
Postal code	K1V 1H2
Country	Canada
Telephone	+1 613 737 9680
Facsimile	+1 613 737 9691
Toll free	+1 800 563 6336
Website	www.nemko.com
Site number	FCC test site registration number: 176392, IC: 2040A-4 (3 m semi anechoic chamber)

Tested by	Kevin Rose, Wireless/EMC Specialist	
Reviewed by	Russell Grant, Senior Technical Assessor	
Date	May 2, 2017	
Signature	Rusell I rams	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Statement of compliance	4
1.4	Exclusions	4
1.5	Test report revision history	4
Section 2	. Summary of test results	5
2.1	FCC Part 90 test results	5
Section 3	. Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	Product description and theory of operation	6
3.5	EUT exercise details	6
3.6	EUT setup diagram	7
Section 4	Engineering considerations	8
4.1	Modifications incorporated in the EUT	8
4.2	Technical judgment	8
4.3	Deviations from laboratory tests procedures	8
Section 5	Test conditions	9
5.1	Atmospheric conditions	9
5.2	Power supply range	9
Section 6	Measurement uncertainty	10
6.1	Uncertainty of measurement	10
Section 7	. Test equipment	11
7.1	Test equipment list	11
Section 8	. Testing data	12
8.1	FCC §90.219(e)(1) RF Output Power	12
8.2	FCC §90.219(e)(3) §90.210(n) Conducted Spurious	15
8.3	FCC §90.219(e)(3) §90.210 (n) Radiated Spurious	20
8.4	FCC §90.219(e)(4) Input Output	22
8.5	KDB 935210 D05 v01r01 4.2 Measuring AGC threshold	
8.6	KDB 935210 D05 v01r01 4.3 Out-of-band rejection	
8.7	FCC §90.219 (e)(2) Noise figure	28
Section 9		
9.1	Radiated emissions set-up	29

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	Fiplex Communications, Inc.
Address	7331 N.W. 54th Street
City	Miami
Province/State	FL
Postal/Zip code	33166
Country	USA

1.2 Test specifications

FCC 47 CFR Part 90	PRIVATE LAND MOBILE RADIO SERVICES
935210 D02 Signal Boosters Certification v03r02	SIGNAL BOOSTERS BASIC CERTIFICATION REQUIREMENTS
935210 D05 Indus Booster Basic Meas v01r01	MEASUREMENTS GUIDANCE FOR INDUSTRIAL AND NON-CONSUMER SIGNAL BOOSTER, REPEATER,
935210 DOS Muus Booster Basic Meas voiroi	AND AMPLIFIER DEVICES

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Exclusions

None

1.5 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 90 test results

Part	Test description	Verdict
§90.219(e)(1)	RF Output Power	Pass
§90.219(e)(3), §90.210(n)	Conducted Spurious	Pass
FCC §90.219(e)(3), §90.210(n)	Radiated Spurious	Pass
§90.219(e)(4)	Input Output	Pass
935210 D05 v01r01 4.2	AGC threshold	Reported
935210 D05 v01r01 4.3	Out-of-band rejection	Reported
§90.219 (e)(2)	Noise figure	Pass

Notes: None

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	February 9, 2015
Nemko sample ID number	1

3.2 EUT information

Product name	BI-DIRECTIONAL AMPLIFIER
Model	DHL400-M
Serial number	FCC001

3.3 Technical information

Operating band	406.1-420 MHz
Modulation type/ Emission designator	P25 C4FM F1E / F1D, TETRA D1E / D1D, DMR FXE / FXD, Analog F3E
Power requirements	120 Vac 60 Hz
Gain	80 dB
Antenna information	External Antenna is not provided EUT used a 50 Ω termination.

3.4 Product description and theory of operation

This Signal boosters extends the radio coverage into areas inside the Base Station range where propagation losses prevent reliable communication.

The system receives the UL signal though a Donor antenna to be amplified, filtered and re-radiated through the Service antennas. The DL signal is received by the Service antennas to be amplified, filtered and re-radiated through the Donor antenna back to the Base Station. This way, the system works as a Bidirectional Amplifier.

3.5 EUT exercise details

The EUT was controlled software GUI.

3.6 EUT setup diagram

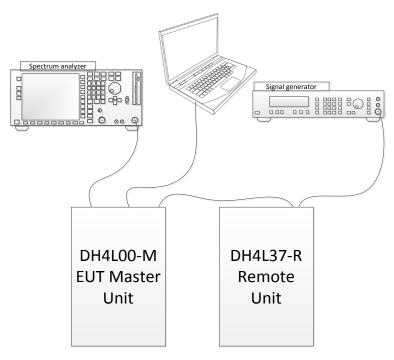


Figure 3.6-1: Setup diagram

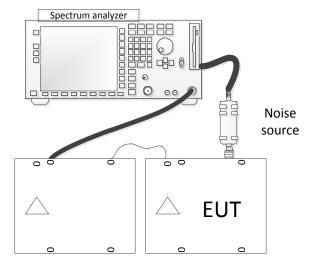


Figure 3.6-2: Noise figure setup diagram

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Radiated spurious emissions	3.78

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Dec. 01/17
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	_	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
AC Power source	California Instruments	3001i	FA001021	1 year	Sept. 08/17
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	Jan. 07/17
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	Apr. 28/17
Horn antenna (1–18 GHz)	EMCO	3115	FA000825	1 year	Apr. 26/17
Pre-amplifier (1–18 GHz)	JCA	JCA118-503	FA002091	1 year	April 26/17
50 Ω coax cable	Huber + Suhner	None	FA002074	1 year	April 26/17
50 Ω coax cable	Huber + Suhner	None	FA002830	1 year	July 29/17
Spectrum analyzer	Rohde & Schwarz	FSP	FA001920	1 year	Aug. 20/17
Signal generator	Rohde & Schwarz	SMIQ03E	FA001269	1 year	Apr. 08/17
Signal generator	Rohde & Schwarz	SMIQ06B	FA001878	1 year	Apr. 07/17
Noise Source	Agilent	346C	AGIL-346C	-	NCR

Note: NCR - no calibration required, VOU - verify on use

Section 8 Test name Testing data

Specification

FCC §90.219(e)(1) RF Output Power

FCC Part 90

Section 8. Testing data

8.1 FCC §90.219(e)(1) RF Output Power

8.1.1 Definitions and limits

The output power capability of a signal booster must be designed for deployments providing a radiated power not exceeding 5 Watts ERP for each retransmitted channel.

8.1.2 Test summary

Test date	February 14, 2017	Temperature	23 °C
Test engineer	Kevin Rose	Air pressure	1005 mbar
Verdict	Pass	Relative humidity	29 %

8.1.3 Observations, settings and special notes

Worst case limit is used. Test receiver settings:

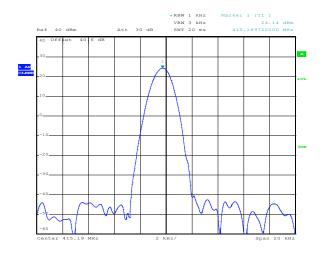
Detector mode	Peak
Resolution bandwidth	1 MHz
Intergration bandwidth	>OBW
Video bandwidth	>RBW
Trace mode	Max Hold
Measurement time	Auto

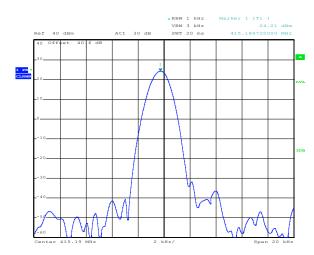
Section 8 Testing data

Test name FCC §90.219(e)(1) RF Output Power

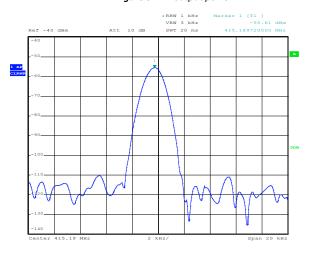
Specification FCC Part 90

8.1.4 Test data


 Table 8.1-1: Input/output power and amplifier/booster gain


Frequency, MHz	Input, dBm	output, dBm	Gain, dB	Rated Gain, dB
415.190 UL	55.61	24.14	79.75	80

Note: F0 is determined by the peak of the out of band reject.


Test data continued 8.1.4

Date: 14.FEB.2017 19:58:18

Figure 8.1-1: output power

Date: 14.FEB.2017 20:05:00

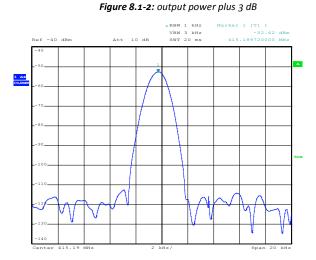


Figure 8.1-4:. input power plus 3 dB

Date: 14.FEB.2017 19:59:46

Figure 8.1-3: input power

Date: 14.FEB.2017 20:01:38

Section 8 Test name Testing data

FCC §90.219(e)(3) §90.210(n) Conducted Spurious

Specification FCC Part 90

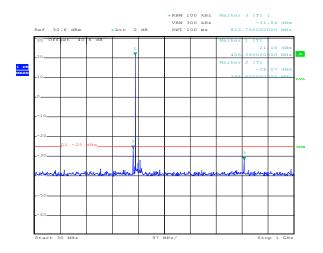
8.2 FCC §90.219(e)(3) §90.210(n) Conducted Spurious

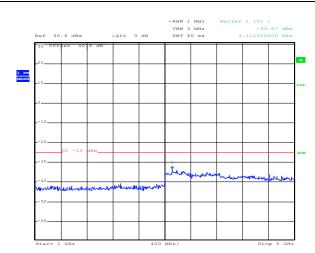
8.2.1 Definitions and limits

90.219(e)(3)Spurious emissions from a signal booster must not exceed –13 dBm within any 100 kHz measurement bandwidth; 90.210(n) Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

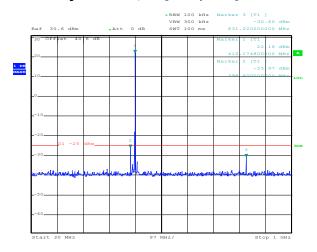
8.2.2 Test summary

Test date	February 14, 2017	Temperature	24 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	26 %


8.2.3 Observations, settings and special notes


None

Frequency range	30 MHz to 10th harmonic	
Detector mode	Peak	
Resolution bandwidth sweep	100 kHz (below 1 GHz), 1000 kHz (above 1 GHz)	
Resolution bandwidth band	>1% of OBW	
edge		
Video bandwidth	>RBW	
Trace mode	Max Hold	
Measurement time	Auto	


8.2.1 Test data continued

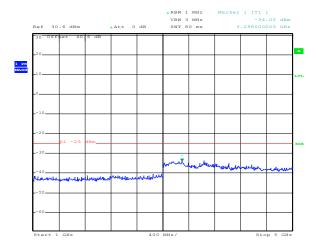

Date: 14.FEB.2017 21:21:03

Figure 8.2-1: UL 406.125 MHz Spurious 30-1000 MHz

Date: 14.FEB.2017 21:21:29

Figure 8.2-2: UL 406.125 MHz Spurious 1-5 GHz

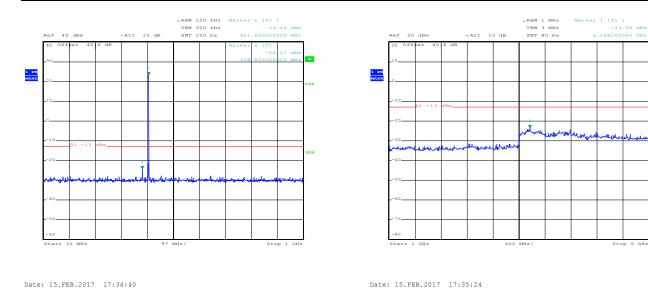
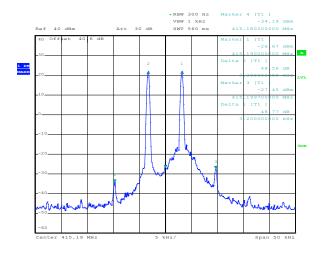
Date: 14.FEB.2017 21:13:11

Figure 8.2-3: UL 415.175 MHz Spurious 30-1000 MHz

Date: 14.FEB.2017 21:14:04

Figure 8.2-4: UL 415.175 MHz Spurious 1-5 GHz

Test data continued 8.2.2

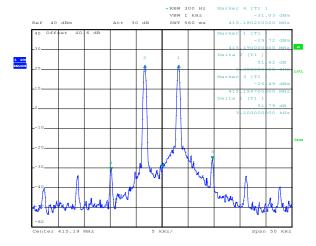
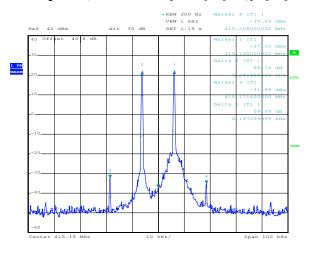

Figure 8.2-5: UL 420.9875 MHz Spurious 30-1000 MHz

Figure 8.2-6:UL 420.9875 MHz Spurious 1-5 GHz


8.2.3 Test data continued

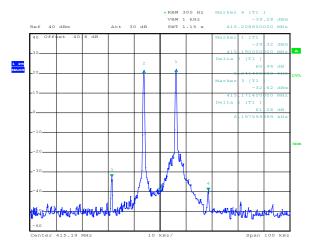

Date: 14.FEB.2017 20:36:21

Figure 8.2-7: Intermodulation fo -UL 3.125 kHz, fo+3.125 kHz

Date: 14.FEB.2017 20:37:19

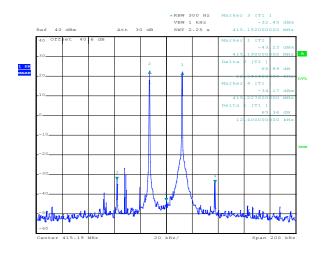
Figure 8.2-8: Intermodulation fo – UL 3.125 kHz, fo+3.125 kHz Plus 3 dB

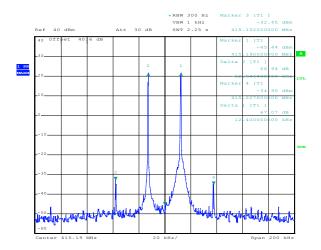
Date: 14.FEB.2017 20:42:32

Figure 8.2-9: Intermodulation fo –UL 6.25 kHz, fo+6.25 kHz

Date: 14.FEB.2017 20:43:17

Figure 8.2-10: Intermodulation fo – UL UL 6.25 kHz, fo+6.25 kHz Plus 3 dB


Section 8 Testing data


Test name FCC §90.219(e)(3) §90.210(n) Conducted Spurious

Specification FCC Part 90

8.2.4 Test data continued

Date: 14.FEB.2017 20:49:29

Figure 8.2-11: Intermodulation fo –UL 12.5 kHz, fo+12.5 kHz

Figure 8.2-12: Intermodulation f0 – UL 12.5 kHz, f0+12.5 kHz Plus 3 dB

Date: 14.FEB.2017 20:49:06

Section 8
Test name

Testing data

FCC §90.219(e)(3) §90.210 (n) Radiated Spurious

Specification FCC Part 90

8.3 FCC §90.219(e)(3) §90.210 (n) Radiated Spurious

8.3.1 Definitions and limits

90.219(e)(3)Spurious emissions from a signal booster must not exceed –13 dBm within any 100 kHz measurement bandwidth; 90.210(n) Other frequency bands. Transmitters designed for operation under this part on frequencies other than listed in this section must meet the emission mask requirements of Emission Mask B. Equipment operating under this part on frequencies allocated to but shared with the Federal Government, must meet the applicable Federal Government technical standards.

8.3.2 Test summary

Test date	December 8, 2016	Temperature	22 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	46 %

8.3.3 Observations, settings and special notes

Low, Mid, and High channels of all modulations were investigated. Worst case examples are provided. No emissions were detected within 20 dB of the -13 dBm limit.

Receiver settings were:

Frequency range	30 MHz to 10 th harmonic
Detector mode	Peak
Resolution bandwidth	100 kHz (below 1 GHz), 1000 kHz (above 1 GHz)
Video bandwidth	>RBW
Trace mode	Max Hold

FCC Part 90

8.3.4 Test data

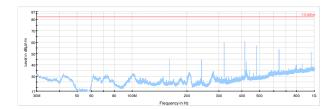


Figure 8.3-1: 30-1000 MHz UL

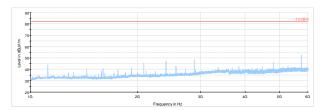


Figure 8.3-2: 1-10 GHz UL

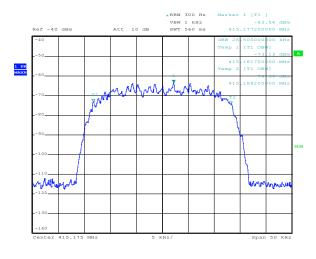
tion FCC Part 90

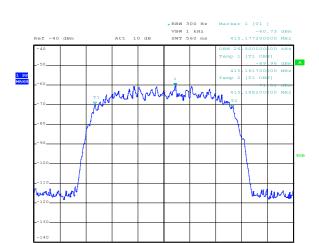
8.4 FCC §90.219(e)(4) Input Output

8.4.1 Definitions and limits

- (4) A signal booster must be designed such that all signals that it retransmits meet the following requirements:
- (i) The signals are retransmitted on the same channels as received. Minor departures from the exact provider or reference frequencies of the input signals are allowed, provided that the retransmitted signals meet the requirements of §90.213.
- (ii) There is no change in the occupied bandwidth of the retransmitted signals.
- (iii) The retransmitted signals continue to meet the unwanted emissions limits of §90.210 applicable to the corresponding received signals (assuming that these received signals meet the applicable unwanted emissions limits by a reasonable margin)

8.4.2 Test summary


Test date	February 14, 2017	Temperature	22 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	46 %


8.4.3 Observations, settings and special notes

Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1 % of OBW
Video bandwidth	≥RBW
Trace mode	Max Hold

Date: 15.FEB.2017 19:13:31

Figure 8.4-1: UL TETRA input

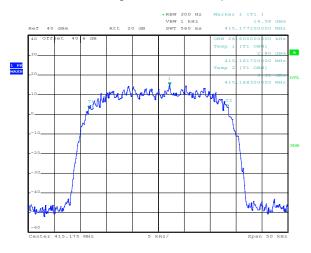
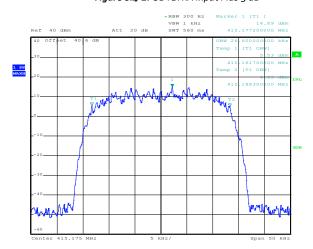
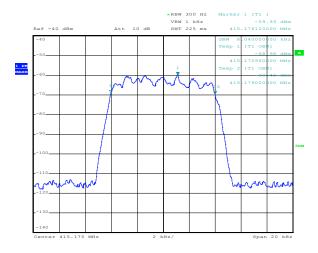



Figure 8.4-2: UL TETRA input Plus 3 dB

Date: 15.FEB.2017 19:13:59

Date: 15.FEB.2017 19:11:54



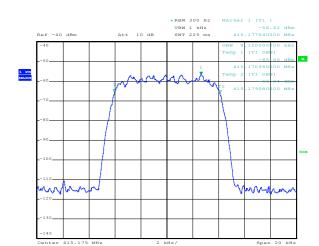

Date: 15.FEB.2017 19:12:27

Figure 8.4-3: UL TETRA output

Figure 8.4-4: UL TETRA output Plus 3 dB

Date: 15.FEB.2017 19:07:55

Figure 8.4-5: UL P25 input

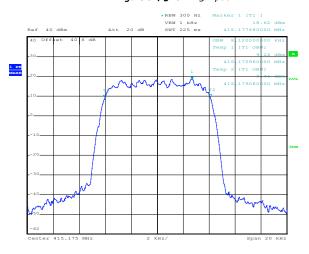
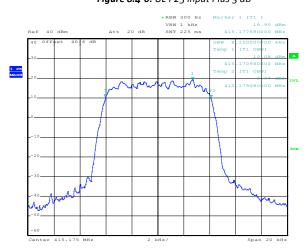
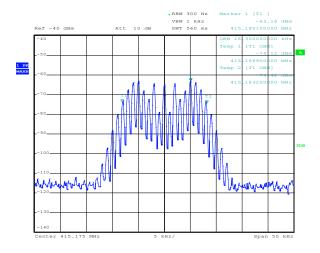



Figure 8.4-6: UL P25 input Plus 3 dB

Date: 15.FEB.2017 19:08:32

Date: 15.FEB.2017 19:11:02



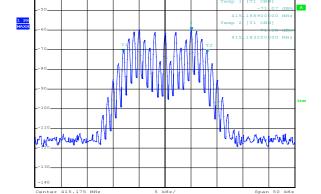

Date: 15.FEB.2017 19:10:17

Figure 8.4-7: UL P25 output

Figure 8.4-8: UL P25 output Plus 3 dB

Date: 15.FEB.2017 19:07:05

Figure 8.4-9: UL analog input

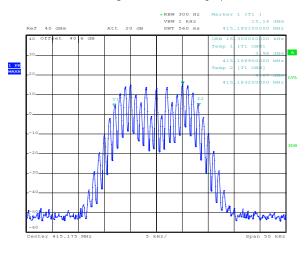
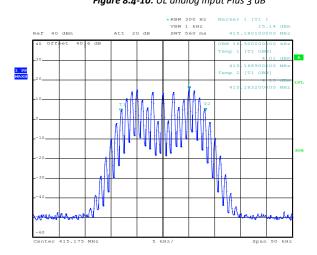



Figure 8.4-10: UL analog input Plus 3 dB

Date: 15.FEB.2017 19:06:30

Date: 15.FEB.2017 19:05:33

Date: 15.FEB.2017 19:02:57

Figure 8.4-11: UL analog output

Figure 8.4-12: UL analog output Plus 3 dB

8.5 KDB 935210 D05 v01r01 4.2 Measuring AGC threshold

8.5.1 Definitions and limits

Testing at and above the AGC threshold will be required. 4 The AGC threshold shall be determined by applying the procedure of 3.2, but with the signal generator configured to produce a test signal defined in Table 1, a CW input signal.

8.5.2 Test summary

Test date	February 14, 2017	Temperature	23 °C
Test engineer	Kevin Rose	Air pressure	1005 mbar
Verdict	Pass	Relative humidity	29 %

8.5.3 Observations, settings and special notes

 $\label{lem:assessed} \textbf{Assessed to remain within assigned band. Spectrum analyzer settings:}$

Detector mode	Peak
Resolution bandwidth	1 MHz
Intergration bandwidth	>OBW
Video bandwidth	>RBW
Trace mode	Max Hold
Measurement time	Auto

8.5.4 Test data

Table 8.5-1: AGC results

Frequency, MHz	Input, dBm	output, dBm	Gain, dB	Rated Gain, dB
415.193	-55.61	24.14	79.75	80

Table 8.5-2: AGC results 3 dB above AGC threshold

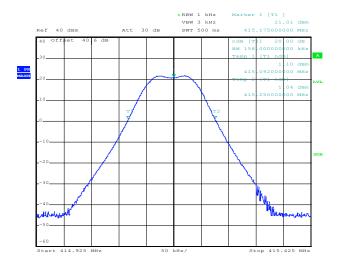
Frequency, MHz	Input, dBm	output, dBm	Gain, dB	Rated Gain, dB
415.193	-52.62	24.21	76.83	80

8.6 KDB 935210 D05 v01r01 4.3 Out-of-band rejection

8.6.1 Definitions and limits

After the trace is completely filled, place a marker at the peak amplitude, which is designated as f0, and with two additional markers (use the marker-delta method) at the 20 dB bandwidth (i.e., at the points where the level has fallen by 20 dB).

8.6.2 Test summary


Test date	February 14, 2017	Temperature	22 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	46 %

8.6.3 Observations, settings and special notes

Assessed to remain within assigned band. Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	1 kHz
Video bandwidth	RBW×3
Trace mode	Max Hold

8.6.4 Test data

Date: 14.FEB.2017 19:44:51

Figure 8.6-1: Out of band reject single filter

8.7 FCC §90.219 (e)(2) Noise figure

8.7.1 Definitions and limits

T The noise figure of a signal booster must not exceed 9 dB in either direction.

8.7.2 Test summary

Test date	February 14, 2017	Temperature	22 °C
Test engineer	Kevin Rose	Air pressure	1003 mbar
Verdict	Pass	Relative humidity	46 %

8.7.3 Observations, settings and special notes

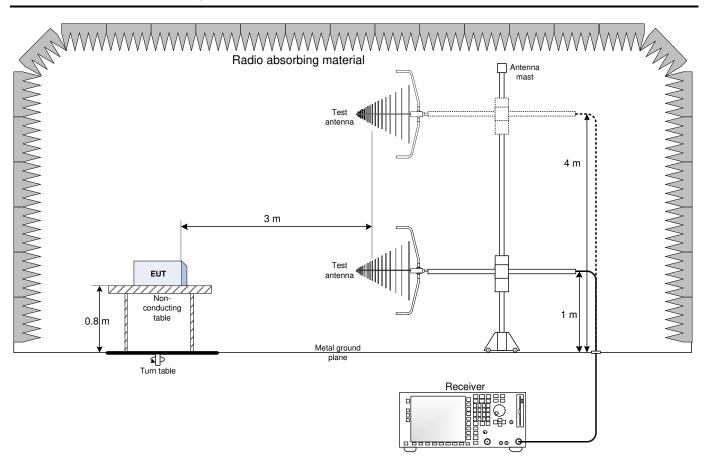
Assessed to remain within assigned band. Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	20 Hz
Video bandwidth	RBW × 3
Trace mode	Max Hold

8.7.4 Test data

Table 8.7-1: Noise figure result

DL/UL	Noise Source OFF, dBm	Noise Source ON, dBm	ENR, dB	NF Result, dB	Limit, dB	Margin, dB
UL	-56.18	-49.32	12.83	6.97	9	2.03


Noise Figure (NF) = $10 \times \log_{10} \{10^{(ENR/10)}/[10^{(Y/10)}-1]\}$

Y = Noise Source ON - Noise Source OFF ENR= Noise level above Thermal noise

Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up

