Nemko Test Report:	1L0526RUS1Rev1
Applicant:	Andrew Corp. 1500 N. Roosevelt Burlington, Iowa 52601
Equipment Under Test: (E.U.T.)	Amplifier/Antenna Models: QD-24-0010 (50 Ohm input) and QD-24-0040 (75 Ohm input) with Lucent Radio LAN card model PC24E-H-FC (FCC ID. IMRWLPCE24H)
FCC ID:	P3824GCA
In Accordance With:	FCC Part 15, Subpart C, 15.247 Direct Sequence Spread Spectrum Transmitters
Tested By:	Nemko Dallas Inc. 802 N. Kealy Lewisville, Texas 75057-3136
Authorized By:	Tom Tidwell, RF Group Manager
Date:	5/18/02
Total Number of Pages:	44

Lucent radio model PC24E-H-FC

PROJECT NO.: 1L0526RUS1Rev1

Table of Contents

Section 1. Summary of Test Results	3
Section 2. Equipment Under Test (E.U.T.)	5
Section 3. Powerline Conducted Emissions	8
Section 4. Minimum 6 dB Bandwidth	12
Section 5. Maximum Peak Output Power	16
Section 6. RF Exposure	17
Section 7. Spurious Emissions (conducted)	18
Section 8. Spurious Emissions (radiated)	22
Section 9. Peak Power Spectral Density	28
Section 10. Minimum Processing Gain	29
Section 11. Test Equipment List	30
ANNEX A - TEST DETAILS	31
ANNEX B - TEST DIAGRAMS	41

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 1. Summary of Test Results

Manufacturer: Andrew Corporation

Model No.: QD-24-0010 (50 Ohm input) and QD-24-0040 (75 Ohm input) with Lucent

Radio LAN card model PC24E-H-FC (FCC ID. IMRWLPCE24H)

Serial No.: S01

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Direct Sequence Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-1992. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

New Submission	Production Unit
Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NVLAP LAB CODE: 100426-0

TESTED BY: <u>Lance Walker</u> DATE: <u>11/29/01</u>

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
Powerline Conducted Emissions	15.207(a)	48 dBμV	Complies
Minimum 6 dB Bandwidth	15.247(a)(2)	>500 kHz	Complies
Maximum Peak Power Output	15.247(b)(1)	460.6 mW	Complies
Spurious Emissions (Antenna Conducted)	15.247(c)	-20 dBc/100kHz	Complies
Spurious Emissions (Restricted Bands)	15.247(c)	< 74 dBuV/m Peak < 54 dBuV/m Avg	Complies
Peak Power Spectral Density	15.247(d)	+8 dBm/3kHz	Complies
Processing Gain	15.247(e)	10 dB	N/A

Footnotes:

460.6 mW is the Max Peak Power Output limit due to the system being a point to point system. The gain of the integral antenna is 16.1 dBi. In accordance with 15.247(b)(i), the peak power output to the antenna must be reduced by 1 dB for every 3 dB that the antenna gain exceeds 6 dBi for a point-to-point system.

The antenna exceeds 6 dBi by 10 dB, therefore the power output must be reduced by 4 dB below the 1 watt limit. The limit for the power fed to the antenna is thus 30 dBm - 4 dB = 26 dBm (398 mW).

Processing gain is determined by the associated radio card.

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band:	☐ 902 – 928 MHz ☐ 2400 – 2483.5 MHz ☐ 5725 – 5850 MHz
Tuning Range:	2412 - 2462 MHz (Channel 1 - 11)
Channel Spacing:	5 MHz
User Frequency Adjustment:	Software controlled

FCC PART 15, SUBPART C DSSS TRANSMITTER

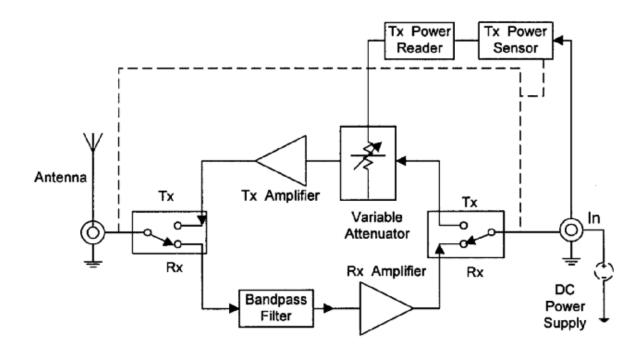
QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Description of Modification for Modification Filing

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1


Theory of Operation

The EUT is an integrated antenna/amplifier to be marketed, sold, and delivered with the Lucent radio LAN card model PC24E-H-FC (FCC ID. IMRWLPCE24H) for point-to-point transmission. The system is installed by qualified personnel and is distributed only through select distributors. The system is not available directly to the general public.

The transmitted signal from the wireless LAN card is fed to the integrated antenna via coaxial cable. The gain of the amplifier is automatically adjusted to maintain a constant output to the antenna of 420 mW (26.2 dBm). The EUT cannot operate with a radio LAN that does not use TDD (Time Division Duplex).

The EUT is offered with either 75 ohm input or 50 ohm input.

System Diagram

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

TESTED BY: Lance Walker DATE: 11/13/2001

Test Results: Complies.

Measurement Uncertainty: +/- 1.7 dB

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Test Data - Powerline Conducted Emissions

\bigcirc	Nem	KO

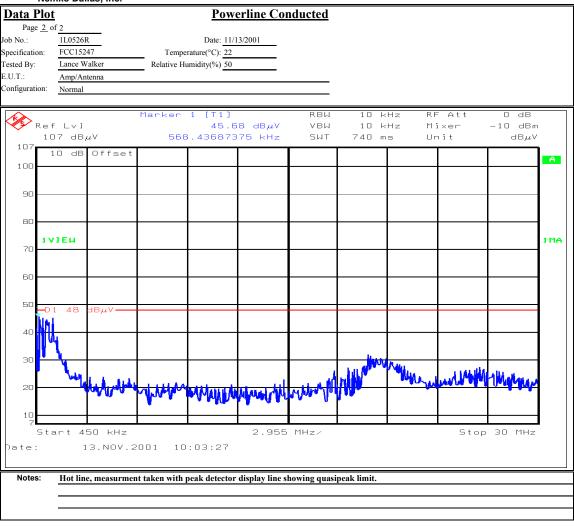
Nemko Dallas, Inc.

Dallas Headquarters: 802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Data Plot	iko buli			Pow	erline Co	<u>onducte</u> d					
Page <u>1</u> o	f <u>2</u>							Complete Preliminary:	<u>X</u>		
Job No.:	1L0526F	2		Date: 1	1/13/2001			Preliminary:			
Specification:	FCC152	47	Tempe	rature(°C):	22						
Tested By:	Lance W	alker	Relative Hu	umidity(%)	50						
E.U.T.:	Amp/An	tenna									
Configuration:	Normal										
Sample Number:		S01									
Location:						efer to plots		Measurement	t		
Detector Type:		<u>—</u>			VBW: R	efer to plots		Distance	N/A n	n	
Test Equipme	ent Used	=									
Antenna:				Directio	nal Coupler:						
Pre-Amp:		<u></u>			Cable #1:						
Filter:					Cable #2:						
Receiver:	1036	<u> </u>			Cable #3:						
Attenuator #1					LISN:	545					
Attenuator #2:					Mixer:						
Additional equip	ment used										
Measurement Ur	certainty:	+/-1.7 dE	<u> </u>								
F.A.			Marker	1 [T1]		RBW	1 🗆	kHz RI	Att	0 dB	
	L v 1				57 dB μ V	VВИ	1 0		ixer	-10 dBm	
	17 dB)	uV	1	515931	IB6 MHz	SWT	740	ms Ui	¬it	dBµ∨	
107	0 dB	Offset									A
100					<u> </u>			-			-
90											
80											
80											
	1EW										1 MA
70								1			1
60						<u> </u>		1			1
50								-			
	48	∃BμV -						1			
40											
" 	ka .						l	ار			
30	141.						1414	Wildia .	1		1
	- WII.	Acres de de la	l				ıl. 1/1 ¹⁷	TT WILLIA	dada tabbibh Nil	Addison	
20	· "	₽₩₩₩	A PARAMILLA .	deal . H.	la l	l diament	He had I'	 			
		(have a	Man A.	የሚያስተ			M	1	Y * '	70	
10				1/100	AAA A AL	the little a	•				
7	1 4		l .		0.055	- MILI				30 MU	
Sta		50 kHz			2.955	MHz/			Stop	30 MHz	
Date:	1	3.NOV.2	001 10	:01:47							
Notes:	Nautro	l lina maesu	roment telver	a with a pool	k datactor or	d limit line c	lienloving a	uasipeak limit			
Notes.	нешиа	i iiie, measu	i ement takei	т мин а реа	v actector, an	u mint inte t	пэртаутид q	иаэгреак ппп	!		

QD-24-0010 and QD-24-0040 with

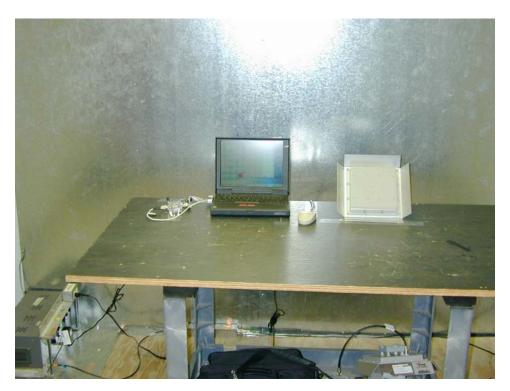
EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1


Test Data - Powerline Conducted Emissions

Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Nemko Dallas, Inc.



QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Photos - Powerline Conducted Emissions

Front

Side

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 4. Minimum 6 dB Bandwidth

NAME OF TEST: Minimum 6 dB Bandwidth PARA. NO.: 15.247(a)(2)

TESTED BY: Lance Walker DATE: 10/29/2001

Test Results: Complies.

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC

> Dallas Headquarters: 802 N. Kealy Lewisville, TX 75057

PROJECT NO.: 1L0526RUS1Rev1

Tel: (972) 436-9600 Fax: (972) 436-2667

Nemko

Nemko Dallas, Inc. Data Plot 6 dB Bandwidth Page <u>1</u> of <u>3</u> Complete X Job No.: 1L0526R Specification: FCC 15.247 Temperature(°C): 22 Relative Humidity(%) 50 Tested By: Lance Walker E.U.T.: Wireless LAN Configuration: Normal Sample Number: Location: Lab 1 RBW: Refer to plots Measurement Detector Type: VBW: Refer to plots Distance: N/A Peak Test Equipment Used Directional Coupler: Antenna: Pre-Amp: Cable #1: Cable #2: Filter: Receiver: 1036 Cable #3: Cable #4: Attenuator #1 1466 Attenuator #2: Mixer: Additional equipment used: Measurement Uncertainty: +/-1.7 dB RBL Ref Lvl -20 dBm 0.17 dB VBW 300 kHz Mixer -19.1 dBm 9.13827655 MHz SWT 30 ms Un i t dBm 0.9 dB Offse -20 -22 -24 1MAX 1MA -2B -28 -30 -32-34 -3E -38 39.1 Span 120 MHz Center 2.4 GHz 12 MHz/ 29.0CT.2001 10:24:16 Markers represent the ends of the 6 dB BW on channel 1 (2.412 GHz) Horiz Notes:

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC

PROJECT NO.: 1L0526RUS1Rev1

Dallas Headquarters: 802 N. Kealy

Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Nemko Dallas, Inc.				:: (972) 436-			
ata Plot	6 dB Band	lwidth					
Page <u>2</u> of <u>3</u>							
No.: <u>1L0526R</u>	Date: 10/26/2001						
ecification: FCC 15.247	Temperature(°C): 22						
ted By: Lance Walker J.T.: Wireless LAN	Relative Humidity(%) 50						
J.T.: Wireless LAN Infiguration: Normal							
Mormai							
	Delta 1 [[1]	кви	100 KH	z RI	Att	U dB	
Ref Lvl	1.07 dB	VBW	300 KH				
-19.1 dBm	-10.80601202 MHz	SWT	30 ms	Ur	nit	dBm	1
10.9 dB Offse	t		▼ 1 [T1]	-25	3.26 dBm	_
-20					2.46702	705 GHz	
			1 [T1]	1	1.07 dB	
-22				- 1	 0.8060 1	1202 MHZ	
-24							
	Liff						
_26 1MAX			-			 	1MA
	!						
-28	1 1						
	7 1						
-30							
]						
-32							
-32							
	1						
-34							
-36							
-38	 					1	
3.1 L					<u> </u>	<u> </u>	I
Center 2.4835 G		1Hz/			Span	120 MHz	
te: 29.0CT.2C	001 15:20:27						
Notes: Markers represent t	he ends of the 6 dB BW on channel 11	(2.462.CH=) V	Tout				
warkers represent t	ne enus of the 6 db bw on channel 11	(2.402 GHZ) \	ert				

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC

PROJECT NO.: 1L0526RUS1Rev1

Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Nemko Dallas, Inc. **Data Plot** 6 dB Bandwidth Page <u>3</u> of 3 Job No.: 1L0526R Date: 10/26/2001 FCC 15.247 Specification: Temperature(°C): 22 Relative Humidity(%) 50 Tested By: Lance Walker E.U.T.: Wireless LAN Configuration: Normal Ref Lv] 0.17 dB ٧ВЫ 300 kHz Mixer -20 dBm -19.1 dBm 9.13827655 MHz SWT 30 ms Unii dBm 19.1 0.9 dB Offse -20 -22 -24 -26 1MAX 1MA -28 -30 -32 -34 -36 -38 Center 2.6 GHz 12 MHz/ Span 120 MHz Date: 29.0CT.2001 10:24:16 Markers indicate 6 dB BW for mid channel (2.462 GHz) Notes:

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 5. Maximum Peak Output Power

NAME OF TEST: Maximum Peak Output power PARA. NO.: 15.247(b)(1)

TESTED BY: Lance Walker DATE: 11/09/2001

Test Results: Complies.

Channel	Measurement (mW)	Converted measurement (dBm)	Limit (dBm)
1	400	26.0	26
6	385	25.9	26
11	361	25.6	26
Peak now	er output at ante	enna nort(dBm) 26.0 dBm	

Antenna gain is 16.1 dBi so total output would be 42.1 dBm at the highest level.

Since the EUT is for point-to-point operation only, the rf output power must be reduced 1 dB for every 3 dB that the antenna exceeds 6 dBi. Therefore, the maximum rf output at the antenna port must be reduced below the 1 watt (+30 dBm) limit by:

(16 dBi - 6 dBi)/3 = 4 (rounded up)

The maximum allowable rf input to the antenna is therefore,

+30 dBm - 4 dB = 26 dBm (398 mW)

Measurements were made at the input of the antenna elements using a peak power meter.

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 6. RF Exposure

NAME OF TEST: RF Exposure PARA. NO.: 15.247(b)(4)

TESTED BY: Lance Walker DATE: 11/09/2001

Test Results: Complies.

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal: <u>26.00</u> (dBm)

Maximum peak output power at antenna input terminal: 398.1072 (mW)

Antenna gain(typical): 16.1 (dBi)

Maximum antenna gain: 40.73803 (numeric)

Prediction distance: 200 (cm)

Prediction frequency: 2400 (MHz)

MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm²)

Power density at prediction frequency: 0.032265 (mW/cm^2)

Maximum allowable antenna gain: 31.0127 (dBi)

Notes: Minimum separation of 2 m between the user and the radiating element

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

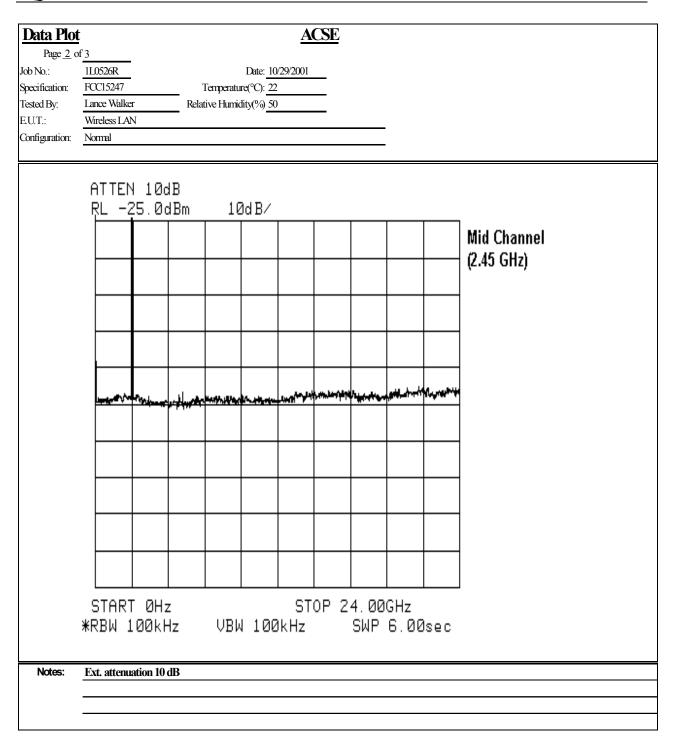
Section 7. Spurious Emissions (conducted)

NAME OF TEST: Spurious Emissions (conducted) PARA. NO.: 15.247(c)

TESTED BY: DATE:

Test Results: Complies.

Measurement Data: See attached plots.


QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Data Plot						AC	SE				
Page <u>1</u> o											Complete X
Job No.:	1L0526R			Da	ite:	10/29/200	1			Pr	Complete X eliminary:
Specification:	FCC15247		Te	emperature(°	C):	22	_				·
Tested By:	Lance Walker			ve Humidity(_				
E.U.T.:	Wireless LAN		_		`		_				
Configuration:	Normal										
Sample Number:											
Location:	Lab 1			_		RBV	V: Refer	to plots		N	Measurement
Detector Type:	Peak						V: Refer				Distance: N/A m
Test Equipm	ent Used										
Antenna:]	Directi	onal Couple	er:				
Pre-Amp:							1:	1082			
Filter:											
Receiver:	1036					Cable #	3.				
Attenuator #1	1030					Cable #	<u></u>				
Attenuator #2:											
Additional equip	ment used: 00	302				IVIIXC					
Measurement Ur		⊦/-1.7 dB									
		7 1.7 dD	=								
	STARI *RBW 1	%	d Bm	A Mary Lagrander				24.00)GHz		Lower Channel (2.412 GHz)
Notes:	10 dB externa	ıl attenu	ation								

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Data Plo						A	<u>CSE</u>				
Page <u>3</u> o	of 3										
Job No.:	1L0526R				Date: 10	/29/2001					
Specification:	FCC15247			Temperatu	re(°C): <u>22</u>						
Tested By:	Lance Walke	r	Rela	tive Humic	tity(%) <u>50</u>						
E.U.T.:	Wireless LA	N									
Configuration:	Normal										
	'										
	ATTEN										
	RL -2	<u> 25.00</u>	BM	14	3d B∕						
											Upper Channel (2.462 GHz)
											, ,
		\vdash									
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]			AND DESCRIPTION	المساحدة	, military de la composition della composition d	رابيري	
	Pinter State Co.	A. A. S.	****	page, or take					,,		
	STAR	T 0U-				QT.	OP 2	4 00			
	*RBW 1			וסון	100		01 2		опz 6.00	000	
	TROW .	LOOKI	12	VDV	1 106	кпи		JML	0.00	sec	
Net	TE 4	.1*. 40	.ID								
Notes:	Ext. attenu	ation 10	aß								

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 8. Spurious Emissions (radiated)

NAME OF TEST: Peak Power Output PARA. NO.: 15.247 (c)

TESTED BY: Lance Walker DATE: November 9, 2001

Test Results: Complies.

Measurement Data: See attached table.

Duty Cycle Calculation:

Duty Cycle correction factor(dB) = $20 \log (rf_{ON} \text{ in ms}/100 \text{ms})$

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Radiated Emissions

Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Page $\underline{1}$ of Job No.: 1L0526R Date: 11/9/01 Specification: CFR 47, Part 15 Temperature(°C): 22 Tested By: ance Walker Relative Humidity(%) 50 E.U.T.: Andrew Amp/Antenna Configuration: Normal Sample Number S01

Test Equipment Used

Antenna: 1304 Directional Coupler: 1484 Pre-Amp: 1016 Cable #1: Filter: 1482 Cable #2: 1485 Receiver: #N/A Cable #3: 1082 Attenuator #1 #N/A #N/A Cable #4: #N/A Mixer: #N/A Attenuator #2:

 Additional

 equipment used:

 Measurement

 Uncertainty:
 +/- .7 dB

requency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Comment
4.824	41.1	33.9	4.1	33.7	45.4	54	-8.6	Ch 1 H to H
12.060	38.1	40	7.3	35.7	49.7	54	-4.3	Ch 1 H to H NF
14.472	37.4	40.4	7.1	32.7	52.2	54	-1.8	Ch 1 H to H NF
4.824	42.7	33.9	4.1	33.7	47.0	54	-7.0	Ch 1 V to H
12.060	38.1	40	7.3	35.7	49.7	54	-4.3	Ch 1 V to H NF
14.472	37.4	40.4	7.1	32.7	52.2	54	-1.8	Ch 1 V to H NF
4.824	41.9	33.9	4.1	33.7	46.2	54	-7.8	Ch 1 V to V
12.060	38.1	40	7.3	35.7	49.7	54	-4.3	Ch 1 V to V NF
14.472	37.4	40.4	7.1	32.7	52.2	54	-1.8	Ch 1 V to V NF
4.824	39.6	33.9	4.1	33.7	43.9	54	-10.1	Ch 1 H to V
12.060	38.1	40	7.3	35.7	49.7	54	-4.3	Ch 1 H to V NF
14.472	37.4	40.4	7.1	32.7	52.2	54	-1.8	Ch 1 H to V NF
4.874	46.2	33.9	4.1	33.7	50.5	54	-3.5	Ch 6 H to H
7.340	37.1	35.8	5.0	33	44.9	54	-9.1	Ch 6 H to H NF
12.185	37.7	40	7.3	35.7	49.3	54	-4.7	Ch 6 H to H NF
4.874	45.1	33.9	4.1	33.7	49.4	54	-4.6	Ch 6 H to V
7.340	37.1	35.8	5.0	33	44.9	54	-9.1	Ch 6 H to V NF
12.185	37.3	40	7.3	35.7	48.9	54	-5.1	Ch 6 H to V NF

Notes: all channels measured up to 10th harmonic no signal found above 4.8_ GHz

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Nemko Dallas, Inc.

Page __ of Continuation Page

Job No.: Date: 11/12/01

Specification: CFR 47, Part 15 Temperature(°F): 72

Tested By: #N/A Relative Humidity(%) 50

E.U.T.: Andrew Amp/Antenna

Configuration: Normal

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Comment
4.874	44.7	33.9	4.1	33.7	49.0	54	-5.0	Ch 6 V to V
7.340	37.1	35.8	5.0	33	44.9	54	-9.1	Ch 6 V to V NF
12.185	37.3	40	7.3	35.7	48.9	54	-5.1	Ch 6 V to V NF
4.874	44.4	33.9	4.1	33.7	48.7	54	-5.3	Ch 6 V to H
7.340	37.1	35.8	5.0	33	44.9	54	-9.1	Ch 6 V to H NF
12.185	37.3	40	7.3	35.7	48.9	54	-5.1	Ch 6 V to H NF
4.924	42.2	33.9	4.1	33.7	46.5	54	-7.5	Ch 11 H to H
7.386	37.5	35.8	5.0	33	45.3	54	-8.7	Ch 11 H to H NF
12.310	37.7	40	7.3	35.7	49.3	54	-4.7	Ch 11 H to H NF
4.924	42.5	33.9	4.1	33.7	46.8	54	-7.2	Ch 11 H to V
7.386	37.5	35.8	5.0	33	45.3	54	-8.7	Ch 11 H to V NF
12.310	37.7	40	7.3	35.7	49.3	54	-4.7	Ch 11 H to V NF
			, ,,,,					
4.924	42.1	33.9	4.1	33.7	46.4	54	-7.6	Ch 11 V to V
7.386	37.5	35.8	5.0	33	45.3	54	-8.7	Ch 11 V to V NF
12.310	37.7	40	7.3	35.7	49.3	54	-4.7	Ch 11 V to V NF
1=10.10	37.7		7.5	30.7	.,	5.	,	0111111111
4.924	39.9	33.9	4.1	33.7	44.2	54	-9.8	Ch 11 V to H
7.386	37.5	35.8	5.0	33	45.3	54	-8.7	Ch 11 V to H NF
12.310	37.7	40	7.3	35.7	49.3	54	-4.7	Ch 11 V to H NF
.2.0.0	37.7	10	7.5	33.1	17.5	31	1.7	CHIT VIOLENT
								<u> </u>
								1
								1
								1
								+
								1
								1
								+
								
N								
Notes:								

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Radiated Emissions Page 1 of 2 Job No.: 1L0526R Date: 5/13/02 CFR 47, Part 15 Specification: Temperature(°C): $\underline{22}$ Relative Humidity(%) 50 Tested By: David Light E.U.T.: Andrew Amp/Antenna Configuration: Normal S01 Sample Number: Location: AC 3 RBW: 1 MHz Detector Type: Peak VBW: 1 MHz **Test Equipment Used** Antenna: 1304 Directional Coupler: #N/A Cable #1: Pre-Amp: 1016 1484 Filter: 1482 Cable #2: 1485 Receiver: #N/A Cable #3: 1082 Attenuator #1 #N/A Cable #4: #N/A Attenuator #2: #N/A #N/A Mixer: Additional equipment used: Measurement Uncertainty: +/-3.6 dB

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Comment
4.824	47	33.9	4.1	33.7	51.3	74	-22.7	Ch 1 H to H
12.060	38.1	40	7.3	35.7	49.7	74	-24.3	Ch 1 H to H NF
14.472	37.4	40.4	7.1	32.7	52.2	74	-21.8	Ch 1 H to H NF
4.824	48.1	33.9	4.1	33.7	52.4	74	-21.6	Ch 1 V to H
12.060	38.1	40	7.3	35.7	49.7	74	-24.3	Ch 1 V to H NF
14.472	37.4	40.4	7.1	32.7	52.2	74	-21.8	Ch 1 V to H NF
4.824	47.7	33.9	4.1	33.7	52.0	74	-22.0	Ch 1 V to V
12.060	38.1	40	7.3	35.7	49.7	74	-24.3	Ch 1 V to V NF
14.472	37.4	40.4	7.1	32.7	52.2	74	-21.8	Ch 1 V to V NF
4.824	46.6	33.9	4.1	33.7	50.9	74	-23.1	Ch 1 H to V
12.060	38.1	40	7.3	35.7	49.7	74	-24.3	Ch 1 H to V NF
14.472	37.4	40.4	7.1	32.7	52.2	74	-21.8	Ch 1 H to V NF
4.874	51.7	33.9	4.1	33.7	56.0	74	-18.0	Ch 6 H to H
7.340	37.1	35.8	5.0	33	44.9	74	-29.1	Ch 6 H to H NF
12.185	37.7	40	7.3	35.7	49.3	74	-24.7	Ch 6 H to H NF
4.874	52	33.9	4.1	33.7	56.3	74	-17.7	Ch 6 H to V
7.340	37.1	35.8	5.0	33	44.9	74	-29.1	Ch 6 H to V NF
12.185	37.3	40	7.3	35.7	48.9	74	-25.1	Ch 6 H to V NF
Notes:								

Page 2 of

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Radiated	Spurious	Emissions
Contin	uation D	

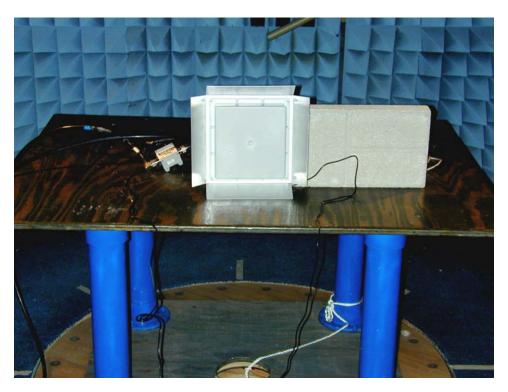
 Job No.:
 Date: 5/18/02

 Specification:
 CFR 47, Part 15
 Temperature(°F): 72

 Tested By:
 #N/A
 Relative Humidity(%) 50

E.U.T.: Andrew Amp/Antenna

Configuration: Normal


Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Delta (dB)	Comment
4.874	50.8	33.9	4.1	33.7	55.1	74	-18.9	Ch 6 V to V
7.340	37.1	35.8	5.0	33	44.9	74	-29.1	Ch 6 V to V NF
12.185	37.3	40	7.3	35.7	48.9	74	-25.1	Ch 6 V to V NF
4.874	51.1	33.9	4.1	33.7	55.4	74	-18.6	Ch 6 V to H
7.340	37.1	35.8	5.0	33	44.9	74	-29.1	Ch 6 V to H NF
12.185	37.3	40	7.3	35.7	48.9	74	-25.1	Ch 6 V to H NF
4.924	48.3	33.9	4.1	33.7	52.6	74	-21.4	Ch 11 H to H
7.386	37.5	35.8	5.0	33	45.3	74	-28.7	Ch 11 H to H NF
12.310	37.7	40	7.3	35.7	49.3	74	-24.7	Ch 11 H to H NF
4.924	48.5	33.9	4.1	33.7	52.8	74	-21.2	Ch 11 H to V
7.386	37.5	35.8	5.0	33	45.3	74	-28.7	Ch 11 H to V NF
12.310	37.7	40	7.3	35.7	49.3	74	-24.7	Ch 11 H to V NF
	10.2	22.0		22.5				G1 44 77 77
4.924	48.2	33.9	4.1	33.7	52.5	74	-21.5	Ch 11 V to V
7.386	37.5	35.8	5.0	33	45.3	74	-28.7	Ch 11 V to V NF
12.310	37.7	40	7.3	35.7	49.3	74	-24.7	Ch 11 V to V NF
4.004	46.1	22.0	4.1	22.7	50.4	74	22.6	Ch 11 V to II
4.924 7.386	46.1	33.9	4.1	33.7	50.4	74	-23.6	Ch 11 V to H
12.310	37.5 37.7	35.8 40	5.0 7.3	33 35.7	45.3 49.3	74 74	-28.7 -24.7	Ch 11 V to H NF Ch 11 V to H NF
12.310	31.1	40	7.3	33.7	49.3	/4	-24.7	CILITY TO IT NE
2.462	81.5	29	2.1	0	112.6		112.6	Ch 11
2.4835	33.5	29	2.1	0	64.6	74	-9.4	Peak(1MHz/1MHz)
2.4835	18	29	2.1	0	49.1	54	-4.9	Avg. (1MHz/10Hz) NF
2.437	83.2	29	2.1	0	114.3	34	114.3	Ch 6
2.412	81.3	29	2.1	0	112.4		112.4	Ch 1
2.112	01.5	27	2.1		112.1		112.1	CH 1
Notes:								

QD-24-0010 and QD-24-0040 with


EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Radiated Photographs (Worst Case Configuration)

Front

Back

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 9. Peak Power Spectral Density

NAME OF TEST: Peak Power Spectral Density PARA. NO.: 15.247(d)

TESTED BY: Lance Walker DATE: November 12, 2001

Test Results: Complies.

Dallas Headquarters:

802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Radiated Emissions Page 1 of Job No.: 1L0526R Date: 11/12/2001 CFR 47, Part 15 Temperature(°C): 22 Specification: Tested By: Lance Walker Relative Humidity(%) 50 E.U.T.: Andrew Amp/Antenna Configuration: Normal with sweep of 1700 sec Sample Number: AC3 RBW: 3 KHz Location: Detector Type: Average VBW: 3 kHz Test Equipment Used Antenna: 1304 Directional Coupler: #N/A N/A Cable #1: 1484 Pre-Amp: Filter: N/A Cable #2: 1485 Receiver: #N/A Cable #3: N/A Attenuator #1 #N/ACable #4: #N/AAttenuator #2: #N/A Mixer: #N/A Additional equipment used: Measurement Uncertainty: +/- 3.6 dB

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)			Limit BuV/m)	Delta (dB)		Comment
2.462	81.5	29	2.1	0	112.6			112.6	Ch 11	
2.437	83.2	29	2.1	0	114.3			114.3	Ch 6	
2.412	81.3	29	2.1	0	112.4			112.4	Ch 1	
Frequency	(GHz)		Form	ıula	Limit					Measurement
2.462			V^2 I	₹ ²	8 dBm	1				1.275 dBm
			30(40	0.7)						
2.437			V^2 I	\mathbf{R}^2	8 dBm	1				2.975 dBm
			30(40	0.7)						
2.412			V^2I	₹ ²	8 dBm	1	•		•	1.075 dBm

30(40.7)

Nemko Dallas

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 10. Minimum Processing Gain

NAME OF TEST: Minimum Processing Gain	PARA. NO.: 15.247(e)
TESTED BY:	DATE:

Test Results:

The EUT does not have an effect on the processing gain since no modulation or IF filtering are performed within the EUT circuitry. The EUT is to be used only with the certified LAN card that has been proven to comply with this requirement (FCC ID. IMRWLPCE24H). Processing Gain data for the radio card is provided as a separate attachment.

Theoretical Processing Gain

1 and 2 Mbps DQPSK modulation:

For 1 and 2 Mbp/s DQPSK modulation using a fixed spreading sequence the symbol rate is 1 MSymbol/s. The symbol length is 11 chips. Each chip duration is 1/11 uS. A symbol duration is 1 uS.

The chip/symbol rate is 11.

The theoretical process gain is 10*LOG(11) = 10 dB.

5.5 and 11 Mbps DQPSK CCK:

For 5.5 and 11 Mbp/s CCK where the spreading sequence is a function of the transmitted data, the symbol rate is 8/11 MSymbol/s. The symbol length is 8 chips. Each chip duration is 1/11 uS. A symbol duration is 8/11 uS. The chip/symbol rate is 8.

The theoretical process gain is 10*LOG(8) = 9 dB. Due to the fact that only 256 code sequences out of the 65536 code sequences that are available are used, there is coding gain. Therefore the processing gain of a CCK system consists of spreading gain and coding gain together. As such a CCK system does meet the FCC requirement for a process gain of minimal 10 dB.

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Section 11. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/02/01
1484	Cable 2.0-18.0 Ghz	Storm PR90-010-072	N/A	06/01/01
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	06/01/01
1304	HORN ANTENNA	ELECTRO METRICS RGA-60	6151	07/30/01
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	05/30/01
1482	Band Pass Filter	K & L 11SH10-4000/T12000-0/0	2	Cal B4 Use
1082	CABLE 2m	Astrolab 32027-2-29094-72TC	N/A	06/01/01
1029	PEAK POWER METER	HP 8900D	3303U0012	03/12/01
1030	PEAK POWER SENSOR	HP 84811A	2539A03573	03/12/01

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC

PROJECT NO.: 1L0526RUS1Rev1

ANNEX A - TEST DETAILS

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: The R.F. that is conducted back onto the AC power line on any

frequency within the band 0.45 to 30 MHz shall not exceed 250µV

(48 dBµV) across 50 ohms.

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

NAME OF TEST: Minimum 6 dB bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard: The minimum 6 dB bandwidth shall be at least 500 kHz

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

NAME OF TEST: Maximum Peak Output Power PARA. NO.: 15.247(b)(1)

Minimum Standard: The maximum peak output power shall not exceed 1 watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation $GP/4\pi$ $R^2 = E^2/120\pi$ and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E =the maximum measured field strength in V/m

R =the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

The RBW of the spectrum analyzer shall be set to a value greater than the measured 6 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

NAME OF TEST: RF Exposure PARA. NO.: 15.247(b)(4)

Minimum Standard: Systems operating under the provisions of this section shall be

operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines

stipulated in 1.1307(b)(1) of CFR 47.

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

NAME OF TEST: Spurious Emissions(conducted) PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205

shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM IS SEARCHED TO THE 10th HARMONIC OF THE HIGHEST FREQUENCY GENERATED IN THE EUT.

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field

strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)

Minimum Standard: The transmitted power density averaged over any 1 second

interval shall not be greater than +8 dBm in any 3 kHz bandwidth.

Method Of Measurement: The spectrum analyzer is set as follows:

RBW: 3 kHz VBW: >3 kHz

Span: => measured 6 dB bandwidth

Sweep: Span(kHz)/3 (i.e. for a span of 1.5 MHz the sweep rate is

1500/3 = 500 sec.LOG dB/div.: 2 dB

Note: For devices with spectrum line spacing =< 3 kHz, the RBW of the

analyzer is reduced until the spectral lines are resolved. The measurement data is normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band in linear

power units.

For Devices With Integral Antenna:

For devices with non-detachable antennas, the received field strength is peaked and the spectrum analyzer is set as above. The peak emission level is then measured and converted to a field strength by adding the appropriate antenna factor and cable loss. This field strength is then converted to an equivalent isotropic radiated power using the same method as described for Peak Power output.

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

NAME OF TEST: Processing Gain PARA. NO.: 15.247(e)

Minimum Standard: The processing gain shall be at least 10 dB.

Method Of Measurement: The CW jamming margin method was used to determine the

processing gain. A CW signal generator is stepped across the passband of the receiver in 50 kHz increments. At each point the signal generator level required to obtain the recommended bit error rate is recorded. The jammer to signal ratio (J/S) is then calculated. The worst 20% of the J/S points is discarded. The lowest remaining J/S ratio is used to calculate the processing gain.

Calculation Of Processing Gain:

The processing gain was determined by measuring the jamming margin of the E.U.T. and using the following formula:

Jamming Margin = G_p - $(S/N)_{out}$ - L_{sys}

For a receiver using non-coherent detection the value (S/N)_{out} is calculated using the formula:

 $P_e = (1/2)EXP\{-E/2N_o\}$ where P_e is the probability of error (minimum Bit Error Rate required for proper operation).

 E/N_o is $(S/N)_{out}$

for example, for a bit error rate of 10⁻⁴ a S/N ratio of 12.3 dB is required.

L_{sys (system losses)} is assumed to be 2 dB.

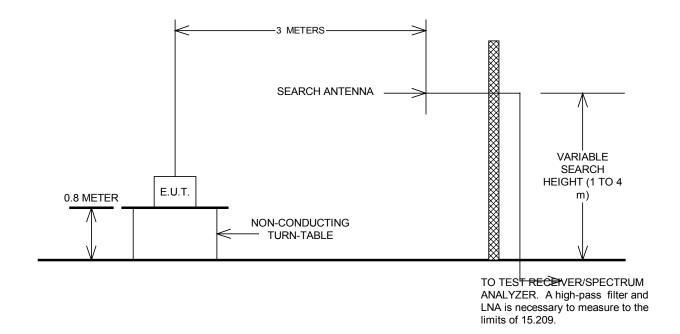
Therefore $G_p = M_1 + (S/N)_{out} + L_{sys}$

Measurement performed at a channel in the center of the operating band of the EUT.

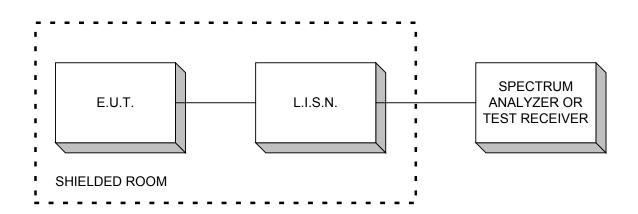
FCC PART 15, SUBPART C DSSS TRANSMITTER

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC

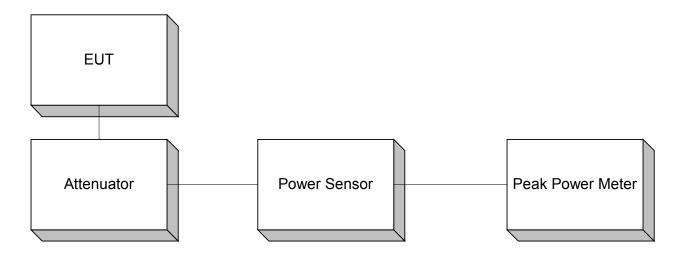

PROJECT NO.: 1L0526RUS1Rev1

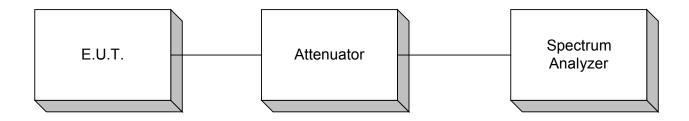
ANNEX B - TEST DIAGRAMS


QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

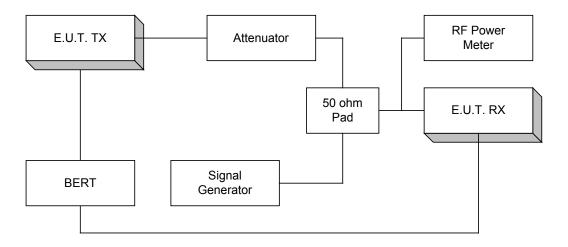
Test Site For Radiated Emissions


Conducted Emissions


QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Peak Power At Antenna Terminals


Minimum 6 dB Bandwidth Peak Power Spectral Density Spurious Emissions (conducted)

QD-24-0010 and QD-24-0040 with

EQUIPMENT: Lucent radio model PC24E-H-FC PROJECT NO.: 1L0526RUS1Rev1

Processing Gain

NOTE: This is a typical setup. The setup may vary slightly since many devices have BER test functions built into the device.