

ARRISTA Technologies Inc.

Test Report
ATMPE000006
RF Exposure Information

Applicant
Arrista Technologies Incorporated
5-55 Henlow Bay WinNIPEG, MB, R3Y 1G4

EquIpment Under Test (EUT):
 IDEN

Bi-Directional Signal Amplifier

MODEL:

CR300
FCC ID:
P35SH2U64GG

In Accordance with

FCC PART 1
OET Bulletin 65

FCC PART 1	ARRISTA
OET Bulletin 65	
Report No.: ATMPE00006	

1.1.1. RF Exposure

Test Type:	Maximum Permissible Exposure
FCC Para No.:	$1.1310,2.1093$
Tested By:	Paul Eberling
Date:	January 13,2004

1.1.2 SPECIFICATION REQUIREMENT:

As per FCC 47CFR§1.1301; FCC OET Bulletin 65, 97-01 "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" and FCC OET Bulletin 65, Supplement C, 01-01, "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", for transmitters operating in the $806 / 824 \mathrm{MHz}$ range, Paragraph 1.1310 Table 1 limits maximum permissible exposure (MPE) to $f / 1500 \mathrm{~mW} / \mathrm{cm}^{2}$ for uncontrolled environments and $\mathrm{f} / 300 \mathrm{~mW} / \mathrm{cm}^{2}$ for controlled environments.
The far field on-axis power flux density $\left(\mathrm{W} / \mathrm{m}^{2}\right)$ is calculated using the following formula:

$$
\begin{equation*}
S=G P_{T} / 4 \pi R^{2} \tag{6}
\end{equation*}
$$

Where:
$\mathrm{S}=$ Power density (in appropriate units, e.g. $\mathrm{mW} / \mathrm{cm}^{2}$)
$\mathrm{G}=$ Power gain of the antenna in the direction of interest relative to an isotropic radiator
$\mathrm{P}_{\mathrm{T}}=\quad$ Power input to the antenna (in appropriate units, e.g., mW)
$R \quad=\quad$ Distance to the center of radiation of the antenna (appropriate units, e.g., cm)

It is important to note that the power gain factor, \boldsymbol{G}, in Equation (1) is normally numeric gain. Therefore, when power gain is expressed in logarithmic terms, i.e., dB , a conversion is required using the relation:

$$
\mathrm{G}=10^{\wedge}(\mathrm{dB} / 10)
$$

For example, a logarithmic power gain of 14 dB is equal to a numeric gain of 25.12 .

Applicant:	Arrista Technologies Inc.	
Equipment:	CR300 Signal Amplifier	
Copyright 2000	Arrista Technologies Inc.	Page 2

FCC PART 1	ARRISTA
OET Bulletin 65	
Report No.: ATMPE00006	

1.2. IDEN Band ($806-824 \mathrm{MHz}$) UpLINK

Article 01- Table: MPE Calculations

Output Power of the amplifier:	0.200 W maximum
Antenna Gain: Maximum antenna gain allowed as described in user/install manual.	18 dBi
Operational Frequency:	$806-824 \mathrm{MHz}$
Minimum distance (Controlled): For personnel aware of radiofrequency equipment and who are able to limit their exposure time. (Installation Technicians)	50 cm
Minimum distance (Uncontrolled): For personnel unaware of radiofrequency equipment and who are not able to limit their exposure time. (General Public)	Antenna mounted outdoors. Maximum Permissible Exposure (MPE): Calculated Power Density
Controlled	
Complies with MPE Limits	6 min avg

1.2.1. Calculations

The power density calculations follow the formula below. It is noted that the antenna used incorporates a forward gain of 18 dBi expressed as a numerical gain of 63.1 and a 3 meter cable with an attenuation factor of 1.5 dB and expressed as a numeric attenuation of 1.41. This is shown as a corrected power output value.

$$
\begin{equation*}
\mathrm{S}=\mathrm{P}_{\mathrm{T}} \mathrm{G} / 4 \pi \mathrm{R}^{2} \tag{1}
\end{equation*}
$$

where:
$\mathrm{S}=$ power density (in appropriate units, e.g. $\mathrm{mW} / \mathrm{cm} 2$)
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mW)
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna (appropriate units, e.g., cm)

```
S= 200* #/ (4*pi*502)
S= 12338/ 31415.927
S= 0.392731 mW/cm
```

Applicant:	Arrista Technologies Inc.	
Equipment:	CR300 Signal Amplifier	
Copyright 2000	Arrista Technologies Inc.	This document contains confidential information.

FCC PART 1	ARRISTA
OET Bulletin 65	
Report No.: ATMPE00006	

1.3. IDEN BAND (851-869MHz) DNLINK

Article 02- Table: MPE Calculations

Output Power of the amplifier:	0.030W (30mW) maximum
Antenna Gain: Maximum antenna gain allowed as described in user/install manual.	9 dBi
Operational Frequency:	$851-869 \mathrm{MHz}$
Minimum distance (Controlled): For personnel aware of radiofrequency equipment and who are able to limit their exposure time. (Installation Technicians)	$\begin{aligned} & 20 \mathrm{~cm} \\ & \text { Antenna mounted indoors. } \end{aligned}$
Minimum distance (Uncontrolled): For personnel unaware of radiofrequency equipment and who are not able to limit their exposure time. (General Public)	$\begin{aligned} & 20 \mathrm{~cm} \\ & \text { Antenna mounted indoors } \end{aligned}$
Maximum Permissible Exposure (MPE) :	Controlled Uncontrolled 6 min avg 30 min avg $2.83 \mathrm{~mW} / \mathrm{cm}^{2}$ $0.56 \mathrm{~mW} / \mathrm{cm}^{2}$
Calculated Power Density	$0.040 \mathrm{~mW} / \mathrm{cm}^{2} \mathrm{O}$
Complies with MPE Limits	Yes

1.3.1. Calculations

The power density calculations follow the formula below. It is noted that the antenna used incorporates a forward gain of 9 dBi expressed as a numerical gain of 7.95 and a 3 meter cable with an attenuation factor of 1.5 dB and expressed as a numeric attenuation of 1.41. This is shown as a corrected power output value.

$$
\begin{equation*}
\mathrm{S}=\mathrm{P}_{\mathrm{T}} \mathrm{G} / 4 \pi \mathrm{R}^{2} \tag{1}
\end{equation*}
$$

where
$\mathrm{S}=$ power density (in appropriate units, e.g. $\mathrm{mW} / \mathrm{cm} 2$)
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mW)
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna (appropriate units, e.g., cm)

$$
\begin{aligned}
& \mathrm{S}=\quad 30^{*} 7 /\left(4^{*} \mathrm{pi*} 20^{\wedge}{ }^{2}\right) \\
& \mathrm{S}= \\
& \mathrm{S}= \\
& \mathrm{S}= \\
& \hline 06.2 / \mathrm{5} .039033 \mathrm{~mW} / \mathrm{cm}^{2}
\end{aligned}
$$

Applicant:	Arrista Technologies Inc.	
Equipment:	CR330 Signal Amplifier	
Copyright 2000	Arrista Technologies Inc.	Page 4

