Maximum Public Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The following is MPE results for the module with Neptune Technology Group, Pit Antenna Model: R900 (13586-000)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, **S** as per the respective limits in Table 1 below, at a distance, d, of 20 cm (Mobile condition) from the EUT.

				·)
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	Limits for General P	opulation/Uncontrolled	d Exposure	
).3-1.34	614	1.63	*100	3
1.34-30	824/f	2.19/f	*180/f ²	3

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

0.073

0.2

1.0

f/1500

30 30

30

30

30

f = frequency in MHz * = Plane-wave equivalent power density

27.5

Therefore, for:

1

30-300

300-1,500

1,500-100,000

MPE for 902 MHz – 928 MHz

Limit: 0.61 mW/cm² Peak Power (Watts) = 0.998 W Gain of Transmit Antenna = 1.2 dB_i = 1.3, numeric d = Distance = 20 cm = 0.2 m

> **S** = (PG/ $4\pi d^2$) = EIRP/4A = 0.998(1.3)/4* π *0.2*0.2 =1.2974/0.5030 = 2.5793 W/m² = (2.5793 W/m²) (1m²/W) (0.1 mW/cm²) = 0.2579 mW/cm²

which is << less than S = 0.61 mW/cm²

RF Exposure Evaluation – IC

According to RSS-102, Table 4

At or above 300 MHz and below 6 GHz the Power Density (W/m²) shall be less than 0.02619 x $f^{0.6834}$ (adjusted for tune up tolerance where applicable), where f= frequency in MHz

For 902-928 MHz Band:

Limit= $0.02619 \times 915^{0.6834} = 2.77 (W/m^2)$

Peak Power (Watts) = 0.998 W Gain of Transmit Antenna = 1.2 dB_i = 1.3, numeric d = Distance = 20 cm = 0.2 m

> **S = (PG/** 4π d²) = EIRP/4A = 0.998(1.3)/4* π *0.2*0.2 =1.2974/0.5030 = 2.5793 W/m²

which is less than S = $2.77 (W/m^2)$