US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date:

Model:

FCC Part 15 Certification/ RSS 247
P2SMRXV4E
4171B-MRXV4E
23-0044
March 30, 2023
MRX920v4E

Maximum Public Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density S as per the respective limits at a distance of 20 cm from the EUT.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

MPE for 902 MHz – 928 MHz

Limit = $f / 1500 \text{ mW/cm}^2 = 915/1500 = 0.61 \text{ mW/cm}^2$

Peak Power (dBm) = 21.48 Peak Power (watts)= 0.140

Gain of transmit Antenna (dBi) = 5.1= 3.24 (numeric)

d= Distance = 20 cm= 0.2 m

which is << less than 0.6100 mW/cm²

$$\begin{split} \textbf{S} &= (\textbf{PG}/\ \textbf{4}\pi\textbf{d}^2\textbf{)} = \text{EIRP/4A} = 0.140(3.240)/4^*\pi^*0.2^*0.2 \\ &= 0.453/0.5030 = 0.9017\ \text{W/m}^2 \\ &= (0.9017\ \text{W/m}^2)\ (1\text{m}^2/\text{W})\ (0.1\ \text{mW/cm}^2) \\ &= 0.09017\ \text{mW/cm}^2 \end{split}$$

US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date: Model: FCC Part 15 Certification/ RSS 247 P2SMRXV4E 4171B-MRXV4E 23-0044 March 30, 2023 MRX920v4E

MPE for 2.4 GHz Bluetooth

```
Limit = 1.0 mW/cm<sup>2</sup>
Peak Power (dBm) = 8.00 (BT FCC ID: SQGBL653U)
Peak Power (watts)= 0.006 W
Gain of transmit Antenna (dBi) = +2.0= 1.58 (numeric)
d= Distance = 20 cm= 0.2 m
\mathbf{S} = (\mathbf{PG}/\mathbf{4}\pi\mathbf{d}^2) = \mathbf{EIRP/4A} = 0.006 (1.580)/4^*\pi^*0.2^*0.2
= 0.009/0.5030 = 0.0188 \, \text{W/m}^2
= (0.0188 \, \text{W/m}^2) \, (1\text{m}^2/\text{W}) \, (0.1 \, \text{mW/cm}^2)
= 0.00188 \, \text{mW/cm}^2
which is << less than 1.0 mW/cm<sup>2</sup>
```

Simultaneous MPE (900 MHz band +2.4 GHz band) Calculation:

Total MPE (%) = [(900 MHz MPE result/limit (f/1500))*100] + [(2.4 GHz MPE result/limit (1.0))*100] << 100%

$$= [(0.0901/0.61) * 100] + [(0.00188/1.0) * 100] = 14.95\% << 100\%$$

Calculation above shows device complies with the MPE requirement at distance of 20 cm.

US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date: Model: FCC Part 15 Certification/ RSS 247 P2SMRXV4E 4171B-MRXV4E 23-0044 March 30, 2023 MRX920v4E

CANADA RSS-102, 2.5.2 Compliance:

At or above 300 MHz and below 6 GHz and the source based time averaged maximum e.i.r.p. of the device is equal to or less than 1.31×10^{-2} f^{0.6834} in Watts (adjusted for tune-up tolerance where applicable), where f = frequency in MHz.

For 902-928MHz band

$$1.31 * 10^{-2} * 915^{0.6834} = 1.39 W$$

EUT max EIRP = 21.48 dBm + 2.95 dBd (5.1 dBi-2.15) = 24.43 dBm or 0.28 Watts << 1.39 Watts

For 2.4 GHz band

$$1.31 * 10^{-2} * 2440^{0.6834} = 2.71 \text{ W}$$

EUT max EIRP = 8.00 dBm + 2.0 dBi = 10.0 dBm or 0.010 Watts << 2.71 Watts

Simultaneous Evaluation Percentage=

[Max EIRP (BT)/ Limit in Watts * 100] + [Max EIRP (900 MHz)/Limit in Watts * 100] <<< 100%

[(0.010/2.71) * 100] + [(0.280/1.39) * 100] = 20.512 % << 100 %