FCC Part 15 Certification/ RSS 247 P2SMRXV4 4171B-MRXV4 22-0237 August 30, 2022 MRX920v4

Maximum Public Exposure to RF (MPE) CFR 15.247 (i), CFR 1.1310 (e)

The maximum exposure level to the public from the RF power of the EUT shall not exceed a power density S as per the respective limits at a distance of 20 cm from the EUT.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

MPE for 902 MHz - 928 MHz

Limit = $f / 1500 \text{ mW/cm}^2 = 915/1500 = 0.61 \text{ mW/cm}^2$

Peak Power (dBm) = 21.71 Peak Power (watts)= 0.148 Gain of transmit Antenna (dBi) = 5.1= 3.24 (numeric) d= Distance = 20 cm= 0.2 m

$$S = (PG/4\pi d^2) = EIRP/4A = 0.148(3.240)/4*\pi*0.2*0.2$$

$$= 0.4795/0.5030 = 0.9533 \text{ W/m}^2$$

$$= (0.9533 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2)$$

$$= 0.09533 \text{ mW/cm}^2$$
 which is << less than 0.6100 mW/cm²

US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date: Model: FCC Part 15 Certification/ RSS 247 P2SMRXV4 4171B-MRXV4 22-0237 August 30, 2022 MRX920v4

MPE for 2.4 GHz Bluetooth

Limit = 1.0 mW/cm²
Peak Power (dBm) = 8.00 (BT FCC ID: SQGBL653U)
Peak Power (watts)= 0.006 W
Gain of transmit Antenna (dBi) = +2.0= 1.58 (numeric)
d= Distance = 20 cm= 0.2 m

$$\label{eq:S} \begin{split} \textbf{S} &= (\textbf{PG}/\ 4\pi \textbf{d}^2) = \text{EIRP/4A} = 0.006\ (1.580)/4^*\pi^*0.2^*0.2\\ &= 0.009/0.5030 = 0.0188\ \text{W/m}^2\\ &= (0.0188\ \text{W/m}^2)\ (1\text{m}^2/\text{W})\ (0.1\ \text{mW/cm}^2)\\ &= 0.00188\ \text{mW/cm}^2\\ \end{split}$$
 which is << less than 1.0 mW/cm²

Simultaneous MPE (900 MHz band +2.4 GHz band) Calculation:

Total MPE (%) = [(900 MHz MPE result/limit (f/1500))*100] + [(2.4 GHz MPE result/limit (1.0))*100] << 100%

$$= [(0.0953/0.61) * 100] + [(0.00188/1.0) * 100] = 15.81\% << 100\%$$

Calculation above shows device complies with the MPE requirement at distance of 20 cm.

US Tech Test Report: FCC ID: IC: Test Report Number: Issue Date: Model: FCC Part 15 Certification/ RSS 247
P2SMRXV4
4171B-MRXV4
22-0237
August 30, 2022
MRX920v4

CANADA RSS-102, 2.5.2 Compliance:

At or above 300 MHz and below 6 GHz and the source based time averaged maximum e.i.r.p. of the device is equal to or less than 1.31×10^{-2} f^{0.6834} in Watts (adjusted for tune-up tolerance where applicable), where f = frequency in MHz.

For 902-928MHz band

$$1.31 * 10^{-2} * 915^{0.6834} = 1.39 W$$

EUT max EIRP = 21.71 dBm + 2.95 dBd (5.1 dBi-2.15) = 24.66 dBm or 0.292 Watts << 1.39 Watts

For 2.4 GHz band

$$1.31 * 10^{-2} * 2440^{0.6834} = 2.71 \text{ W}$$

EUT max EIRP = 8.00 dBm + 2.0 dBi = 10.0 dBm or 0.010 Watts << 2.71 Watts

Simultaneous Evalution percentage=
[Max EIRP (BT)/ Limit in Watts * 100] + [Max EIRP (900 MHz)/Limit in Watts * 100] <<< 100%

[(0.010/2.71) * 100] + [(0.292/1.39) * 100] = 21.38 % << 100 %