

TEMPEST INC.

112 Elden Street (703) "TEMPEST" (836-7378)

e-mail: info@tempest-inc.com

nfo@tempest-inc.com inc.com Herndon, Virginia 20170 FAX: 709-9565

http://www.tempest-

*** Our 16th Year in Business: 1985 - 2001 ***

Report of Electromagnetic Interference Testing
Performed in Accordance with the
Rules of the Federal Communications Commission:
Title 47, Part 15 of the Code of Federal Regulations
on the

Type 2 Cryptographic Support Server, Serial No. 14 made by

3S Group, Incorporated 125 Church Street NE, Vienna Virginia 22180

Louis T. Gnecco, M.S.E.E., President Certified Electromagnetic Compatibility Engineer: Cert.# EMC-000544-NE

November 2, 2001

COPYRIGHT 2001 BY TEMPEST INC.: This document may not be reproduced, recorded electronically, or transmitted electronically, in whole or in part, without the written consent of TEMPEST INC.

Abstract

As requested by Purchase Order Number 21176 issued by 3S Group, Incorporated on October 24, 2001, on November 2, 2001 TEMPEST INC. performed Electromagnetic Compatibility tests in accordance with Title 47, Part 15 of The Code of Federal Regulations on the following device hereafter called the Equipment Under Test:

Type 2 Cryptographic Support Server, Serial number 4. made by 3S Group, Incorporated of Vienna, Virginia.

When properly installed in a typical personal computer, the Equipment Under Test produces no measurable signals in the 30 to 1000 MHz frequency range when tested in an Open Area Test Site at a distance of 3 meters.

The Equipment Under Test complies with the requirements for both Class A and Class B digital devices of Title 47, Para. 15.109 of the Code of Federal Regulations. We recommend that production units maintain the same configuration as the sample that was tested.

Table of Contents

Section	<u>Title</u>	Page
	Cover page	1
	Abstract	2
	Table of Contents	3
	List Of Illustrations	4
	List of Tables	4
	Reference Documents	4
1.0	Introduction.	5
1.1	Purpose.	5
1.2	Test Location.	5
1.3	Cognizant Personnel.	5
2.0	Description of the Equipment Under Test.	6
3.0	Test Procedures.	7
3.1	Test Equipment.	7
3.2	Calibration Check	7
3.3	Dynamic Range and	
	Detection System Sensitivity Tests.	7
3.3.1	Preliminary Laboratory Tests	7
3.4	Local Interference Test:	8
3.5	Measurements.	8
4.0	Results.	9
5.0	Conclusions and Recommendations.	9
	Appendix A: Tables	10
	Appendix B: Glossary	16
	About TEMPEST INC.	20

List of Tables

<u>Table</u>	<u>Title</u>	Page
1	List of Test Equipment Used	11
2	Test Data	12

Reference Documents:

TITLE 47, PARA. 15.109 OF THE CODE OF FEDERAL REGULATIONS

1.0 Introduction.

As requested by Purchase Order Number 21176 issued by 3S Group, Incorporated on October 24, 2001, on November 2, 2001 TEMPEST INC. performed Electromagnetic Compatibility tests in accordance with Title 47, Part 15 of The Code of Federal Regulations on the following device hereafter called the Equipment Under Test:

Type 2 Cryptographic Support Server, Serial number 4. made by 3S Group, Incorporated of Vienna, Virginia.

1.1 Purpose.

The purpose of this test was to determine if the Equipment Under Test complies with the requirements of Title 47, Para. 15.109 of The Code of Federal Regulations, otherwise known as the Rules of the Federal Communications Commission.

1.2 Test Location.

Preliminary testing was performed in the Laboratory facilities of TEMPEST INC. Final testing was performed in the FCC-listed Open Area Test Site of TEMPEST INC.

1.3 Cognizant Personnel.

The following personnel conducted, witnessed, or are cognizant of the test:

Mr. Jason Papadopoulos, Electronics Engineer 3S Group, Incorporated 125 Church Street NE #204 Vienna, Virginia 22180 (703) 281-5015 fax, 281-7816 info@threesi.com

Mr. Louis T. Gnecco, President, TEMPEST INC. 112 Elden St. Herndon, Virginia 20170-4809

(703) 836-7378 e-mail: info@tempest-inc.com 2.0 Description of the Equipment Under Test.

The Equipment Under Test consists of a Type 2 Cryptographic Support Server, a encryption device consisting of a single slot long card printed circuit board that is made to install in a Personal Computer.

Photos and detailed technical information are available at the following web sites:

http://www.threesi.com/prodserv.htm

http://www.threesi.com/specs.htm

The Equipment Under Test was activated by installing it in a PME Platinum Systems Personal Computer, model P3-500 (tower configuration.) After activating the software and getting the Equipment Under Test to run normally, the monitor, keyboard, and mouse were removed from the Personal Computer. This was done to reduce any ambients that could obscure the emissions from the Equipment Under Test.

3.0 Test Procedures.

As described below, final testing was performed in accordance with Title 47, Para. 15.109 of The Code of Federal Regulations, using TEMPEST INC.'s FCC-listed Open Area Test Site (OATS.) The Equipment Under Test is normally installed in a personal computer, and therefore does not connect to any a.c. power lines. For this reason, no Power Line Conducted Interference tests are applicable to this device, and none were performed.

3.1 Test Equipment.

Table 1 is a list of the test equipment used. As shown in the table, biconical and log periodic antennas and a Hewlett-Packard spectrum analyzer were used to detect the emissions produced by the Equipment Under Test.

3.2 Calibration Check.

Using its internal calibration source, the calibration of the spectrum analyzer was verified both immediately before and immediately after the test.

3.3 Dynamic Range and Detection System Sensitivity Tests.

Before testing, the dynamic range of the instrumentation was determined to be 80 dB, and the detection system sensitivity was -80 dBm.

3.3.1 Preliminary Laboratory Tests:

Before installing the Equipment Under Test, the emissions produced by the host computer alone were first measured and recorded at a distance of one meter inside the 10 ft. x12 ft. x 8 ft. high 100 dB shielded anechoic chamber in the laboratory of TEMPEST INC. The Equipment under test was then installed and activated. With the cover of the host computer removed, the emissions produced by the equipment under test were recorded using both an antenna and a hand held probe. This preliminary test showed that the Equipment Under test produces emissions at 300, 340, 400 and 610 MHz.

3.4 Local Interference Test.

With the Equipment Under Test turned off, the ambient signals in the Open Area Test Site were measured and recorded, to verify that any signals being measured were coming from the Equipment Under Test, and not from other local sources, such as cellular telephones. The ambients listed in Table 2 are narrow band signals, with nothing above the detection system's sensitivity appearing between them. The frequency and signal strength of the ambient signals made them easily identifiable, and they did not interfere with the test.

3.5 Measurements.

The Equipment Under Test was placed 3 meters from the antenna hoist, and rotated about 360 degrees. The receive antenna was raised from 10 cm to 4 meters above the ground plane while the emissions were measured over the 30 MHz - 1 GHz frequency range. The peak values of the strongest signals were recorded in dBm. These were converted to μ V/m using the following formulas:

level (dBm) +107 dB + antenna factor (dB) = level in dB μ V/m level in dB μ V/m = 20 Log $_{10}$ (level in μ V/m)

4.0 Results.

As shown in Table 2, the Equipment Under Test produces no measurable signals in the 30 to 1000 MHz frequency range measured at a distance of 3 meters. This is in compliance with Title 47, Para. 15.109 of the Code of Federal Regulations.

Removing the cover of the host computer revealed the 300, 340 and 400 MHz signals found in the preliminary laboratory test, with signal to noise ratios of 10 dB or less. Replacing the cover of the host computer caused these signals to disappear completely. This indicates that the host computer provides at least 10 dB of shielding effectiveness at these frequencies.

5.0 Conclusions and Recommendations.

The Equipment Under Test complies with the requirements for both Class A and Class B digital devices of Title 47, Para. 15.109 of the Code of Federal Regulations. We recommend that production units maintain the same configuration as the sample that was tested.

Appendix A: Tables.

Table 1: List of Test Equipment Used

all equipment was calibrated within 9 months of the test spectrum analyzer calibration was spot checked both before and after test.

Manufac	<u>turer</u>	Model	Name	Serial No.
Hewlett-	Packard	141T	Spectrum Analyzer Display	2233A- 22141
"	"	8555A	RF Section 1.5 MHz-40 GHz	TI-750
66	66	8552B	Display Section	TI-751
Tensor		4104	Biconical antenna	2154
TEMPE:	ST INC.	NA 200/2G	Log Periodic Antenna	82

Table 2: Test Data
Ambients at 2 meters above ground plane

Bandwidth: 300 kHz Detection System Sensitivity: -80 dBm

Frequency	Level	level	Antenna	Level	Level	Limit
MHz	dBm	dΒμV	Factor	dB _µ V/m	μV/m	μV/m
		rms		-		Class A
	Biconica	l Antenna:	Horizontal	Polarization	n	
20	-70	37	14	51	360	n/a
28	-70	37	10	47	225	n/a
32	-80	27	10	37	72	90
50	-80	27	13	40	100	
52	-70	37	13	50	320	
58	-66	41	10	51	360	
60	-70	37	10	47	225	
64	-80	27	10	37	72	
70	-66	41	7	48	256	
75	-62	45	8	53	450	
80	-42	65	9	74	5000	
84	-56	51	9	60	1000	*
86	-56	51	10	61	1125	
90	-46	61	11	72	4000	150
100	-40	67	13	80	10000	
106	-80	27	14	41	110	
110	-80	27	14	41	110	
115	-70	37	14	51	360	
118	-80	27	13	40	100	
120	-80	27	13	40	100	
130	-60	47	14	61	1125	
	intermittent					
150	-70	37	15	52	400	
158	-56	51	15	66	2000	
162	-68	39	15	54	500	
170	-70	37	16	53	450	
180	-45	61	17	78	8000	
190	-80	27	17	44	160	
195	-45	61	17	78	8000	

	NO EMISSI	ONS ABO	OVE AMBI	ENTS SHO)WN	
200	-60	47	18	65	1900	

Table 2: Test Data, continued
Ambients at 2 meters above ground plane

Bandwidth: 300 kHz Detection System Sensitivity: -80 dBm

Bandwidth: 300 kHz Detection System Sensitivity: -80 dBm								
Frequency	Level	level	Antenna	Level	Level	Limit		
MHz	dBm	dΒμV	Factor	$dB_{\mu}V/m$	μV/m	$\mu V/m$		
		rms						
	Biconical Antenna: Vertical Polarization							
20	-72	35	14	49	288	n/a		
28	-76	31	10	41	110	n/a		
32	-80	27	10	37	70	90		
50	-76	31	13	44	160			
52	-66	41	13	54	500			
58	-66	41	10	51	352			
60	-68	35	10	45	170			
64	-80	27	10	37	72			
70	-60	47	7	54	500			
75	-68	35	8	43	480			
80	-40	67	9	76	6400			
84	-52	55	9	64	1600	•		
86	-52	55	10	65	1650			
90	-40	67	11	78	8000	150		
100	-40	67	13	80	10000			
106	-80	27	14	41	100			
110	-80	27	14	41	100			
115	-64	43	14	57	700			
118	-80	27	13	40	100			
120	-80	27	13	40	100			
130	-56	51	14	65	2000			
	intermittent							
150	-62	45	15	60	1000			
158	-50	57	15	72	4000			
162	-62	45	15	60	1000			
170	-68	39	16	55	600			
180	-42	65	17	82	1250			
190	-80	27	17	44	160			
195	-44	63	17	80	10000	•		

200	-54	53	18	71	4000			
NO EMISSIONS ABOVE AMBIENTS SHOWN								

Table 2: Test Data, continued

Ambients at 2 meters above ground plane

Bandwidth: 300 kHz Detection System Sensitivity: -80 dBm

Frequency	Level	level	Antenna	Level	Level	Limit
MHz	dBm	$dB_{\mu}V$	Factor	$dB_{\mu}V/m$	μV/m	$\mu V/m$
		rms				
	Log Perio	dic Anteni	na: Vertical	Polarization	1	
200	-54	53	20	73	5000	150
210	-80	27	20	47	225	150
300	-78	29	12	41	110	210
	intermittent					
370	-78	29	11	40	100	
	intermittent					
410	-76	31	11	42	125	
420	-80	27	11	38	80	
450-490	-66	41	11	52	400	
500	-80	27	14	41	110	
520	-50	67	14	81	10125	
550	-64	43	13	56	640	
600	-56	51	12	63	1300	
650	-70	37	13	50	320	
700	-68	39	14	53	450	
710	-80	27	14	41	110	
740	-40	67	14	81	10125	
750	-80	27	14	41	110	
800	-62	45	14	59	900	
810	-80	27	14	41	110	
860	-66	41	14	55	600	
900	-72	35	14	49	288	—
950	-68	39	14	53	450	
960	-60	47	14	61	1125	
980	-60	47	14	61	1125	300
1000	-80	27	14	41	110	300
	NO EMISSIO	ONS ABO	VE AMBI	ENTS SHO	WN	

Table 2: Test Data, continued
Ambients at 2 meters above ground plane
Bandwidth: 300 kHz Detection System Sensitivity: -80 dBm

Frequency	Level	level	Antenna	Level	Level	Limit		
MHz	dBm	dΒ _μ V	Factor	dB _µ V/m	μV/m	$\mu V/m$		
		rms						
Log Periodic Antenna: Vertical Polarization								
200	-50	57	20	77	7000	150		
210	-80	27	20	47	225			
300	-75	32	12	44	160	200		
	intermittent							
370	-70	37	11	48	256			
	intermittent							
410	-70	37	11	48	256			
420	-80	27	11	38	80			
450-490	-60	47	11	58	800			
500	-80	27	14	41	110			
520	-45	62	14	76	6400			
550	-60	47	13	60	1000			
600	-58	49	12	61	1125			
650	-70	37	13	50	320			
700	-60	47	14	61	1125			
710	-80	27	14	41	110			
740	-35	72	14	86	20000			
750	-80	27	14	41	110			
800	-60	47	14	61	1125			
810	-80	27	14	41	110			
860	-60	47	14	61	1125			
900	-70	37	14	51	360			
950	-66	41	14	55	600			
960	-60	47	14	61	1125			
980	-55	52	14	66	2000			
1000	-80	27	14	41	110	500		
	NO EMISSIO	ONS ABO	VE AMBI	ENTS SHO	WN			

Appendix B: Glossary

a.c. alternating current

d.c. direct currentcm centimetersdB decibels

 $\begin{array}{ll} dBi & dB \ ref. \ an \ isotropic \ radiator. \\ dBm & dB \ reference \ 1 \ milliwatt \\ dB\mu V & dB \ reference \ 1 \ microvolt \end{array}$

 $dB_{\mu}V/m$ dB reference 1 microvolt/meter EMC Electromagnetic Compatibility

EUT Equipment Under Test

ft feet

Hz Hertz (cycles per second)

in. inches
m meters
mV millivolts

mV/m millivolts per meter

NARTE ® National Association of Radio and Telecommunications

Engineers, Inc.: The United States certification body for

Electromagnetic Compatibility professionals.

V Volts