

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to \$15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See \$1.1307(b)(1) of this chapter.

EUT Specification

EUT	Wireless P/T Network Camera
Frequency band (Operating)	WLAN: 2.412GHz ~ 2.462GHz
	WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz
	WLAN: 5.745GHz ~ 5.825GHz
	Others
Device category	Portable (<20cm separation)
	Mobile (>20cm separation)
	Others
Exposure classification	Occupational/Controlled exposure (S = 5mW/cm^2)
	General Population/Uncontrolled exposure
	$(S=1 \text{mW/cm}^2)$
Antenna diversity	Single antenna
	Multiple antennas
	Tx diversity
	Rx diversity
	Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 17.35 dBm (54.32mW)
	IEEE 802.11g mode: 24.39 dBm(274.78mW)
	IEEE 802.11n HT 20 MHz mode: 24.24 dBm(265.46mW)
	IEEE 802.11n HT 40 MHz mode: 23.42 dBm(219.78mW)
Antenna gain (Max)	1. PCB Antenna / Gain: 3.38 dBi (Numeric gain: 2.17)
	2. Dipole Antenna / Gain: 4.25 dBi (Numeric gain: 2.66)
	MIMO: Total ANT= $10*LOG(((10^{(3.38/20)}+10^{(4.25/20)})^2)/2)=$
	7.05(Numeric gain: 5.06)
Evaluation applied	$\square MPE Evaluation*$
	SAR Evaluation
	N/A N/A
Remark:	

The maximum output power is <u>24.39dBm (274.78mW) at 2412MHz (with 2.66 numeric antenna gain</u>.)

TEST RESULTS

No non-compliance noted.

MPE EVALUATION

No non-compliance noted.

Calculation

Given

 $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and
 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1
Where $d = Distance$ in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW/cm^2

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

IEEE 802.11b mode:

EUT output power = 54.32 mW Numeric Antenna gain = 2.66

 \rightarrow Power density =0.02875 mW/cm2

IEEE 802.11g mode:

EUT output power = 274.78 mW Numeric Antenna gain = 2.66

 \rightarrow Power density = 0.14545 mW / cm2

IEEE 802.11n HT 20 MHz mode:

EUT output power = 265.46 mW Numeric Antenna gain = 5.06

 \rightarrow Power density = 0.26730 mW/cm2

IEEE 802.11n HT 40 MHz mode:

EUT output power = 219.78 mW

Numeric Antenna gain = 5.06

 \rightarrow Power density = 0.22130 mW/cm2

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)