## FCC 47 CFR PART 15 SUBPART C

## TEST REPORT

## Waterproof HD IP Camera

## Model: OC835-ADT

## Trade Name: Sercomm

Issued to

## Sercomm Corporation

8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan, R.O.C.

Issued by

## Compliance Certification Services Inc.

No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: August 7, 2015
 1309

## Revision History

| Rev. | Issue Date |  | Revisions | Effect Page | Revised By |
| :---: | :---: | :--- | :--- | :---: | :---: |
| 00 | August 7, 2015 | Initial Issue | ALL | Becca Chen |  |

## TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION ..... 4
2. EUT DESCRIPTION ..... 5
3. TEST METHODOLOGY ..... 6
3.1 EUT CONFIGURATION ..... 6
3.2 EUT EXERCISE ..... 6
3.3 GENERAL TEST PROCEDURES ..... 6
3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS ..... 7
3.5 DESCRIPTION OF TEST MODES ..... 8
4. INSTRUMENT CALIBRATION. ..... 9
4.1 MEASURING INSTRUMENT CALIBRATION ..... 9
4.2 MEASUREMENT EQUIPMENT USED ..... 9
4.3 MEASUREMENT UNCERTAINTY ..... 10
5. FACILITIES AND ACCREDITATIONS ..... 11
5.1 FACILITIES ..... 11
5.2 EQUIPMENT ..... 11
5.3 TABLE OF ACCREDITATIONS AND LISTINGS ..... 12
6. SETUP OF EQUIPMENT UNDER TEST ..... 13
6.1 SETUP CONFIGURATION OF EUT ..... 13
6.2 SUPPORT EQUIPMENT ..... 13
7. FCC PART 15.247 REQUIREMENTS ..... 14
7.1 6DB BANDWIDTH ..... 14
7.2 PEAK POWER ..... 34
7.3 AVERAGE POWER ..... 36
7.4 BAND EDGES MEASUREMENT ..... 38
7.5 PEAK POWER SPECTRAL DENSITY ..... 68
7.6 SPURIOUS EMISSIONS ..... 88
7.7 RADIATED EMISSIONS ..... 107
7.8 POWERLINE CONDUCTED EMISSIONS ..... 124
APPENDIX I PHOTOGRAPHS OF TEST SETUP ..... 127APPENDIX 1 - PHOTOGRAPHS OF EUT

## 1. TEST RESULT CERTIFICATION

| Applicant: | Sercomm Corporation |
| :--- | :--- |
|  | 8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan, |
|  | R.O.C. |
| Equipment Under Test: | Waterproof HD IP Camera |
| Trade Name: | Sercomm |
| Model Number: | OC835-ADT |
| Date of Test: | May $26 \sim$ August 5, 2015 |


| APPLICABLE STANDARDS |  |
| :---: | :---: |
| STANDARD | TEST RESULT |
| FCC 47 CFR Part 15 Subpart C | No non-compliance noted |

## We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2009 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207, 15.209, 15.247.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:


Miller Lee
Manager
Compliance Certification Services Inc.

Reviewed by:


Angel Chang
Section Manager
Compliance Certification Services Inc.

## 2. EUT DESCRIPTION

| Product | Waterproof HD IP Camera |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Trade Name | Sercomm |  |  |  |
| Model Number | OC835-ADT |  |  |  |
| Received Date | May 8, 2015 |  |  |  |
| Power Adapter | Asian Power Devices Inc. <br> Model: WA-18D12FU <br> I/P: 100-240V, $50-60 \mathrm{~Hz}, 0.5 \mathrm{~A}$ MAX <br> O/P: 12V, 1.5A |  |  |  |
| Frequency Range | 2412 ~ 2462 MHz |  |  |  |
| Transmit Power | Mode | Frequency Range | Output Power (dBm) | Output Power (W) |
|  | 802.11b | 2412-2462 | 20.64 | 0.1159 |
|  | 802.11 g | 2412-2462 | 25.62 | 0.3648 |
|  | 802.11n Standard-20 MHz | 2412-2462 | 27.67 | 0.5845 |
|  | 802.11n Standard-40 MHz | 2422-2452 | 27.32 | 0.5389 |
| Modulation Technique | IEEE 802.11b mode: DSSS (1, 2, 5.5 and 11 Mpbs) <br> IEEE 802.11g mode: OFDM ( $6,9,12,18,24,36,48$ and 54 Mpbs ) <br> IEEE 802.11n HT 20 MHz mode Channel mode: OFDM (6.5, 7.2, 13, $14.4,14.44,19.5,21.7,26,28.89,28.9,39,43.3,43.33$ $52,57.78,57.8,58.5,65.0,72.2,78,86.67,104$ <br> 115.56, 117, 130, 144.44 Mbps ) <br> IEEE 802.11n HT 40 MHz mode: OFDM (13.5, 15, 27, 30, 40.5, 45, $54,60,81,90,108,120,121.5,135,150,162,180,216$ 240, 243, 270, 300 Mbps ) |  |  |  |
| Number of Channels | IEEE 802.11b/g mode: 11 Channels IEEE 802.11n HT 20 MHz mode: 11 Channels IEEE 802.11n HT 40 MHz mode: 7 Channels |  |  |  |
| Antenna Specification | PIFA Antenna <br> 1. P/N: 617210HS, Gain: 2.14dBi <br> 2. P/N: 617210HR, Gain: 2.69dBi <br> 3. P/N: 617210K8, Gain: 2.18dBi |  |  |  |

## Remark:

1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
2. This submittal(s) (test report) is intended for FCC ID: P270C835 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

## 3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2009 and FCC CFR 47 Part 15.207, 15.209, 15.247 and KDB558074.

### 3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

### 3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

### 3.3 GENERAL TEST PROCEDURES

## Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.10 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

## Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.10.

### 3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| $\mathbf{M H z}$ | $\mathbf{M H z}$ | $\mathbf{M H z}$ | $\mathbf{G H z}$ |
| :---: | :---: | :---: | :---: |
| $0.090-0.110$ | $16.42-16.423$ | $399.9-410$ | $4.5-5.15$ |
| $10.495-0.505$ | $16.69475-16.69525$ | $608-614$ | $5.35-5.46$ |
| $2.1735-2.1905$ | $16.80425-16.80475$ | $960-1240$ | $7.25-7.75$ |
| $4.125-4.128$ | $25.5-25.67$ | $1300-1427$ | $8.025-8.5$ |
| $4.17725-4.17775$ | $37.5-38.25$ | $1435-1626.5$ | $9.0-9.2$ |
| $4.20725-4.20775$ | $73-74.6$ | $1645.5-1646.5$ | $9.3-9.5$ |
| $6.215-6.218$ | $74.8-75.2$ | $1660-1710$ | $10.6-12.7$ |
| $6.26775-6.26825$ | $108-121.94$ | $1718.8-1722.2$ | $13.25-13.4$ |
| $6.1175-6.31225$ | $123-138$ | $2200-2300$ | $14.47-14.5$ |
| $8.291-8.294$ | $149.9-150.05$ | $2310-2390$ | $15.35-16.2$ |
| $8.362-8.366$ | $156.52475-$ | $2483.5-2500$ | $17.7-21.4$ |
| $8.37625-8.38675$ | 156.52525 | $2655-2900$ | $22.01-23.12$ |
| $8.41425-8.41475$ | $156.7-156.9$ | $3260-3267$ | $23.6-24.0$ |
| $12.29-12.293$ | $162.0125-167.17$ | $3332-3339$ | $31.2-31.8$ |
| $12.51975-12.52025$ | $167.72-173.2$ | $3345.8-3358$ | $36.43-36.5$ |
| $12.57675-12.57725$ | $240-285$ | $3600-4400$ | $\left(^{2}\right)$ |
| $13.36-13.41$ | $322-335.4$ |  |  |

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

### 3.5 DESCRIPTION OF TEST MODES

The EUT (model: OC835-ADT) had been tested under operating condition.
Software used to control the EUT for staying in continuous transmitting mode was programmed.
After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1 GHz and power line conducted emissions below 30 MHz , which worst case was in normal link mode only.

The EUT is a $2 x 2$ configuration spatial MIMO ( 2 Tx \& $2 R x$ ) without beam forming function that operate in double TX chains and double RX chains. The $2 \times 2$ configuration is implemented with two outside TX \& RX chains (Chain 0 and 1).

## IEEE 802.11b mode:

Channel Low (2412MHz), Channel Mid (2437MHz) and Channel High (2462MHz) with 1 Mbps data rate were chosen for full testing.

## IEEE 802.11g mode:

Channel Low ( 2412 MHz ), Channel Mid ( 2437 MHz ) and Channel High ( 2462 MHz ) with 6 Mbps data rate were chosen for full testing.

## IEEE 802.11n HT 20 MHz mode:

Channel Low ( 2412 MHz ), Channel Mid ( 2437 MHz ) and Channel High ( 2462 MHz ) with 6.5 Mbps data rate were chosen for full testing.

## IEEE 802.11n HT 40 MHz mode:

Channel Low ( 2422 MHz ), Channel Mid ( 2437 MHz ) and Channel High ( 2452 MHz ) with 13.5 Mbps data rate were chosen for full testing.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis) and laptop mode. The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

## 4. INSTRUMENT CALIBRATION

### 4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

### 4.2 MEASUREMENT EQUIPMENT USED

## Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

| Conducted Emissions Test Site |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due |
| Spectrum Analyzer | Agilent | E4446A | US42510252 | $11 / 23 / 2015$ |
| Thermostatic/Hrgrosatic <br> Chamber | TAICHY | MHG-150LF | 930619 | $10 / 07 / 2015$ |
| AC Power Source | EXTECH | 6205 | 1140845 | N.C.R |
| DC Power Supply | ABM | 8301 HD | D011531 | N.C.R |
| Power Meter | Anritsu | ML2495A | 1012009 | $06 / 03 / 2015$ |
| Power Sensor | Anritsu | MA2411A | 0917072 | $06 / 03 / 2015$ |
| Spectrum Analyzer | ROHDE\&SCHWARZ | FSV40 | 101073 | $07 / 09 / 2015$ |


| Wugu 966 Chamber A |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due |  |
| Spectrum Analyzer | Agilent | E4446A | US42510268 | $01 / 25 / 2016$ |  |
| EMI Test Receiver | R\&S | ESCI | 100064 | $06 / 04 / 2016$ |  |
| Bilog Antenna | Sunol Sciences | JB3 | A030105 | $08 / 19 / 2015$ |  |
| Horn Antenna | EMCO | 3117 | 00055165 | $01 / 26 / 2016$ |  |
| Turn Table | CCS | CC-T-1F | N/A | N.C.R |  |
| Antenna Tower | CCS | CC-A-1F | N/A | N.C.R |  |
| Controller | CCS | CC-C-1F | N/A | N.C.R |  |
| Test S/W | EZ-EMC (CCS-3A1RE) |  |  |  |  |


| Conducted Emission room \# B |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due |  |
| EMI Test Receiver | R\&S | ESCI | 101073 | $09 / 18 / 2015$ |  |
| LISN | R\&S | ENV216 | 101054 | $06 / 06 / 2016$ |  |
| LISN | SCHWARZBECK | NSLK 8127 | $8127-541$ | $11 / 25 / 2015$ |  |
| Capacitive Voltage Probe | FCC | F-CVP-1 | 100185 | $03 / 12 / 2016$ |  |
| Test S/W | CCS-3A1-CE |  |  |  |  |

### 4.3 MEASUREMENT UNCERTAINTY

| PARAMETER | UNCERTAINTY |
| :--- | :---: |
| Powerline Conducted Emission | $+/-1.2575$ |
| 3M Semi Anechoic Chamber / 30M~200M | $+/-4.0138$ |
| 3M Semi Anechoic Chamber / 200M~1000M | $+/-3.9483$ |
| 3M Semi Anechoic Chamber / 1G~8G | $+/-2.5975$ |
| 3M Semi Anechoic Chamber / 8G~18G | $+/-2.6112$ |
| 3M Semi Anechoic Chamber / 18G~26G | $+/-2.7389$ |
| 3M Semi Anechoic Chamber / 26G~40G | $+/-2.9683$ |

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95\% confidence level using a coverage factor of $k=2$.

## 5. FACILITIES AND ACCREDITATIONS

### 5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No.139, Wugong Rd., Wugu Dist., New Taipei City 24891, Taiwan (R.O.C.)
Tel: 886-2-2298-4086 / Fax: 886-2-2298-1470

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.

Tel: 886-3-324-0332 / Fax: 886-3-324-5235
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

### 5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bucolical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.
Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.
Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.
All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

### 5.3 TABLE OF ACCREDITATIONS AND LISTINGS

| Country | Agency | Scope of Accreditation | Logo |
| :---: | :---: | :---: | :---: |
| USA | FCC | 3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements | FCC MRA: TW1039 |
| Taiwan | TAF | LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 <br> IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 \& 12,2, <br> ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, <br> ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, <br> ETSI EN 301 489-1/3/7/17 <br> FCC OET Bulletin 65 + Supplement C, <br> EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, <br> EN 50392, IEC 62209, CNS 14958-1, CNS 14959 <br> FCC Method -47 CFR Part 15 Subpart B <br> IEC / EN 61000-3-2, IEC / EN 61000-3-3, <br> IEC / EN 61000-4-2/3/4/5/6/8/11 | Testing Laboratory 1309 |
| Canada | Industry Canada | 3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform | Canada <br> IC 2324G-1 <br> IC 2324G-2 |

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.


## 6. SETUP OF EQUIPMENT UNDER TEST

### 6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

### 6.2 SUPPORT EQUIPMENT

| No | Equipment | Brand | Model | Series No. | FCC ID | Data Cable | Power Cord |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Notebook PC | IBM | 7663 (T61) | L3E9812 | N/A | N/A | AC I/P: <br> Unshielded, 1.8 m <br> DC O/P: <br> Unshielded, 1.8 m <br> with a core |

## Remark:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

## 7. FCC PART 15.247 REQUIREMENTS

### 7.1 6DB BANDWIDTH

## LIMIT

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902-928 MHz, $2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6dB bandwidth shall be at least 500 kHz .

## Test Configuration



## TEST PROCEDURE

1. Place the EUT on the table and set it in the transmitting mode.
2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3. Set the spectrum analyzer as RBW $=300 \mathrm{kHz}$, VBW $=1000 \mathrm{kHz}$, Sweep $=$ auto.
4. Mark the peak frequency and -6 dB (upper and lower) frequency.
5. Repeat until all the rest channels are investigated.

## TEST RESULTS

No non-compliance noted.

## Test Data

Test mode: IEEE 802.11b mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | Bandwidth <br> $(\mathbf{M H z})$ | Limit <br> $(\mathbf{k H z})$ | Result |
| :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | 10.3334 |  | PASS |
| Mid | 2437 | 10.3334 | $>500$ | PASS |
| High | 2462 | 10.3334 |  | PASS |

Test mode: IEEE 802.11g mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | Bandwidth <br> $\mathbf{( M H z )}$ | Limit <br> $\mathbf{( k H z )}$ | Result |
| :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | 16.8333 |  | PASS |
| Mid | 2437 | 16.8333 | $>500$ | PASS |
| High | 2462 | 16.8333 |  | PASS |

Test mode: IEEE 802.11n HT 20 MHz mode / Chain 0

| Channel | Frequency <br> $(\mathbf{M H z})$ | Bandwidth <br> $\mathbf{( M H z )}$ | Limit <br> $\mathbf{( k H z )}$ | Result |
| :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | 17.9167 |  | PASS |
| Mid | 2437 | 17.8334 | $>500$ | PASS |
| High | 2462 | 17.9167 |  | PASS |

Test mode: IEEE 802.11n HT 20 MHz mode / Chain 1

| Channel | Frequency <br> $(\mathbf{M H z})$ | Bandwidth <br> $\mathbf{( M H z )}$ | Limit <br> $\mathbf{( k H z )}$ | Result |
| :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | 17.8334 |  | PASS |
| Mid | 2437 | 17.8334 | $>500$ | PASS |
| High | 2462 | 17.8334 |  | PASS |

Test mode: IEEE 802.11n HT 40 MHz mode / Chain 0

| Channel | Frequency <br> $(\mathbf{M H z})$ | Bandwidth <br> $\mathbf{( M H z )}$ | Limit <br> $\mathbf{( k H z )}$ | Result |
| :---: | :---: | :---: | :---: | :---: |
| Low | 2422 | 36.4167 |  | PASS |
| Mid | 2437 | 36.4167 | $>500$ | PASS |
| High | 2452 | 36.4167 |  | PASS |

Test mode: IEEE 802.11n HT 40 MHz mode / Chain 1

| Channel | Frequency <br> $(\mathbf{M H z})$ | Bandwidth <br> $\mathbf{( M H z )}$ | Limit <br> $\mathbf{( k H z )}$ | Result |
| :---: | :---: | :---: | :---: | :---: |
| Low | 2422 | 36.4167 |  | PASS |
| Mid | 2437 | 36.5 | $>500$ | PASS |
| High | 2452 | 36.5 |  | PASS |

## Test Plot

## IEEE 802.11b mode

## 6dB Bandwidth (CH Low)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2406.8333 | 2.70 | 3.73 | -1.03 |
| 2 | 2412.5000 | 9.73 | 3.73 | 6.00 |
| 3 | 2417.1667 | 1.91 | 3.73 | -1.82 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 10.3334 | -0.79 |

## 6dB Bandwidth (CH Mid)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2431.8333 | 3.27 | 4.24 | -0.97 |
| 2 | 2437.5000 | 10.24 | 4.24 | 6.00 |
| 3 | 2442.1667 | 2.43 | 4.24 | -1.81 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 10.3334 | -0.84 |

6dB Bandwidth (CH High)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2456.8333 | 2.98 | 3.81 | -0.83 |
| 2 | 2461.5000 | 9.81 | 3.81 | 6.00 |
| 3 | 2467.1667 | 1.84 | 3.81 | -1.97 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 10.3334 | -1.14 |

## IEEE 802.11g mode

6dB Bandwidth (CH Low)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2403.5000 | -0.18 | 0.58 | -0.76 |
| 2 | 2416.1667 | 6.58 | 0.58 | 6.00 |
| 3 | 2420.3333 | -0.80 | 0.58 | -1.38 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 16.8333 | -0.62 |



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2428.5000 | 0.87 | 1.33 | -0.46 |
| 2 | 2429.2500 | 7.33 | 1.33 | 6.00 |
| 3 | 2445.3333 | -0.03 | 1.33 | -1.36 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 16.8333 | -0.9 |

6dB Bandwidth (CH High)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2453.5000 | 1.01 | 1.50 | -0.49 |
| 2 | 2454.2500 | 7.50 | 1.50 | 6.00 |
| 3 | 2470.3333 | -0.10 | 1.50 | -1.60 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 16.8333 | -1.11 |

## IEEE 802.11n HT 20 MHz mode / Chain 0

6dB Bandwidth (CH Low)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2403.0000 | -2.28 | -1.27 | -1.01 |
| 2 | 2407.0833 | 4.73 | -1.27 | 6.00 |
| 3 | 2420.9167 | -2.43 | -1.27 | -1.16 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 17.9167 | -0.15 |

6dB Bandwidth (CH Mid)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2428.0833 | -1.98 | -1.75 | -0.23 |
| 2 | 2432.1667 | 4.25 | -1.75 | 6.00 |
| 3 | 2445.9167 | -3.06 | -1.75 | -1.31 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 17.8334 | -1.08 |

## 6dB Bandwidth (CH High)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2453.0000 | -2.77 | -1.79 | -0.98 |
| 2 | 2457.0833 | 4.21 | -1.79 | 6.00 |
| 3 | 2470.9167 | -3.40 | -1.79 | -1.61 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 17.9167 | -0.63 |

## IEEE 802.11n HT 20 MHz mode / Chain 1

## 6dB Bandwidth (CH Low)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2403.0833 | -2.21 | -1.79 | -0.42 |
| 2 | 2407.0833 | 4.21 | -1.79 | 6.00 |
| 3 | 2420.9167 | -2.95 | -1.79 | -1.16 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 17.8334 | -0.74 |

6dB Bandwidth (CH Mid)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2428.0833 | -1.02 | -0.78 | -0.24 |
| 2 | 2432.1667 | 5.22 | -0.78 | 6.00 |
| 3 | 2445.9167 | -2.05 | -0.78 | -1.27 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 17.8334 | -1.03 |

## 6dB Bandwidth (CH High)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2453.0833 | -1.34 | -0.90 | -0.44 |
| 2 | 2457.0833 | 5.10 | -0.90 | 6.00 |
| 3 | 2470.9167 | -2.21 | -0.90 | -1.31 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 17.8334 | -0.87 |

## IEEE 802.11n HT 40 MHz mode / Chain 0

6dB Bandwidth (CH Low)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2403.8333 | -2.53 | -2.05 | -0.48 |
| 2 | 2428.6667 | 3.95 | -2.05 | 6.00 |
| 3 | 2440.2500 | -2.28 | -2.05 | -0.23 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 36.4167 | 0.25 |

6dB Bandwidth (CH Mid)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2418.8333 | -1.94 | -1.53 | -0.41 |
| 2 | 2434.8333 | 4.47 | -1.53 | 6.00 |
| 3 | 2455.2500 | -1.95 | -1.53 | -0.42 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 36.4167 | -0.01 |

## 6dB Bandwidth (CH High)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2433.8333 | -2.37 | -2.27 | -0.10 |
| 2 | 2449.9167 | 3.73 | -2.27 | 6.00 |
| 3 | 2470.2500 | -2.75 | -2.27 | -0.48 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 36.4167 | -0.38 |

## IEEE 802.11n HT 40 MHz mode / Chain 1

6dB Bandwidth (CH Low)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2433.8333 | -1.59 | -1.33 | -0.26 |
| 2 | 2449.8333 | 4.67 | -1.33 | 6.00 |
| 3 | 2470.2500 | -1.46 | -1.33 | -0.13 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 36.4167 | 0.13 |

## 6dB Bandwidth (CH Mid)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2418.8333 | -2.74 | -2.24 | -0.50 |
| 2 | 2434.9167 | 3.76 | -2.24 | 6.00 |
| 3 | 2455.3333 | -2.91 | -2.24 | -0.67 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 36.5 | -0.17 |

## 6dB Bandwidth (CH High)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2403.8333 | -2.06 | -1.26 | -0.80 |
| 2 | 2428.6667 | 4.74 | -1.26 | 6.00 |
| 3 | 2440.3333 | -1.97 | -1.26 | -0.71 |


| No. |  | $\Delta$ Frequency(MHz) | $\Delta$ Level(dB) |
| :---: | :---: | :---: | :---: |
| 1 | mk3-mk1 | 36.5 | 0.09 |

### 7.2 PEAK POWER

## LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

1. According to $\S 15.247(\mathrm{~b})(3)$, for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
2. According to $\S 15.247(b)(4)$, the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi . Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi .

## Test Configuration



## TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

## Test Data

Test mode: IEEE 802.11b mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | Output Power <br> $(\mathbf{d B m})$ | Output Power <br> $(\mathbf{W})$ | Limit <br> $(\mathbf{W})$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | 20.64 | 0.1159 |  | PASS |
| Mid | 2437 | 20.43 | 0.1104 | 1.00 | PASS |
| High | 2462 | 20.20 | 0.1047 |  | PASS |

Test mode: IEEE 802.11 g mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | Output Power <br> $(\mathbf{d B m})$ | Output Power <br> $(\mathbf{W})$ | Limit <br> $(W)$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | 25.62 | 0.3648 |  | PASS |
| Mid | 2437 | 25.51 | 0.3556 | 1.00 | PASS |
| High | 2462 | 25.60 | 0.3631 |  | PASS |

Test mode: IEEE 802.11n HT 20 MHz mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | Chain 0 <br> Output Power <br> $(\mathbf{d B m})$ | Chain 1 <br> $(\mathbf{d B m})$ | Total Output <br> Power <br> $(\mathbf{d B m})$ | Output Power <br> $(\mathbf{W})$ | Limit <br> $(\mathbf{W})$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | 24.92 | 24.07 | 27.53 | 0.5657 |  | PASS |
| Mid | 2437 | 25.12 | 24.14 | 27.67 | 0.5845 | 1.00 | PASS |
| High | 2462 | 24.68 | 24.08 | 27.40 | 0.5496 |  | PASS |

Test mode: IEEE 802.11n HT $\mathbf{4 0} \mathbf{~ M H z}$ mode

| Channel | Frequency <br> $(\mathrm{MHz})$ | Chain 0 <br> Output Power <br> $(\mathrm{dBm})$ | Chain 1 <br> (dBm) | Total Output <br> Power <br> $(\mathrm{dBm})$ | Output Power <br> $(\mathrm{W})$ | Limit <br> $(\mathrm{W})$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low | 2422 | 24.31 | 24.11 | 27.22 | 0.5274 |  | PASS |
| Mid | 2437 | 24.51 | 24.09 | 27.32 | 0.5389 | 1.00 | PASS |
| High | 2452 | 24.35 | 24.22 | 27.30 | 0.5365 |  | PASS |

## Remark:

1. Total Output Power $(w)=$ Chain $0\left(10^{\wedge}(\right.$ Output Power $\left./ 10) / 1000\right)+$ Chain $1\left(10^{\wedge}(\right.$ Output Power $\left./ 10) / 1000\right)$

### 7.3 AVERAGE POWER

## LIMIT

None; for reporting purposes only.

## Test Configuration



## TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the avg power detection.

## TEST RESULTS

No non-compliance noted.

## Test Data

Test mode: IEEE 802.11b mode

| Channel | Frequency <br> $(\mathrm{MHz})$ | Output Power <br> $(\mathrm{dBm})$ | Output Power <br> $(\mathrm{W})$ |
| :---: | :---: | :---: | :---: |
| Low | 2412 | 18.23 | 0.0665 |
| Mid | 2437 | 18.31 | 0.0678 |
| High | 2462 | 18.01 | 0.0632 |

## Test mode: IEEE 802.11 g mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | Output Power <br> $(\mathrm{dBm})$ | Output Power <br> $(\mathrm{W})$ |
| :---: | :---: | :---: | :---: |
| Low | 2412 | 16.24 | 0.0421 |
| Mid | 2437 | 16.11 | 0.0408 |
| High | 2462 | 16.34 | 0.0431 |

## Test mode: IEEE 802.11n HT 20 MHz mode

| Channel | Frequency <br> $(\mathrm{MHz})$ | Chain 0 <br> Output Power <br> $(\mathrm{dBm})$ | Chain 1 <br> (dBm) | Total Output <br> Power <br> $(\mathrm{dBm})$ | Output Power <br> $(\mathbf{W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | 15.02 | 15.03 | 18.04 | 0.0636 |
| Mid | 2437 | 15.25 | 15.21 | 18.24 | 0.0667 |
| High | 2462 | 15.13 | 15.28 | 18.22 | 0.0663 |

## Test mode: IEEE 802.11n HT 40 MHz mode

| Channel | Frequency <br> $(\mathrm{MHz})$ | Chain 0 <br> Output Power <br> $(\mathrm{dBm})$ | Chain 1 <br> (dBm) | Total Output <br> Power <br> $(\mathrm{dBm})$ | Output Power <br> $(\mathbf{W})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Low | 2422 | 15.12 | 15.01 | 18.08 | 0.0642 |
| Mid | 2437 | 15.38 | 15.1 | 18.25 | 0.0669 |
| High | 2452 | 15.28 | 15.21 | 18.26 | 0.0669 |

Remark: Total Output Power $(w)=$ Chain 0 (10^(Output Power/10)/1000)+Chain 1 (10^(Output Power /10)/1000)

### 7.4 BAND EDGES MEASUREMENT

## LIMIT

According to $\S 15.247$ (d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

## Test Configuration

## For Radiated



## For Conducted



## TEST PROCEDURE

## For Radiated

1. The EUT is placed on a turntable, which is 0.8 m above the ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emission.
4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
(a) PEAK: RBW $=V B W=3 M H z /$ Sweep $=A U T O$
(b) AVERAGE: RBW $=1 \mathrm{MHz}$,
if duty cycle $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$.
if duty cycle<98\% VBW=1/T.
IEEE 802.11b mode: $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$
IEEE 802.11 g mode: $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$
IEEE 802.11n HT 20 MHz mode: $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$
IEEE 802.11n HT 40 MHz mode: $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$
5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

## For Conducted

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz . The video bandwidth is set to 100 kHz .

## TEST RESULTS

Refer to attach spectrum analyzer data chart.

## Band Edges (IEEE 802.11b mode / CH Low)

Polarity: Vertical


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2387.760 | 55.25 | -2.51 | 52.74 | 74.00 | -21.26 | 100 | 111 | peak |
| 2 | 2387.760 | 44.68 | -2.51 | 42.17 | 54.00 | -11.83 | 100 | 111 | AVG |

Polarity: Horizontal


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{( M H z )}$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2387.680 | 60.06 | -2.51 | 57.55 | 74.00 | -16.45 | 100 | 358 | peak |
| 2 | 2387.680 | 50.26 | -2.51 | 47.75 | 54.00 | -6.25 | 100 | 358 | AVG |

## 트늩ㅌ Compliance Certification Services Inc.

FCC ID: P270C835

## Band Edges (IEEE 802.11b mode / CH High)

## Polarity: Vertical



| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2486.536 | 53.39 | -1.96 | 51.43 | 74.00 | -22.57 | 100 | 137 | peak |
| 2 | 2486.536 | 40.36 | -1.96 | 38.40 | 54.00 | -15.60 | 100 | 137 | AVG |

Polarity: Horizontal


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2486.256 | 58.23 | -1.97 | 56.26 | 74.00 | -17.74 | 100 | 284 | peak |
| 2 | 2486.256 | 46.49 | -1.97 | 44.52 | 54.00 | -9.48 | 100 | 284 | AVG |

## Band Edges (IEEE 802.11g mode / CH Low)

Polarity: Vertical


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathrm{dBuV})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2384.880 | 63.73 | -2.54 | 61.19 | 74.00 | -12.81 | 100 | 325 | peak |
| 2 | 2384.880 | 47.52 | -2.54 | 44.98 | 54.00 | -9.02 | 100 | 325 | AVG |

Polarity: Horizontal


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathrm{cm})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2385.200 | 60.74 | -2.53 | 58.21 | 74.00 | -15.79 | 100 | 318 | peak |
| 2 | 2385.200 | 43.84 | -2.53 | 41.31 | 54.00 | -12.69 | 100 | 318 | AVG |

## Band Edges (IEEE 802.11g mode / CH High)

Polarity: Vertical


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2484.853 | 63.38 | -1.98 | 61.40 | 74.00 | -12.60 | 100 | 13 | peak |
| 2 | 2484.853 | 45.64 | -1.98 | 43.66 | 54.00 | -10.34 | 100 | 13 | AVG |

Polarity: Horizontal


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{( M H z )}$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2483.500 | 67.24 | -1.99 | 65.25 | 74.00 | -8.75 | 100 | 240 | peak |
| 2 | 2483.500 | 49.15 | -1.99 | 47.16 | 54.00 | -6.84 | 100 | 240 | AVG |

## Band Edges (IEEE 802.11n HT 20 MHz mode / CH Low)

Polarity: Vertical


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathrm{dBuV})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathrm{cm})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2388.800 | 62.74 | -2.50 | 60.24 | 74.00 | -13.76 | 100 | 343 | peak |
| 2 | 2388.800 | 45.41 | -2.50 | 42.91 | 54.00 | -11.09 | 100 | 343 | AVG |

Polarity: Horizontal


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{( M H z )}$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2389.840 | 63.20 | -2.49 | 60.71 | 74.00 | -13.29 | 100 | 13 | peak |
| 2 | 2389.840 | 45.29 | -2.49 | 42.80 | 54.00 | -11.20 | 100 | 13 | AVG |

## Band Edges (IEEE 802.11n HT 20 MHz mode / CH High)

Polarity: Vertical


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathrm{dBuV})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathrm{cm})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2486.569 | 59.48 | -1.96 | 57.52 | 74.00 | -16.48 | 100 | 153 | peak |
| 2 | 2486.569 | 43.01 | -1.96 | 41.05 | 54.00 | -12.95 | 100 | 153 | AVG |

Polarity: Horizontal


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathrm{dBuV})$ | Factor $(\mathrm{dB} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathrm{cm})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2484.374 | 62.86 | -1.99 | 60.87 | 74.00 | -13.13 | 100 | 21 | peak |
| 2 | 2484.374 | 45.86 | -1.99 | 43.87 | 54.00 | -10.13 | 100 | 21 | AVG |

## Band Edges (IEEE 802.11n HT 40 MHz mode / CH Low)

Polarity: Vertical


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2383.200 | 59.39 | -2.55 | 56.84 | 74.00 | -17.16 | 100 | 313 | peak |
| 2 | 2383.200 | 46.94 | -2.55 | 44.39 | 54.00 | -9.61 | 100 | 313 | AVG |

Polarity: Horizontal


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathrm{dBuV})$ | Factor $(\mathrm{dB} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathrm{cm})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2384.400 | 62.64 | -2.54 | 60.10 | 74.00 | -13.90 | 100 | 284 | peak |
| 2 | 2384.400 | 49.14 | -2.54 | 46.60 | 54.00 | -7.40 | 100 | 284 | AVG |

## Band Edges (IEEE 802.11n HT 40 MHz mode / CH High)

Polarity: Vertical


| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathbf{d B u V})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B u V} / \mathbf{m})$ | $(\mathbf{d B})$ | $(\mathbf{c m})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2484.771 | 60.25 | -1.98 | 58.27 | 74.00 | -15.73 | 100 | 215 | peak |
| 2 | 2484.771 | 46.39 | -1.98 | 44.41 | 54.00 | -9.59 | 100 | 215 | AVG |

## 트눝ㅌ Compliance Certification Services Inc.

FCC ID: P270C835

## Polarity: Horizontal



| No. | Frequency | Reading | Correct | Result | Limit | Margin | Height | Degree | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $(\mathbf{M H z})$ | $(\mathrm{dBuV})$ | Factor $(\mathbf{d B} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dBuV} / \mathbf{m})$ | $(\mathrm{dB})$ | $(\mathrm{cm})$ | $\left({ }^{\circ}\right)$ |  |
| 1 | 2483.566 | 62.99 | -1.99 | 61.00 | 74.00 | -13.00 | 100 | 274 | peak |
| 2 | 2483.566 | 49.14 | -1.99 | 47.15 | 54.00 | -6.85 | 100 | 274 | AVG |

## Test Plot

Conducted Band Edges (IEEE 802.11b mode / CH Low)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2400.0000 | -29.79 | -12.01 | -17.78 |
| 2 | 2412.5000 | 7.99 | -12.01 | 20.00 |

Conducted Band Edges (IEEE 802.11b mode / CH High)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2461.5000 | 7.98 | -12.02 | 20.00 |
| 2 | 2488.5000 | -48.97 | -12.02 | -36.95 |

Conducted Band Edges (IEEE 802.11g mode / CH Low)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2400.0000 | -31.82 | -18.77 | -13.05 |
| 2 | 2416.1250 | 1.23 | -18.77 | 20.00 |

Conducted Band Edges (IEEE 802.11g mode / CH High)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2454.2500 | 1.97 | -18.03 | 20.00 |
| 2 | 2484.1250 | -44.88 | -18.03 | -26.85 |

Conducted Band Edges (IEEE 802.11n HT 20 MHz mode / CH Low / Chain 0)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2400.0000 | -31.99 | -20.33 | -11.66 |
| 2 | 2409.1250 | -0.33 | -20.33 | 20.00 |

Conducted Band Edges (IEEE 802.11n HT 20 MHz mode / CH High / Chain 0)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2459.1250 | -0.78 | -20.78 | 20.00 |
| 2 | 2483.5000 | -46.66 | -20.78 | -25.88 |

Conducted Band Edges (IEEE 802.11n HT 20 MHz mode / CH Low / Chain 1)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2399.8750 | -33.68 | -20.66 | -13.02 |
| 2 | 2409.1250 | -0.66 | -20.66 | 20.00 |

Conducted Band Edges (IEEE 802.11n HT 20 MHz mode / CH High / Chain 1)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2459.1250 | 0.34 | -19.66 | 20.00 |
| 2 | 2484.5000 | -46.95 | -19.66 | -27.29 |

Conducted Band Edges (IEEE 802.11n HT 40 MHz mode / CH Low / Chain 0)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2400.0000 | -34.33 | -23.63 | -10.70 |
| 2 | 2414.2500 | -3.63 | -23.63 | 20.00 |

Conducted Band Edges (IEEE 802.11n HT 40 MHz mode / CH High / Chain 0 )


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2455.5000 | -4.17 | -24.17 | 20.00 |
| 2 | 2484.5000 | -42.66 | -24.17 | -18.49 |

Conducted Band Edges (IEEE 802.11n HT 40 MHz mode / CH Low / Chain 1)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2400.0000 | -35.14 | -23.28 | -11.86 |
| 2 | 2414.2500 | -3.28 | -23.28 | 20.00 |

Conducted Band Edges (IEEE 802.11n HT 40 MHz mode / CH High / Chain 1 )


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2454.1250 | -3.29 | -23.29 | 20.00 |
| 2 | 2485.1250 | -43.01 | -23.29 | -19.72 |

### 7.5 PEAK POWER SPECTRAL DENSITY

## LIMIT

1. According to $\S 15.247(\mathrm{e})$, for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
2. According to $\S 15.247(\mathrm{f})$, the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

## Test Configuration



## TEST PROCEDURE

1. Place the EUT on the table and set it in transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
2. Set the spectrum analyzer as RBW $=10 \mathrm{kHz}, \mathrm{VBW}=100 \mathrm{kHz}$,Span $=1.5$ times the DTS bandwidth, Sweep time= auto
3. Record the max reading.
4. Repeat the above procedure until the measurements for all frequencies are completed.

## TEST RESULTS

No non-compliance noted.

## Test Data

Test mode: IEEE 802.11b mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | PPSD <br> $(\mathbf{d B m})$ | Limit <br> $(\mathbf{d B m})$ | Result |
| :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | -1.67 |  | PASS |
| Mid | 2437 | -1.41 | 8.00 | PASS |
| High | 2462 | -1.76 |  | PASS |

Test mode: IEEE 802.11g mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | PPSD <br> $(\mathbf{d B m})$ | Limit <br> $(\mathbf{d B m})$ | Result |
| :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | -6.30 |  | PASS |
| Mid | 2437 | -5.46 | 8.00 | PASS |
| High | 2462 | -5.67 |  | PASS |

## Test mode: IEEE 802.11n HT 20 MHz mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | Chain 0 <br> PPSD <br> $(\mathbf{d B m})$ | Chain 1 <br> PPSD <br> $(\mathbf{d B m})$ | PPSD <br> $(\mathbf{d B m})$ | Limit <br> $(\mathbf{d B m})$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low | 2412 | -7.16 | -7.62 | -4.37 |  | PASS |
| Mid | 2437 | -7.25 | -6.61 | -3.91 | 8.00 | PASS |
| High | 2462 | -7.49 | -6.49 | -3.95 |  | PASS |

nTest mode: IEEE 802.11n HT 40 MHz mode

| Channel | Frequency <br> $(\mathbf{M H z})$ | Chain 0 <br> PPSD <br> $(\mathbf{d B m})$ | Chain 1 <br> PPSD <br> $(\mathbf{d B m})$ | PPSD <br> $(\mathbf{d B m})$ | Limit <br> $(\mathbf{d B m})$ | Result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low | 2422 | -9.46 | -8.73 | -6.07 |  | PASS |
| Mid | 2437 | -9.58 | -9.25 | -6.40 | 8.00 | PASS |
| High | 2452 | -9.88 | -9.97 | -6.91 |  | PASS |

Remark: 1. Total PPSD $(\mathrm{dBm})=10^{\star} \mathrm{LOG}\left(10^{\wedge}(\right.$ Chain 0 PPSD $/ 10)+10^{\wedge}($ Chain 1 PPSD /10))

## Test Plot

## IEEE 802.11b mode

## PPSD (CH Low)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2412.6750 | -1.67 | 8.00 | -9.67 |



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2437.6750 | -1.41 | 8.00 | -9.41 |



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2462.6750 | -1.76 | 8.00 | -9.76 |

## IEEE 802.11g mode

## PPSD (CH Low)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2419.8000 | -6.30 | 8.00 | -14.30 |

## PPSD (CH Mid)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2431.0333 | -5.46 | 8.00 | -13.46 |



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2454.8333 | -5.67 | 8.00 | -13.67 |

## IEEE 802.11n HT 20 MHz mode / Chain 0

## PPSD (CH Low)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2418.5000 | -7.16 | 8.00 | -15.16 |

PPSD (CH Mid)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2430.3667 | -7.25 | 8.00 | -15.25 |

## 트듵ㅌ Compliance Certification Services Inc.

FCC ID: P270C835

PPSD (CH High)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2455.3667 | -7.49 | 8.00 | -15.49 |

IEEE 802.11n HT 20 MHz mode / Chain 1


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2409.8667 | -7.62 | 8.00 | -15.62 |

PPSD (CH Mid)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2430.3667 | -6.61 | 8.00 | -14.61 |

## 트눝ㅌ Compliance Certification Services Inc.

FCC ID: P27OC835

## PPSD (CH High)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2459.8667 | -6.49 | 8.00 | -14.49 |

## IEEE 802.11n HT 40 MHz mode / Chain 0

## PPSD (CH Low)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2425.3333 | -9.46 | 8.00 | -17.46 |



## PPSD (CH High)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2455.3333 | -9.88 | 8.00 | -17.88 |

## IEEE 802.11n HT 40 MHz mode / Chain 1

## PPSD (CH Low)



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2425.3333 | -8.73 | 8.00 | -16.73 |



PPSD (CH High)


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2435.3333 | -9.97 | 8.00 | -17.97 |

### 7.6 SPURIOUS EMISSIONS

### 7.6.1 Conducted Measurement

## LIMIT

According to $\S 15.247$ (d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in $\S 15.205(\mathrm{a})$, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

## Test Configuration



## TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz . The video bandwidth is set to 100 kHz .
Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

## TEST RESULTS

No non-compliance noted.

## Test Plot

## IEEE 802.11b mode

## CH Low



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -47.09 | -11.51 | -35.58 |
| 2 | 4824.2400 | -38.86 | -11.51 | -27.35 |

CH Mid


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2352.2100 | -55.35 | -11.19 | -44.16 |
| 2 | 4874.1800 | -39.86 | -11.19 | -28.67 |

## CH High



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2352.2100 | -56.18 | -11.44 | -44.74 |
| 2 | 4924.1200 | -39.77 | -11.44 | -28.33 |

## IEEE 802.11g mode

## CH Low



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -43.97 | -18.49 | -25.48 |
| 2 | 25000.0000 | -47.09 | -18.49 | -28.60 |

CH Mid


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -53.42 | -17.73 | -35.69 |
| 2 | 4874.1800 | -48.62 | -17.73 | -30.89 |

## CH High



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -55.44 | -17.63 | -37.81 |
| 2 | 25000.0000 | -48.56 | -17.63 | -30.93 |

## IEEE 802.11n HT 20 MHz mode / Chain 0

## CH Low



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -47.16 | -19.91 | -27.25 |
| 2 | 24975.0300 | -48.48 | -19.91 | -28.57 |

## 트눝ㅌ Compliance Certification Services Inc.

## CH Mid



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2352.2100 | -55.90 | -20.41 | -35.49 |
| 2 | 24250.9000 | -48.55 | -20.41 | -28.14 |

## 트듵ㅌ Compliance Certification Services Inc.

## CH High



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2327.2400 | -55.53 | -20.47 | -35.06 |
| 2 | 25000.0000 | -48.48 | -20.47 | -28.01 |

## IEEE 802.11n HT 20 MHz mode / Chain 1

## CH Low



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -50.42 | -20.53 | -29.89 |
| 2 | 24900.1200 | -48.27 | -20.53 | -27.74 |



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2352.2100 | -57.15 | -19.41 | -37.74 |
| 2 | 23601.6800 | -48.41 | -19.41 | -29.00 |

## 트눝ㅌ Compliance Certification Services Inc.



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -56.01 | -19.59 | -36.42 |
| 2 | 24225.9300 | -48.29 | -19.59 | -28.70 |

## IEEE 802.11n HT 40 MHz mode / Chain 0

## CH Low



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -43.51 | -23.34 | -20.17 |
| 2 | 24925.0900 | -48.70 | -23.34 | -25.36 |

## 트늩ㅌ Compliance Certification Services Inc.

## CH Mid



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -51.48 | -22.98 | -28.50 |
| 2 | 24450.6600 | -48.67 | -22.98 | -25.69 |

## CH High



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 30.0000 | -54.74 | -23.53 | -31.21 |
| 2 | 2502.0300 | -47.41 | -23.53 | -23.88 |

## IEEE 802.11n HT 40 MHz mode / Chain 1

## CH Low



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -45.11 | -22.64 | -22.47 |
| 2 | 24975.0300 | -47.76 | -22.64 | -25.12 |

CH Mid


| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -53.76 | -23.64 | -30.12 |
| 2 | 24950.0600 | -48.36 | -23.64 | -24.72 |

## CH High



| No. | Frequency(MHz) | Result(dBm) | Limit(dBm) | Margin(dBm) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2377.1800 | -55.39 | -22.81 | -32.58 |
| 2 | 2502.0300 | -46.96 | -22.81 | -24.15 |

### 7.7 RADIATED EMISSIONS

## LIMIT

1. According to $\S 15.209(\mathrm{a})$, except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency <br> $(\mathbf{M H z})$ | Field Strength <br> $(\boldsymbol{\mu V / m})$ | Measurement Distance <br> $(\mathbf{m})$ |
| :---: | :---: | :---: |
| $30-88$ | $100^{*}$ | 3 |
| $88-216$ | $150^{*}$ | 3 |
| $216-960$ | $200^{*}$ | 3 |
| Above 960 | 500 | 3 |

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-88 \mathrm{MHz}, 174-216 \mathrm{MHz}$ or $470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.
2. In the emission table above, the tighter limit applies at the band edges.

| Frequency <br> $(\mathbf{M H z})$ | Field Strength <br> $(\boldsymbol{\mu} \mathbf{V} / \mathbf{m}$ at 3-meter) | Field Strength <br> $(\mathbf{d B} \boldsymbol{\mu} / \mathbf{m}$ at 3-meter) |
| :---: | :---: | :---: |
| $30-88$ | 100 | 40 |
| $88-216$ | 150 | 43.5 |
| $216-960$ | 200 | 46 |
| Above 960 | 500 | 54 |

## Test Configuration

## 9kHz ~ 30MHz


$30 \mathrm{MHz} \sim 1 \mathrm{GHz}$


## Above 1 GHz



## TEST PROCEDURE

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Set the spectrum analyzer in the following setting as:

Below 1GHz:
RBW $=100 \mathrm{kHz} / \mathrm{VBW}=300 \mathrm{kHz} /$ Sweep $=A U T O$
Above 1GHz:
(a) PEAK: RBW=VBW=10MHz $/$ Sweep=AUTO
(b) AVERAGE: RBW $=10 \mathrm{~Hz}$, if duty cycle $\geqq 98 \%$, VBW $=1 \mathrm{~Hz}$. if duty cycle<98\% VBW=1/T.
IEEE 802.11b mode: $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$
IEEE 802.11 g mode: $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$
IEEE 802.11n HT 20 MHz mode: $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$
IEEE 802.11n HT 40 MHz mode: $\geqq 98 \%$, VBW $=10 \mathrm{~Hz}$
7. Repeat above procedures until the measurements for all frequencies are complete.

## TEST RESULTS

No non-compliance noted.

## Below 1GHz

Operation Mode: Normal Link
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \%$ RH

Test Date: August 5, 2015
Tested by: Jason Lu
Polarity: Ver. / Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathbf{d B} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathrm{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 232.7300 | 46.57 | -16.67 | 29.90 | 46.00 | -16.10 | Peak | V |
| 390.8400 | 41.01 | -11.92 | 29.09 | 46.00 | -16.91 | Peak | V |
| 499.4800 | 40.14 | -9.25 | 30.89 | 46.00 | -15.11 | Peak | V |
| 624.6100 | 38.01 | -7.17 | 30.84 | 46.00 | -15.16 | Peak | V |
| 763.3200 | 34.27 | -4.81 | 29.46 | 46.00 | -16.54 | Peak | V |
| 846.7400 | 34.02 | -3.83 | 30.19 | 46.00 | -15.81 | Peak | V |
| 177.4400 | 53.33 | -17.21 | 36.12 | 43.50 | -7.38 | peak | H |
| 299.6600 | 50.30 | -14.25 | 36.05 | 46.00 | -9.95 | peak | H |
| 412.1800 | 44.23 | -11.33 | 32.90 | 46.00 | -13.10 | peak | H |
| 624.6100 | 39.08 | -7.17 | 31.91 | 46.00 | -14.09 | peak | H |
| 755.5600 | 38.86 | -4.87 | 33.99 | 46.00 | -12.01 | peak | H |
| 846.7400 | 34.57 | -3.83 | 30.74 | 46.00 | -15.26 | peak | H |

## Remark:

1. Measuring frequencies from 30 MHz to the 1 GHz .
2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using peak/quasi-peak detector mode.
3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
5. Margin $(d B)=$ Result $(d B u V / m)-\operatorname{Limit}(d B u V / m)$.

## Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \%$ RH

Test Date: July 18, 2015
Tested by: Andy Shi
Polarity: Ver. / Hor.

| Frequency (MHz) | Reading (dBuV) | Correction Factor (dB/m) | Result (dBuV/m) | Limit (dBuV/m) | Margin (dB) | Remark | Ant. Pol. (H/V) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1576.000 | 55.04 | -5.80 | 49.24 | 74.00 | -24.76 | peak | V |
| 4825.000 | 50.59 | 5.10 | 55.69 | 74.00 | -18.31 | peak | V |
| 4825.000 | 46.67 | 5.10 | 51.77 | 54.00 | -2.23 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1544.000 | 49.99 | -5.96 | 44.03 | 74.00 | -29.97 | peak | H |
| 4750.000 | 41.19 | 4.90 | 46.09 | 74.00 | -27.91 | peak | H |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)$ - Average limit $(d B u V / m)$.

Operation Mode: TX / IEEE 802.11b / CH Mid
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \%$ RH

Test Date: July 18, 2015
Tested by: Andy Shi
Polarity: Ver. / Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathbf{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1178.000 | 55.23 | -7.32 | 47.91 | 74.00 | -26.09 | peak | V |
| 4875.000 | 45.77 | 5.24 | 51.01 | 74.00 | -22.99 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | peak | H |
| 1722.000 | 50.47 | -5.04 | 45.43 | 74.00 | -28.57 | H |  |
| 4875.000 | 44.99 | 5.24 | 50.23 | 74.00 | -23.77 | peak |  |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)$ - Average limit ( $d B u V / m$ ).

Operation Mode: TX / IEEE 802.11b / CH High
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \% \mathrm{RH}$

Test Date: July 18, 2015
Tested by: Andy Shi
Polarity: Ver. / Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathbf{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1588.000 | 54.08 | -5.73 | 48.35 | 74.00 | -25.65 | peak | V |
| 4925.000 | 45.03 | 5.37 | 50.40 | 74.00 | -23.60 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | peak | H |
| 1778.000 | 49.76 | -4.75 | 45.01 | 74.00 | -28.99 | peak | H |
| 4925.000 | 44.82 | 5.37 | 50.19 | 74.00 | -23.81 |  |  |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / IEEE 802.11g / CH Low
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \%$ RH

Test Date: August 5, 2015
Tested by: Jason Lu
Polarity: Ver./Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathrm{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1590.000 | 57.12 | -5.72 | 51.40 | 74.00 | -22.60 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1584.000 | 54.19 | -5.75 | 48.44 | 74.00 | -25.56 | peak | H |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / IEEE 802.11g / CH Mid
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \% \mathrm{RH}$

Test Date: August 5, 2015
Tested by: Jason Lu
Polarity: Ver. / Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathrm{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1938.000 | 50.84 | -3.92 | 46.92 | 74.00 | -27.08 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1580.000 | 54.48 | -5.78 | 48.70 | 74.00 | -25.30 | peak | H |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)$ - Average limit ( $d B u V / m$ ).

Operation Mode: TX / IEEE 802.11g / CH High
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \% \mathrm{RH}$

Test Date: August 5, 2015
Tested by: Jason Lu
Polarity: Ver./Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathrm{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1978.000 | 50.64 | -3.71 | 46.93 | 74.00 | -27.07 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1596.000 | 54.42 | -5.69 | 48.73 | 74.00 | -25.27 | peak |  |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / IEEE 802.11n HT 20 MHz mode / CH Low Test Date: August 5, 2015
Temperature: $27^{\circ} \mathrm{C}$ Tested by: Jason Lu

Humidity: $\quad 53 \%$ RH
Polarity: Ver./Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathrm{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1936.000 | 51.63 | -3.93 | 47.70 | 74.00 | -26.30 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1584.000 | 53.46 | -5.75 | 47.71 | 74.00 | -26.29 | peak | H |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit ( $d B u V / m$ ).

Operation Mode: TX / IEEE 802.11n HT 20 MHz mode / CH Mid
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \%$ RH

Test Date: August 5, 2015
Tested by: Jason Lu
Polarity: Ver. / Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathbf{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1798.000 | 51.92 | -4.65 | 47.27 | 74.00 | -26.73 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | H |
| 1584.000 | 52.95 | -5.75 | 47.20 | 74.00 | -26.80 |  |  |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)$ - Average limit ( $d B u V / m$ ).

Operation Mode: TX / IEEE 802.11n HT 20 MHz mode / CH High
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \% \mathrm{RH}$

Test Date: August 5, 2015
Tested by: Jason Lu
Polarity: Ver./Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> (dBuV) | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathrm{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1848.000 | 50.49 | -4.39 | 46.10 | 74.00 | -27.90 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | H |
| 1794.000 | 53.24 | -4.67 | 48.57 | 74.00 | -25.43 |  |  |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)$ - Average limit ( $d B u V / m$ ).

Operation Mode: TX / IEEE 802.11n HT 40 MHz mode / CH Low Test Date: August 5, 2015

Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \% \mathrm{RH}$

Tested by: Jason Lu
Polarity: Ver./Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathbf{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1918.000 | 50.65 | -4.02 | 46.63 | 74.00 | -27.37 | peak | V |
| 4845.000 | 41.19 | 5.15 | 46.34 | 74.00 | -27.66 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | peak | H |
| 1584.000 | 54.59 | -5.75 | 48.84 | 74.00 | -25.16 | peak | H |
| 4835.000 | 39.82 | 5.13 | 44.95 | 74.00 | -29.05 |  |  |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)$ - Average limit ( $d B u V / m$ ).

Operation Mode: TX / IEEE 802.11n HT 40 MHz mode / CH Mid
Temperature: $\quad 27^{\circ} \mathrm{C}$
Humidity: $\quad 53 \% \mathrm{RH}$

Test Date: August 5, 2015
Tested by: Jason Lu
Polarity: Ver./Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathbf{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1798.000 | 51.99 | -4.65 | 47.34 | 74.00 | -26.66 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1584.000 | 54.77 | -5.75 | 49.02 | 74.00 | -24.98 | peak | H |
| 4755.000 | 39.50 | 4.91 | 44.41 | 74.00 | -29.59 | peak | H |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)-$ Average limit $(d B u V / m)$.

Operation Mode: TX / IEEE 802.11n HT 40 MHz mode / CH High Test Date: August 5, 2015
Temperature: $27^{\circ} \mathrm{C}$ Tested by: Jason Lu

Humidity: $\quad 53 \%$ RH Polarity: Ver. / Hor.

| Frequency <br> $(\mathbf{M H z})$ | Reading <br> $(\mathrm{dBuV})$ | Correction <br> Factor <br> $(\mathrm{dB} / \mathbf{m})$ | Result <br> $(\mathrm{dBuV} / \mathbf{m})$ | Limit <br> $(\mathrm{dBuV} / \mathbf{m})$ | Margin <br> $(\mathrm{dB})$ | Remark | Ant. Pol. <br> $(\mathbf{H} / \mathrm{V})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1812.000 | 51.24 | -4.57 | 46.67 | 74.00 | -27.33 | peak | V |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 1584.000 | 54.23 | -5.75 | 48.48 | 74.00 | -25.52 | peak | H |
| N/A |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
2. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using peak/average detector mode.
3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
4. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
6. Margin $(d B)=$ Remark result $(d B u V / m)$ - Average limit ( $d B u V / m$ ).

### 7.8 POWERLINE CONDUCTED EMISSIONS

## LIMIT

According to $\S 15.207$ (a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \mu \mathrm{H} / 50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

| Frequency Range <br> (MHz) | Limits <br> (dB $\mu \mathrm{V})$ |  |
| :---: | :---: | :---: |
|  | Quasi-peak | Average |
| 0.15 to 0.50 | 66 to $56^{*}$ | 56 to 46* |
| 0.50 to 5 | 56 | 46 |
| 5 to 30 | 60 | 50 |

* Decreases with the logarithm of the frequency.


## Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

## TEST PROCEDURE

1. The EUT was placed on a table, which is 0.8 m above ground plane.
2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
3. Repeat above procedures until all frequency measured were complete.

## TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

## Test Data

$\begin{array}{llll}\text { Operation Mode: } & \text { Normal Link } & \text { Test Date: } & \text { May 26, 2015 } \\ \text { Temperature: } & 26^{\circ} \mathrm{C} & \text { Tested by: } & \text { David Shu } \\ \text { Humidity: } & 60 \% \text { RH } & & \end{array}$

| Freq. (MHz) | QP <br> Reading (dBuV) | AV <br> Reading (dBuV) | Corr. factor (dB/m) | QP Result $(\mathrm{dBuV} / \mathrm{m}$ ) | AV Result (dBuV/m ) | QP Limit (dBuV) | AV Limit (dBuV) | QP Margin (dB) | AV Margin (dB) | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1646 | 34.48 | 17.91 | 9.61 | 44.09 | 27.52 | 48.00 | 55.23 | -3.91 | -27.71 | L1 |
| 0.1939 | 29.68 | 11.74 | 9.62 | 39.30 | 21.36 | 48.00 | 53.87 | -8.70 | -32.51 | L1 |
| 0.2512 | 28.24 | 19.83 | 9.62 | 37.86 | 29.45 | 48.00 | 51.72 | -10.14 | -22.27 | L1 |
| 5.1060 | 28.41 | 20.68 | 9.76 | 38.17 | 30.44 | 48.00 | 50.00 | -9.83 | -19.56 | L1 |
| 5.7135 | 29.66 | 21.67 | 9.78 | 39.44 | 31.45 | 48.00 | 50.00 | -8.56 | -18.55 | L1 |
| 6.2117 | 30.27 | 22.06 | 9.78 | 40.05 | 31.84 | 48.00 | 50.00 | -7.95 | -18.16 | L1 |
| 0.1612 | 32.81 | 13.89 | 9.66 | 42.47 | 23.55 | 65.40 | 55.40 | -22.93 | -31.85 | L2 |
| 0.1723 | 32.52 | 16.90 | 9.66 | 42.18 | 26.56 | 64.84 | 54.85 | -22.66 | -28.29 | L2 |
| 0.1795 | 29.70 | 11.51 | 9.67 | 39.37 | 21.18 | 64.50 | 54.51 | -25.13 | -33.33 | L2 |
| 5.5113 | 24.66 | 16.18 | 9.82 | 34.48 | 26.00 | 60.00 | 50.00 | -25.52 | -24.00 | L2 |
| 6.0815 | 25.88 | 17.22 | 9.83 | 35.71 | 27.05 | 60.00 | 50.00 | -24.29 | -22.95 | L2 |
| 6.7734 | 25.45 | 17.27 | 9.85 | 35.30 | 27.12 | 60.00 | 50.00 | -24.70 | -22.88 | L2 |

## Remark:

1. Measuring frequencies from 0.15 MHz to 30 MHz .
2. The emissions measured in frequency range from 0.15 MHz to 30 MHz were made with an instrument using Quasi-peak detector and average detector.
3. The IF bandwidth of SPA between 0.15 MHz and 30 MHz was 10 kHz ; the IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9 kHz ;
4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

## Test Plots

## Conducted emissions (Line 1)



Conducted emissions (Line 2)


