

FCC Test Report

FCC ID	:	P27NA502S
Equipment	:	Multiple RF Home Gateway
Model No.	:	NA502S
Brand Name	:	Sercomm
Multiple Listing	:	Refer to item 1.1.1 for more details
Applicant	:	Sercomm Corporation
Address	:	8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan, R.O.C.
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Nov. 21, 2016
Tested Date	:	Dec. 06 ~ Dec. 12, 2016

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

ong Cher

Along Cher Assistant Manager

Approved by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	Test Equipment List and Calibration Data	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION	.10
2.1	Testing Condition	.10
2.2	The Worst Test Modes and Channel Details	.10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	.11
3.2	6dB and Occupied Bandwidth	.14
3.3	RF Output Power	.16
3.4	Power Spectral Density	.18
3.5	Emissions in Restricted Frequency Bands	
3.6	Emissions in non-restricted Frequency Bands	.30
4	TEST LABORATORY INFORMATION	.33

Release Record

Report No.	Version	Description	Issued Date
FR6N2103AE	Rev. 01	Initial issue	Mar. 03, 2017

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 0.398MHz 41.56 (Margin -6.34dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 2483.50MHz	Pass
15.209		70.70 (Margin -3.30dB) - PK	1 055
15.247(b)(3)	Maximum Output Power	Power [dBm]: 8.76	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description			
Sercomm	NA502Sxxxxxxx	Multiple RF Home Gateway				
MiOS	G550xxxxx	Multiple RF Home Gateway	the 1st x should be			
Nortek	GC1xxxxxxx	Multiple RF Home Gateway	"blank" or "-"; the rest x could be 0 to 9, A to Z,			
Vera	VeraSecurexxxxx	Multiple RF Home Gateway	"blank" or "-", for			
Vera	VeraSecurexxxxx	Advanced Smart Home Security Controller	marketing purpose.			
	 All models are electrically identical, different model names are for marketing purpose. The above models, model NA502S was selected as a representative one for the final test and only its 					

data was recorded in this report.

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)Bluetooth ModeCh. Freq. (MHz)Channel N				Data Rate		
2400-2483.5 V4.0 LE 2402-2480 0-39 [40] 1 Mbps						
Note 1: Bluetooth LE	(Low energy) uses G	FSK modulation.				

1.1.3 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	PIFA	UFL	4	

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 12Vdc from adapter	
--	--

1.1.5 Accessories

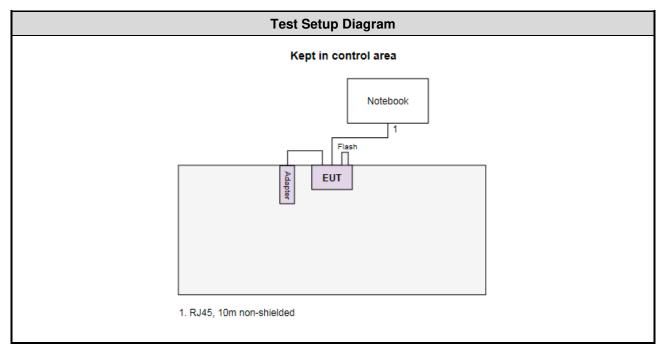
	Accessories					
No. Equipment Description						
1	Brand: LEI Model: MU24-Y120200-A2AdapterI/P: 100-240Vac, 50/60Hz, 0.7A O/P: 12Vdc, 2A Power line: 1.5m non-shielded without core					
2	Adapter	Brand: APD Model: WA-24Q12FU I/P: 100-240Vac, 50-60Hz, 0.7A O/P: 12Vdc, 2A Power line: 1.5m non-shielded without core				
3	Lithium-ion Battery	Brand: Simplo Technology Co. LTD. Model: A3EQ2009H Rating: 7.5Vdc, 2400mAh				

1.1.6 Channel List

	Frequency band (MHz)				2400~2	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

1.1.7 Test Tool and Duty Cycle

Test tool	Telnet
Duty cycle of test signal (%)	62.79%
Duty Factor (dB)	2.02


1.1.8 Power Setting

Modulation Mode		Test Frequency (MHz)		
modulation mode	2402	2440	2480	
GFSK/1Mbps	7	7	6	

1.2 Local Support Equipment List

	Support Equipment List								
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)			
1	Notebook	DELL	Latitude E6430	9ZFB4X1	DoC	RJ45, 10m non-shielded.			
2	USB Flash	SONY	USM16GU	0000020					

1.3 Test Setup Chart

Test Equipment List and Calibration Data 1.4

Test Item	Conducted Emission	Conducted Emission Conduction room 1 / (CO01-WS)					
Test Site	Conduction room 1 /						
Tested Date	Dec. 12, 2016	Dec. 12, 2016					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Receiver	R&S	ESR3	101657	Jan. 12, 2016	Jan. 11, 2017		
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 08, 2016	Nov. 07, 2017		
RF Cable-CON	EMC	EMCCFD300-BM-BM-6000	50821	Dec. 21, 2015	Dec. 20, 2016		
Measurement Software	AUDIX	e3	6.120210k	NA	NA		
Note: Calibration Int	Note: Calibration Interval of instruments listed above is one year.						

Test Item	Radiated Emission							
Test Site	966 chamber1 / (03Cl	H01-WS)						
Tested Date	Dec. 06 ~ Dec. 07, 20	Dec. 06 ~ Dec. 07, 2016						
Instrument	Manufacturer	Calibration Date	Calibration Until					
Spectrum Analyzer	R&S	FSV40	101498	Nov. 25, 2016	Nov. 24, 2017			
Receiver	R&S	ESR3	101658	Nov. 24, 2016	Nov. 23, 2017			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 04, 2016	Aug. 03, 2017			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 16, 2015	Dec. 15, 2016			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 25, 2016	Oct. 24, 2017			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 10, 2016	Nov. 09, 2017			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 10, 2015	Dec. 09, 2016			
Preamplifier	EMC	EMC02325	980225	Aug. 05, 2016	Aug. 04, 2017			
Preamplifier	Agilent	83017A	MY39501308	Oct. 06, 2016	Oct. 05, 2017			
Preamplifier	EMC	EMC184045B	980192	Aug. 24, 2016	Aug. 23, 2017			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 10, 2015	Dec. 09, 2016			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 10, 2015	Dec. 09, 2016			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 10, 2015	Dec. 09, 2016			
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	16052	Dec. 10, 2015	Dec. 09, 2016			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 10, 2015	Dec. 09, 2016			
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 10, 2015	Dec. 09, 2016			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Software	AUDIX rval of instruments liste		6.120210g	NA	N			

Test Item	RF Conducted	F Conducted							
Test Site	(TH01-WS)								
Tested Date	Dec. 12, 2016								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101063	Feb. 17, 2016	Feb. 16, 2017				
Power Meter	Anritsu	ML2495A	1241002	Oct. 06, 2016	Oct. 05, 2017				
Power Sensor	Anritsu	MA2411B	1207366	Oct. 06, 2016	Oct. 05, 2017				
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA				

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v03r05

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.134 Hz				
Conducted power	±0.808 dB				
Power density	±0.463 dB				
Conducted emission	±2.670 dB				
AC conducted emission	±2.90 dB				
Radiated emission ≤ 1GHz	±3.66 dB				
Radiated emission > 1GHz	±5.63 dB				

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 60%	Howard Huang
Radiated Emissions	03CH01-WS	21-24°C / 61-62%	Vincent Yeh Kevin Lee
RF Conducted	TH01-WS	22°C / 63%	Alex Huang

► FCC Designation No.: TW2732

➢ FCC site registration No.: 181692

➢ IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate	Test Configuration
AC Power Line Conducted Emissions	BT LE	2440	1Mbps	
Radiated Emissions ≤ 1GHz	BT LE	2440	1Mbps	
Radiated Emissions > 1GHz	BT LE	2402, 2440, 2480	1Mbps	
Maximum Output Power				
6dB bandwidth	BT LE	2402, 2440, 2480	1Mbps	
Power spectral density				
1075	•			•

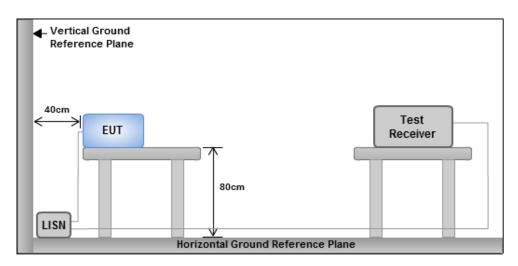
NOTE:

1. Two adapters (LEI & APD) had been covered during the pretest and found that LEI adapter was the worst case and was selected for final test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

3 Transmitter Test Results

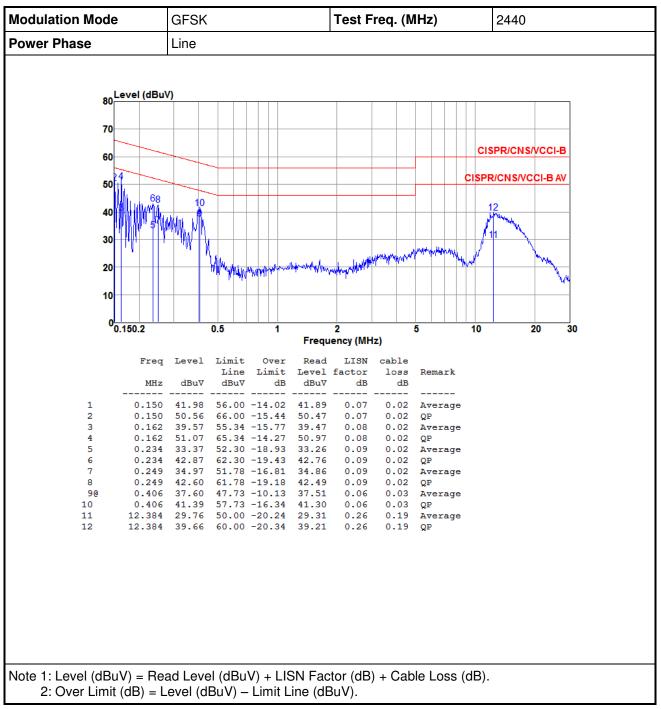
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

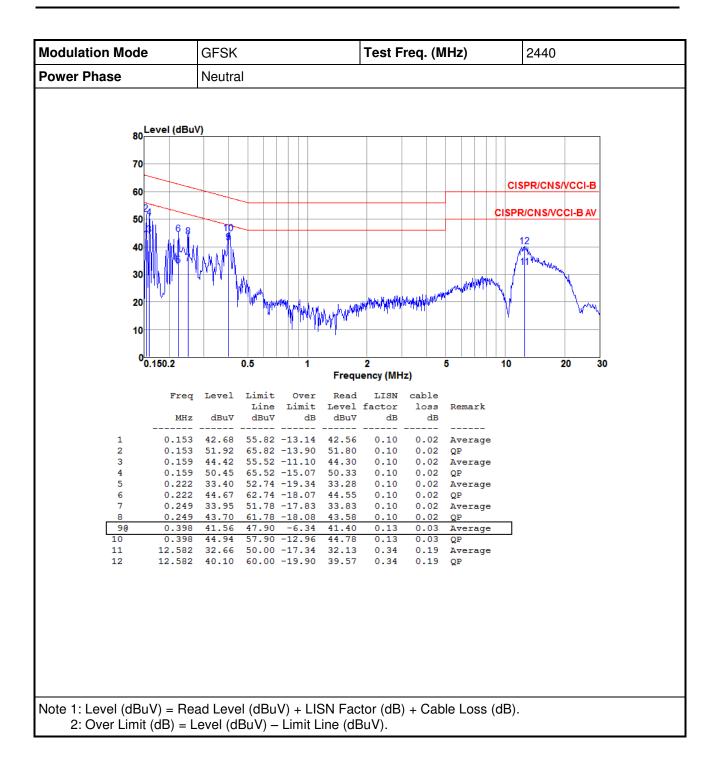
Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz


3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set resolution bandwidth (RBW) = 30 kHz, Video bandwidth = 100 kHz.
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup

Mode	Freq. (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit of 6dB Bandwidth (kHz)
BT LE	2402	0.717	0.644	500
BT LE	2440	0.722	0.640	500
BT LE	2480	0.722	0.641	500

3.2.4 Test Result of 6dB and Occupied Bandwidth

	Vorst Plots	
6dB Bandwidth	99% Occupied Bandwidth	
Spectrum RefLevel 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 30 dB SWT 1 ms VBW 300 kHz	Image: Spectrum Spectrum Ref Level 20.00 dBm Offset 11.00 dB RBW 20 kHz Att 30 dB SWT 3 ms YBW 100 kHz	(The second seco
1Pk View	●1Sa View	
10 dBm OL 6.443 dBm ML OLC BW 1.037	628 MHz 0.38 dB 0 dBm 0 1 0.938 dBm 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-4.87 dBr 01648383 GH 21000000 MH -0.08 d 644.215 kH
0 UBm 02 0.443 dBm 11 72 72 72 72 72 72 72 72 72 72 72 72 72	-10 dBm20 dBm30 dBm	
30 dBm	-40 dbm	mann
-50 dBm	-70 dBm	_
-60 dBm	CF 2.402 GHz 3000 pts	Span 3.0 MHz
-70 dBm	Type Ref Trc X-value Y-value Function Function Re M1 1 2.40164836 GHz 4.87 dem The second	sult 1.021 MHz
CF 2.402 GHz 691 pts St	T2 1 2.4025065 GHz -13.73 dBm 3.0 MHz D1 M1 1 644.21 kHz -0.08 dB	
CF 2.402 GHZ B91 pts Si		444

3.3 **RF Output Power**

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

- Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.
- Antenna gain > 6dBi
 - Non Fixed, point to point operations.

The conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB

Fixed, point to point operations

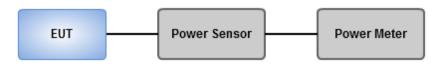
Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point Operations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations ,no any corresponding reduction is in transmitter peak output power

3.3.2 Test Procedures

Maximum Peak Conducted Output Power

- Spectrum analyzer
 - 1. Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
 - 2. Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
 - 3. Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.


Power meter

- 1. A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
- Maximum Conducted Average Output Power (For reference only)

Power meter

1. A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

				Peak Power		Antenna	EIRP	EIRP
	Mode	Freq. (MHz)	Power (mW)	Power (dBm)	Limit (dBm)	gain (dBi)	(dBm)	Limit (dBm)
	BT LE	2402	6.577	8.18	30	4	12.18	36
	BT LE	2440	7.516	8.76	30	4	12.76	36
	BT LE	2480	3.034	4.82	30	4	8.82	36

3.3.4 Test Result of Maximum Output Power

Mode	Freq. (MHz)	AV Power (mW)	AV Power (dBm)	Limit (dBm)
BT LE	2402	6.237	7.95	
BT LE	2440	7.129	8.53	
BT LE	2480	2.864	4.57	

Note: Average power is for reference only

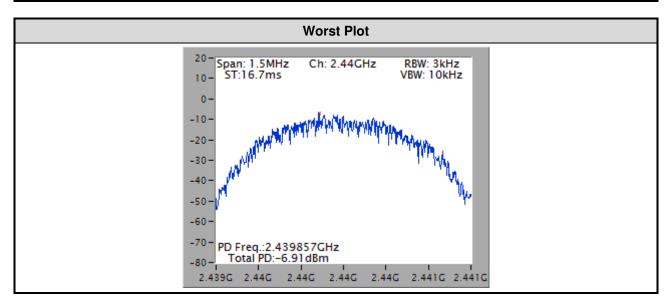
3.4 **Power Spectral Density**

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 3kHz, VBW = 10kHz.
 - 2. Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 100kHz, VBW = 300 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.


3.4.3 Test Setup

3.4.4 Test Result of Power Spectral Density

Mode	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
BT LE	2402	-7.69	8
BT LE	2440	-6.91	8
BT LE	2480	-7.09	8

3.5 Emissions in Restricted Frequency Bands

3.5.1 Limit of Emissions in Restricted Frequency Bands

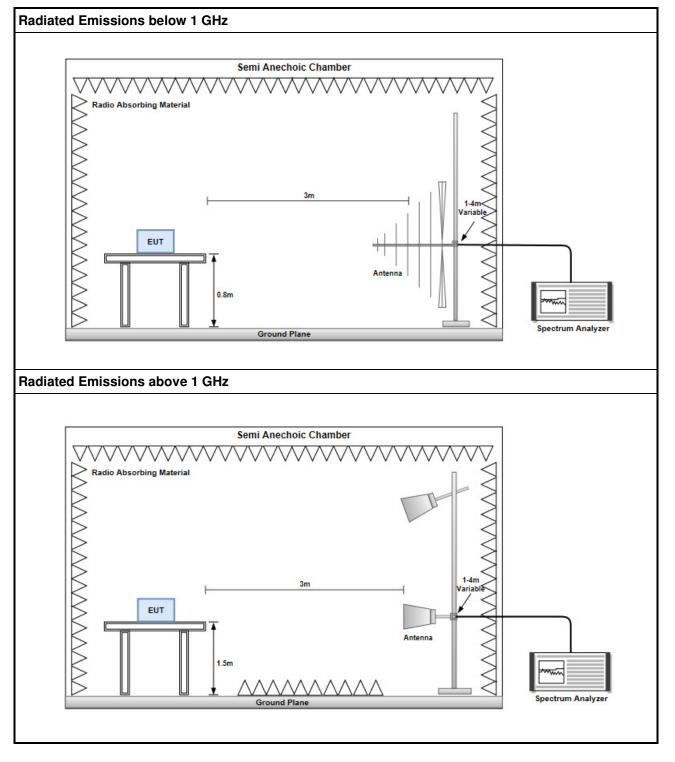
	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

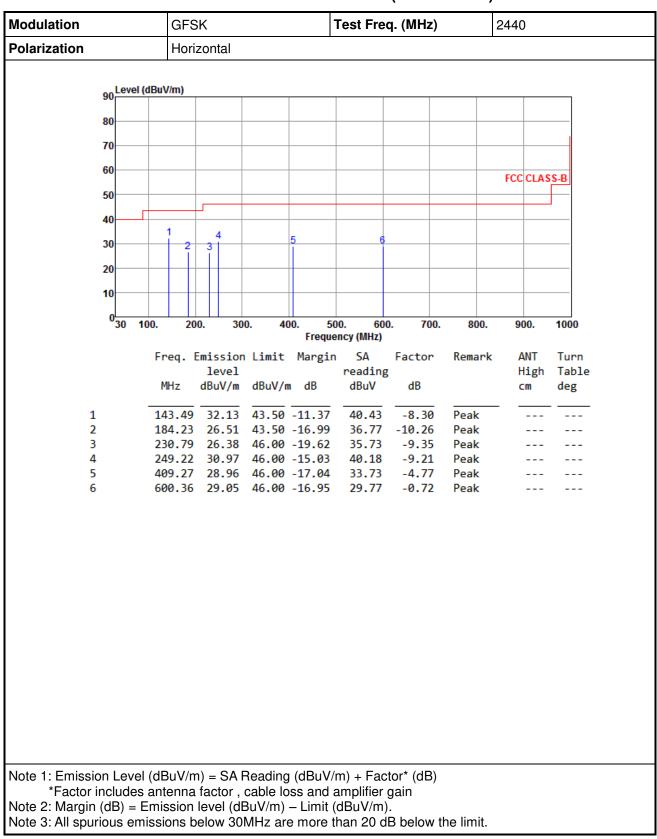
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

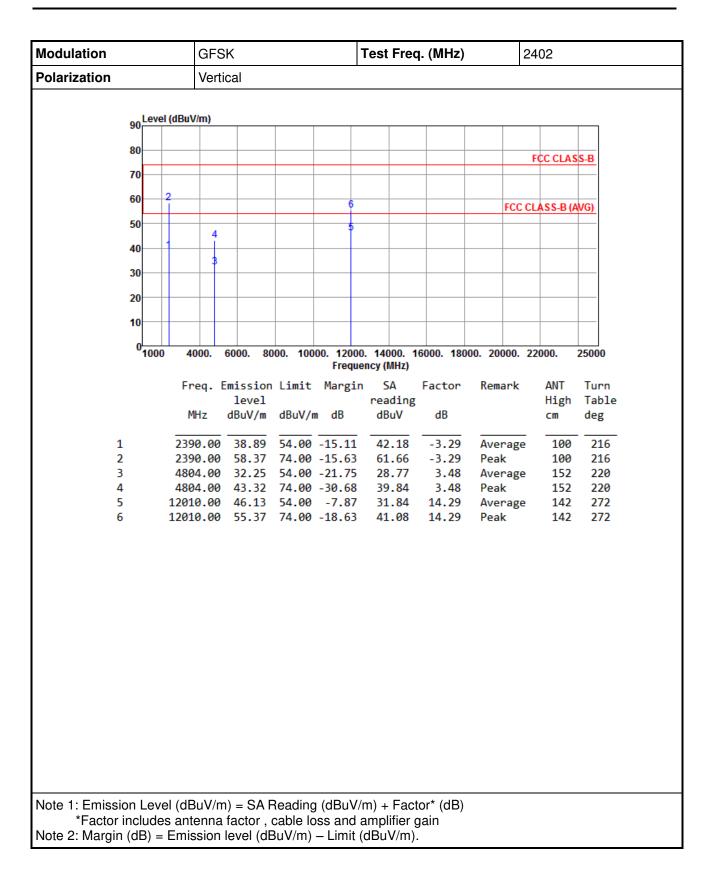

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

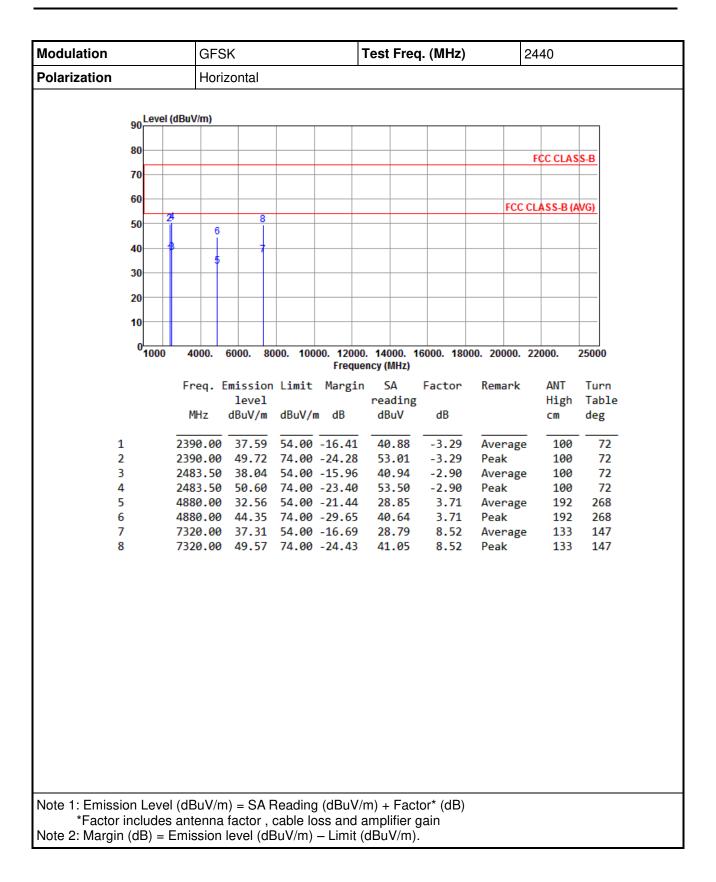
Note:


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

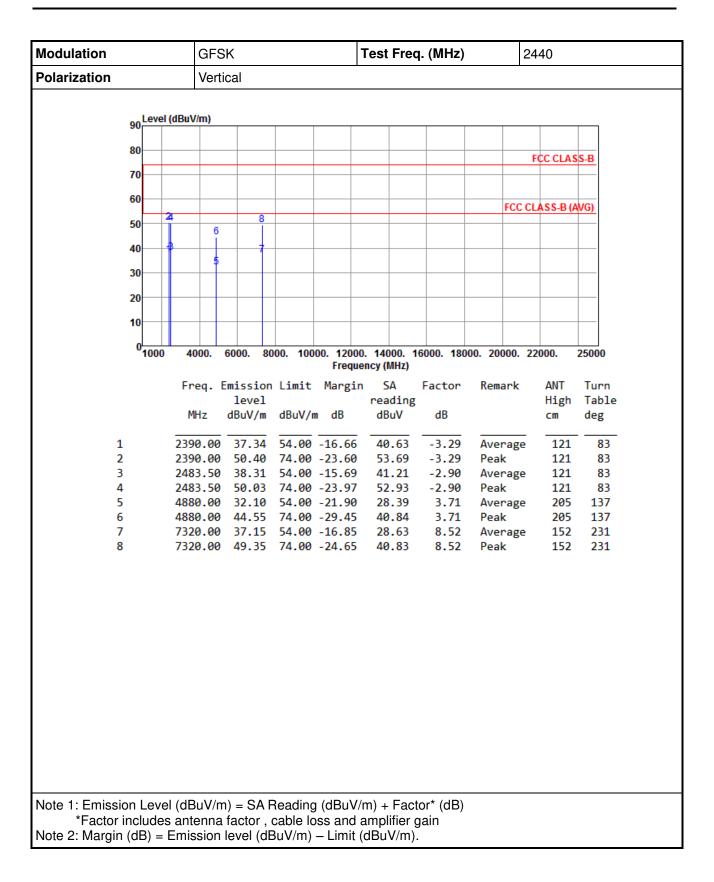
3.5.3 Test Setup

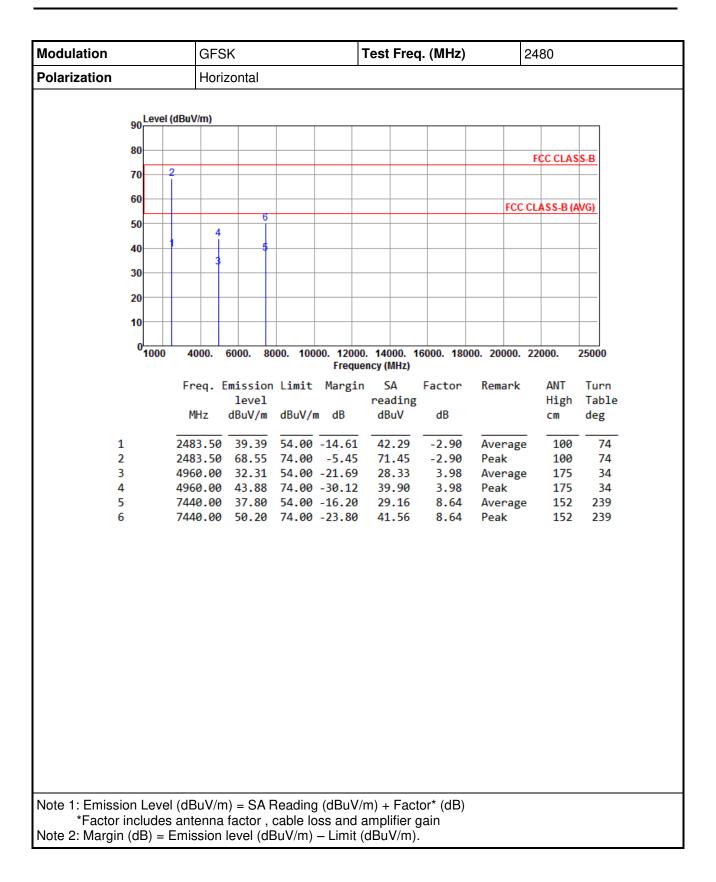
3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

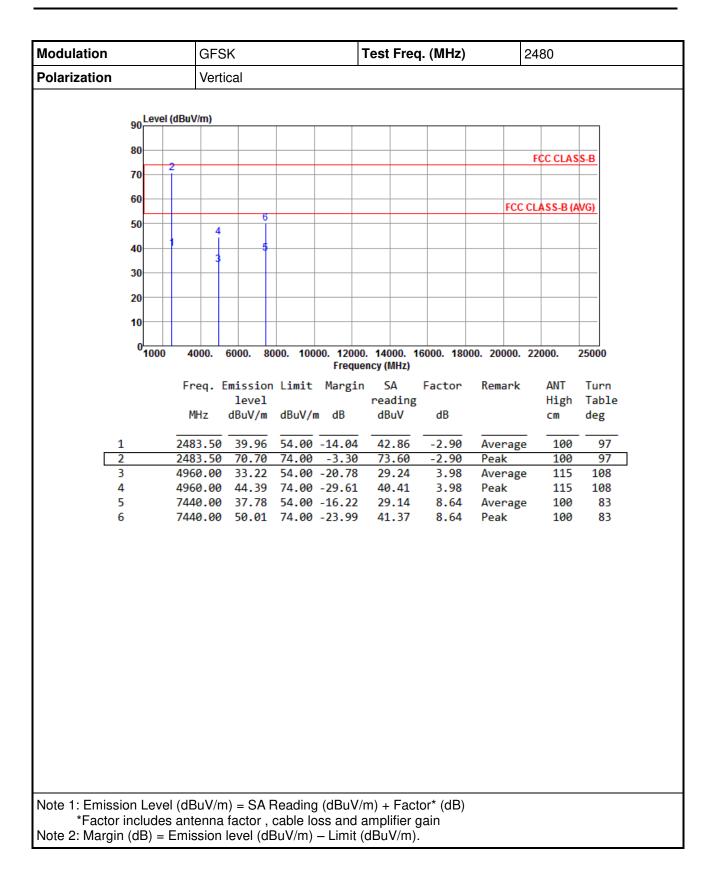

Modulation	GF	SK		٦	Fest Fre	q. (MHz)		2440	
Polarization	Ver	tical							
90 <mark>Lev</mark>	/el (dBuV/m)								
80—									
70—									
10									
60								FCC CLA	ASS-B
50									
40	3			_					
30	2	4		5	6				
20									
10									
0 <mark>30</mark>	100. 2	00. 30	0. 4	00. 50	0. 60	0. 700.	800.	900.	1000
					ncy (MHz)				
	Freq.	Emission	limit	Margin		Factor	Remark		Turn
	MU	level	JD. 10		reading	-		High	
	MHz	dBuV/m	abuv/r	n ab	dBuV	dB		cm	deg
1	39.70	33.27	40.00	-6.73	41.06	-7.79	Peak		
2		28.23		-11.77	39.01		Peak		
3		34.27			42.55	-8.28	Peak		
4		25.41 29.65			35.16 34.42		Peak Peak		
6		29.42			30.13	-0.71	Peak		
Nata da Esciente e l			D = = -1' :						
Note 1: Emission Lev *Factor includ									
Note 2: Margin (dB)									
Note 3: All spurious				(/-			


lodulation				GFS	κ			Test	Freq	I. (MHz)		24	102	
olarization				Hori	zontal									
		Leve	l (dBuV	//m)										
	90													
	80												CC CLAS	C D
	70												CU ULAS	<u></u>
			2											
	60		ĺ				6					FCC CL	ASS-B (A	WG)
	50	0		4										
	40		1	Ĩ			P							
				3										
	30													
	20													
	10													
	(0 <mark>1000</mark>) 40	000.	6000. 80	00. 100				6000. 180	00. 200	00. 22	2000.	25000
							Freq	uency (M	Hz)					
			Fr	eq. I	Emission	Limit	Margi			Factor	Rema	ark	ANT	Turn
					level	10.14	10	read	_	10			High	Table
			m	Hz	dBuV/m	aBuv/n	n ab	dBu	IV	dB			cm	deg
	1		239	0.00	38.77	54.00	-15.23	42.	06	-3.29	Aver	age	100	70
	2			0.00						-3.29	Peak		100	70
	3				32.58				10	3.48		age	215	
	4 5				44.45 43.38				97 09	3.48 14.29		c rage	215 175	
	6				55.01				72	14.29	Peak	_	175	70
ote 1: Emis														
	r inc	lude	s ante	enna	factor, o	cable lo	ss and	ampli	fier g	gain				

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK





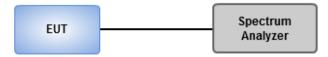


3.6 Emissions in non-restricted Frequency Bands

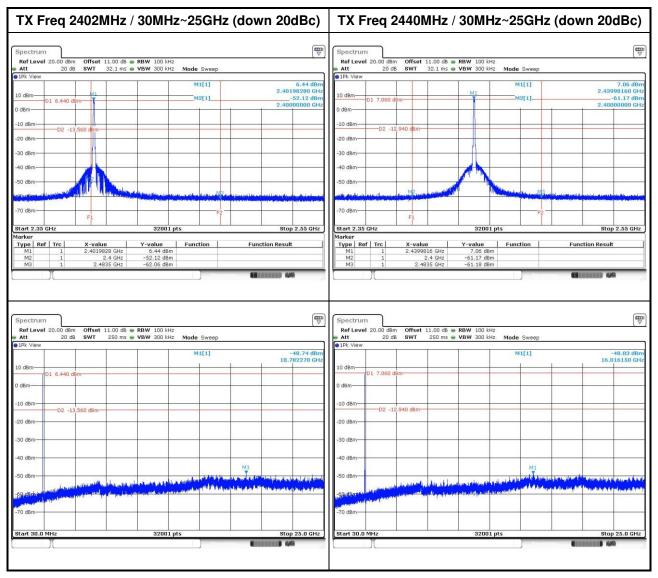
3.6.1 Emissions in non-restricted frequency bands limit

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures


Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.


Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.6.3 Test Setup

3.6.4 Test Result of Emissions in non-restricted Frequency Bands

	MHz / 30MHz				
ectrum					
t 20 dB SWT	at 11.00 dB RBW 100 kHz 32.1 ms VBW 300 kHz				
Pk View		M1[1]	7.23	dBm	
dBmD1 7.230 dBm		M2[1]	2.47997410		
8m-			2.4000000	I GHz	
dBm D2 -12,770 dBn					
dBm					
) dBm					
dBm					
dBm					
And Browned in a boot of the stand of the stand of the	and have been and the second	A CONTRACT OF THE OWNER	Contraction of the second	to bac	
) dBm					
F1		F2			
art 2.35 GHz rker	32001 p		Stop 2.55	GHz	
ype Ref Trc X-va	alue Y-value	Function I	Function Result	1	
M1 1 2.47	99741 GHZ 7.23 dBm				
M2 1	99741 GHz 7.23 dBm 2.4 GHz -62.97 dBm 4835 GHz -40.23 dBm	Massarting	(
M2 1 M3 1 2	2.4 GHz -62.97 dBm 4835 GHz -40.23 dBm at 11.00 dB ● RBW 100 kHz	Messarias	Connecto 8 444		
M2 1 M3 1 2	2.4 GHz -62.97 dBm 4835 GHz -40.23 dBm at 11.00 dB ● RBW 100 kHz	Messarias	(Innenna) 4/4		
M2 1 M3 1 2 Nectrum Ref Lavel 20.00 dBm Offse Wtt 20 dB SWT	2.4 GHz -62.97 dBm 4835 GHz -40.23 dBm at 11.00 dB ● RBW 100 kHz	Messarias	-48.56 16.719190	dBm	
M2 1 M3 1 2 Dectrum 1 2 Kef Level 20.00 dBm Offse Nt 20 dB SWT Pk View 1 1	2.4 GHz -62.97 dBm 4835 GHz -40.23 dBm at 11.00 dB ● RBW 100 kHz	Mode Sweep	-48.56	dBm	
M2 1 M3 1 2 J I 2 Kef Level 20.00 dBm Offset tt 20 dB SWT Pk View dBm Image: Comparison of the set o	2.4 GHz -62.97 dBm 4835 GHz -40.23 dBm at 11.00 dB ● RBW 100 kHz	Mode Sweep	-48.56	dBm	
M2 1 M3 1 2 cectrum 1 2 kef Level 20.00 dBm Offse ttt 20 dB SWT Pk View 01 7.230 dBm dBm 01 7.230 dBm	2.4 GHz -62.97 dBm -4035 GHz -40.23 dBm Ht 11.00 dB ● RBW 100 kHz 250 ms ● VBW 300 kHz	Mode Sweep	-48.56	dBm	
M2 1 M3 1 2 oectrum	2.4 GHz -62.97 dBm -4035 GHz -40.23 dBm Ht 11.00 dB ● RBW 100 kHz 250 ms ● VBW 300 kHz	Mode Sweep	-48.56	dBm	
M2 1 M3 1 2 cectrum 1 2 kef Level 20.00 dBm Offse ttt 20 dB SWT Pk View 01 7.230 dBm dBm 01 7.230 dBm	2.4 GHz -62.97 dBm -4035 GHz -40.23 dBm Ht 11.00 dB ● RBW 100 kHz 250 ms ● VBW 300 kHz	Mode Sweep	-48.56	dBm	
M2 1 M3 1 2 bectrum 1 2 Kef Level 20.00 dBm Offset MB 01 7.230 dBm dBm 01 7.230 dBm dBm 02 -12.770 dBm	2.4 GHz -62.97 dBm -4035 GHz -40.23 dBm Ht 11.00 dB ● RBW 100 kHz 250 ms ● VBW 300 kHz	Mode Sweep	-48.56	dBm	
M2 1 M3 1 2 Dectrum	2.4 GHz -62.97 dBm -4035 GHz -40.23 dBm Ht 11.00 dB ● RBW 100 kHz 250 ms ● VBW 300 kHz	Mode Sweep	-48.56	dBm	
M2 1 M3 1 2 vectrum 0 0 tef Level 20.00 dBm Offset vectrum 20 dB SWT vectrum 0 dBm 0 0 D 0 dBm -12.770 dBm 0 dBm -02 0 dBm -02 0 dBm -12.770 dBm	2.4 GHz -62.97 dBm -4035 GHz -40.23 dBm Ht 11.00 dB ● RBW 100 kHz 250 ms ● VBW 300 kHz	Made Sweep M1[1]	-48.56	dBm Gitz	
M2 1 M3 1 2 ectrum 1 2 ef Level 20.00 dBm Offse ef Level 20.00 dBm 0 gf Level 20.00 dBm 0	2.4 GHz -62.97 dBm .4835 GHz -40.23 dBm .4835 GHz -40.23 dBm .4835 GHz -40.23 dBm	Mode Sweep M1[1] M1[1]	-48.56	dBm GHz	
M2 1 M3 1 2 cottum 20.00 dbm Offset 20.00 dbm ktt 20.48 SWT bdBm 01 7.230 dbm dbm 02 -12,770 dbm	2.4 GH2 -62.97 dBm -40.23 dBm +t 11.00 dB ● RBW 100 kH2 250 ms ● VBW 300 kH2 	Mode Sweep M1[1] M1[1]	-48.56	dBm GHz	
M2 1 M3 1 2 cectrum 20.00 dBm Offse kef Level 20.00 dBm Offse dBm 01 7.230 dBm dBm 02 -12.770 dBm 0 dBm 04 04	2.4 GHz -62.97 dBm .4835 GHz -40.23 dBm .4835 GHz -40.23 dBm .4835 GHz -40.23 dBm	Mode Sweep M1[1] M1[1]	-48.56	dBm GHz	
M2 1 M3 1 2 beectrum	2.4 GHz -62.97 dBm .4835 GHz -40.23 dBm .4835 GHz -40.23 dBm .4835 GHz -40.23 dBm	Mode Sweep M1[1] M1[1] M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	-48.56	dBm Gitz	

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—