FCC Part 15 EMI TEST REPORT

of

E.U.T. : Wireless Broadband RouterMODEL : IP806SMFCC ID. : P27IP806SM

for

- APPLICANT : Sercomm Corp.
- ADDRESS : 3F, No. 81, Yu-Yih Rd., Chu-Nan, Miao-Li 350, Taiwan, R.O.C.

Test Performed by

ELECTRONICS TESTING CENTER, TAIWAN NO. 8 LANE 29, WENMIMG ROAD, LOSHAN TSUN, KWEISHAN HSIANG, TAOYUAN, TAIWAN, R. O. C.

> Tel: (03)3280026#570~576 Fax:(03)3276188

Report Number: ET92S-11-084-01

TEST REPORT CERTIFICATION

Applicant	: Sercomm Corp. 3F, No. 81, Yu-Yih Rd., Chu-Nan, Miao-Li 350, Taiwan, R.O.C.
Manufacturer	: Sercomm Corp. 3F, No. 81, Yu-Yih Rd., Chu-Nan, Miao-Li 350, Taiwan, R.O.C.
Description of EUT	:
a) Type of EUT	: Wireless Broadband Router
b) Trade Name	: Sercomm
c) Model No.	: IP806SM
d) Power Supply	: AC Power : Input 120Vac , 50/60Hz ; Output DC 12Vdc , 800mA

Regulation Applied : FCC Rules and Regulations Part 15 Subpart B & C (2003)

I HEREBY CERTIFY THAT: The data shown in this report were made in accordance with the procedures given in ANSI C63.4, and the energy emitted by the device was founded to be within the limits applicable. I assume full responsibility for accuracy and completeness of these data.

Note: 1. The result of the testing report relate only to the item tested.

2. The testing report shall not be reproduced expect in full, without the written approval of ETC.

Issued Date :

Dec. 03, 2003

Test Engineer :

Andy Kuo

Approve & Authorized Signer :

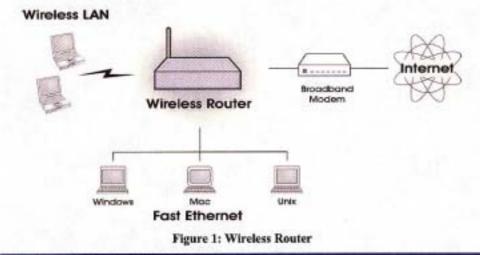
Signature

Tsung-Ching Lin Supervisor of EMC Testing Department Electronics Testing Center, Taiwan

Table of Contents	Page
1 GENERAL INFORMATION	5
 1.1 Product Description 1.2 Characteristics of Device 1.3 Test Methodology 1.4 Test Facility 	5 6
1.4 Test Facility2 PROVISIONS APPLICABLE	
2.1 Definition2.2 Requirement for Compliance	
2.3 Restricted Bands of Operation	
2.4 Labeling Requirement	
2.5 User Information	11
3. SYSTEM TEST CONFIGURATION	
3.1 Justification	
3.2 Devices for Tested System	
4 RADIATED EMISSION MEASUREMENT	
4.1 Applicable Standard	
4.2 Measurement Procedure	
4.3 Measuring Instrument	
4.4 Radiated Emission Data	
4.4.1 RF Portion4.4.2 Other Emission	
4.5 Field Strength Calculation	
4.6 Photos of Radiation Measuring Setup	
5 CONDUCTED EMISSION MEASUREMENT	
5.1 Standard Applicable	
5.2 Measurement Procedure	
5.3 Conducted Emission Data	
5.4 Result Data Calculation	
5.5 Conducted Measurement Equipment5.6 Photos of Conduction Measuring Setup	
6 ANTENNA REQUIREMENT	
-	
6.1 Standard Applicable6.2 Antenna Construction and Directional Gain	
7 EMISSION BANDWIDTH MEASUREMENT	
7.1 Standard Applicable	
7.1 Standard Applicable7.2 Measurement Procedure	
7.3 Measurement Equipment	
7.4 Measurement Data	
	Rev. No 1.0

8 OUTPUT POWER MEASUREMENT	
8.1 Standard Applicable	
8.2 Measurement Procedure	
8.3 Measurement Equipment	
8.4 Measurement Data	
9 100 KHZ BANDWIDTH OF BAND EDGES MEASUREMENT	
9.1 Standard Applicable	34
9.2 Measurement Procedure	34
9.3 Measurement Equipment	34
9.4 Measurement Data	35
10 RADIATED MEASUREMENT AT BANDEDGE WITH FUNDAMENTAL FREQUENCI	ES 36
10.1 Standard Applicable	
10.2 Measurement Procedure	
10.3 Measuring Instrument	37
10.4 Radiated Emission Data	
11 POWER DENSITY MEASUREMENT	42
11.1 Standard Applicable	42
11.2 Measurement Procedure	42
11.3 Measurement Equipment	42
11.4 Measurement Data	43
12 RF Exposure Evaluation	44
12.1 Friis Formula	44
12.2 EUT Operation condition	44
12.3 Test Result of RF Exposure Evaluation	45
APPENDIX 1: PLOTED DATAS OF RADIATED EMISSIONS	47
APPENDIX 2: PLOTED DATAS OF POWER LINE CONDUCTED EMISSIONS	
APPENDIX 3: PLOTED DATAS OF EMISSIONS BANDWIDTH	
APPENDIX 4: PLOTED DATAS OF OUTPUT PEAK POWER	
APPENDIX 5: PLOTED DATAS OF BAND EDGE EMISSION	89
APPENDIX 6: PLOTED DATAS OF POWER DENSITY	100

1 GENERAL INFORMATION


1.1 Product Description

- a) Type of EUT : Wireless Broadband Router
- b) Trade Name : Sercomm
- c) Model No. : IP806SM
- d) Power Supply : AC Power : Input 120Vac , 50/60Hz ; Output DC 12Vdc , 800mA

1.2 Characteristics of Device

Congratulations on the purchase of your new Wireless Router. The Wireless Router is a multifunction device providing the following services:

- Shared Broadband Internet Access for all LAN users.
- 4-Port Switching Hub for 10BaseT or 100BaseT connections.
- Wireless Access Point for 802.11b and 802.11g Wireless Stations.

Wireless Router Features

The Wireless Router incorporates many advanced features, carefully designed to provide sophisticated functions while being easy to use.

Internet Access Features

- Shared Internet Access. All users on the LAN or WLAN can access the Internet through the Wireless Router, using only a single external IP Address. The local (invalid) IP Addresses are hidden from external sources. This process is called NAT (Network Address Translation).
- DSL & Cable Modem Support. The Wireless Router has a 10/100BaseT Ethernet port for connecting a DSL or Cable Modem. All popular DSL and Cable Modems are supported. SingTel RAS and Big Pond (Australia) login support is also included.
- PPPoE, PPTP, SingTel RAS and Telstra Big Pond Support. The Internet (WAN
 port) connection supports PPPoE (PPP over Ethernet), PPTP (Peer-to-Peer Tunneling Protocol), SingTel RAS and Telstra Big Pond (Australia), as well as "Direct Connection" type
 services.
- Fixed or Dynamic IP Address. On the Internet (WAN port) connection, the Wireless Router supports both Dynamic IP Address (IP Address is allocated on connection) and Fixed IP Address.

1.3 Test Methodology

The Wireless Broadband Router with a transmitting method of direct sequence spread spectrum is for local area network operation, which operates at 2.4 GHz ISM band. The Network Standard are following the IEEE 802.11b and IEEE 802.11g. The data rate up to 11 Mbps for IEEE 802.11b and 54Mbps for IEEE 802.11g. The peak output powers are 20.4 dBm (109.6 mW) for IEEE 802.11b and 16.8 dBm (47.9 mW) for IEEE 802.11g.

1.4 Test Facility

The semi-anechoic chamber and conducted measurement facility used to collect the radiated and conducted data are located inside the Building at No.8, Lane 29, Wen-ming Road, Lo-shan Tsun, Kweishan Hsiang, Taoyuan, Taiwan, R.O.C.

This site has been accreditation as a FCC filing site.

2 PROVISIONS APPLICABLE

2.1 Definition

Unintentional radiator:

A device that intentionally generates and radio frequency energy for use within the device, or that sends radio frequency signals by conduction to associated equipment via connecting wiring, but which is not intended to emit RF energy by radiation or induction.

Class A Digital Device:

A digital device which is marketed for use in commercial or business environment; exclusive of a device which is market for use by the general public, or which is intended to be used in the home.

Class B Digital Device :

A digital device which is marketed for use in a residential environment notwithstanding use in a commercial, business of industrial environment. Example of such devices that are marketed for the general public.

Note : A manufacturer may also qualify a device intended to be marketed in a commercial, business, or industrial environment as a Class B digital device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B Digital Device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B Digital Device, Regardless of its intended use.

Intentional radiator:

A device that intentionally generates and emits radio frequency energy by radiation or induction.

2.2 Requirement for Compliance

(1) Conducted Emission Requirement

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:

Frequency MHz	Quasi Peak dB µ V	Average dB µ V			
0.15 - 0.5	66-56*	56-46*			
0.5 - 5.0	56	46			
5.0 - 30.0	60	50			

*Decreases with the logarithm of the frequency.

For intentional device, according to § 15.207(a) Line Conducted Emission Limits is same as above table.

(2) Radiated Emission Requirement

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency MHz	Distance Meters	Radiated dB µ V/m	Radiated µ V/m
30 - 88	3	40.0	100
88 - 216	3	43.5	150
216 - 960	3	46.0	200
above 960	3	54.0	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

(3) Antenna Requirement

For intentional device, according to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

(4) Bandwidth Requirement

For direct sequence system, according to 15.247(a)(2), the minimum 6dB bandwidth shall be at least 500 kHz.

(5) Output Power Requirement

For direct sequence system, according to 15.247(b), the maximum peak output power of the transmitter shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(6) 100 kHz Bandwidth of Frequency Band Edges Requirement

According to 15.247(c), if any 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in § 15.209(a), whichever results in the lesser attenuation.

(7) Power Density Requirement

According to 15.247(d), for direct sequence systems, the transmitted power density averaged over any 1 second interval shall not be greater than 8 dBm in any 3 kHz bandwidth within these bands.

2.3 Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42-16.423	399.9-410	4.5-5.25
0.495 - 0.505 **	16.69475 - 16.69525	608-614	5.35-5.46
2.1735 - 2.1905	16.80425 - 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475 - 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Only spurious emissions are permitted in any of the frequency bands listed below :

** : Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz

2.4 Labeling Requirement

The device shall bear the following statement in a conspicuous location on the device :

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

2.5 User Information

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual.

The Federal Communications Commission Radio Frequency Interference Statement includes the following paragraph.

This equipment has been tested and found to comply with the limits for a Class B Digital Device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- -- Increase the separation between the equipment and receiver.
- -- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -- Consult the dealer or an experienced radio / TV technician for help.

⁻⁻ Reorient or relocate the receiving antenna.

3. SYSTEM TEST CONFIGURATION

3.1 Justification

For both radiated and conducted emissions below 1 GHz, the system was configured for testing in a typical fashion as a customer would normally use it. The peripherals other than EUT were connected in normally standing by situation. Measurement was performed under the condition that a computer program was exercised to simulate data communication of EUT, and the transmission rate was set allowed by EUT.

3.2 Devices for Tested System

Device	Manufacture	Model No.	Cable Description
Wireless Broadband Router*	Sercomm Corp.	IP806SM	N/A
Keyboard	IBM	KB-9910	2.0m, Unshielded Cable
Mouse	IBM	M-SAU-IBM6	1.8m, Unshielded Cable (with a core)
PC	Compaq	D380mx	1.8m, Unshielded Power Cord
LCD	HP	D5063	1.7m, Shielded Cable (with a core)Adapter: (with a core)3.6m, Unshielded Power Cord
RJ45	N/A	N/A	1.0m*4, Unshielded Cable 10m*1, Unshielded Cable

Remark "*" means equipment under test.

4 RADIATED EMISSION MEASUREMENT

4.1 Applicable Standard

For unintentional radiator, the radiated emission shall comply with § 15.109(a).

For intentional radiators, according to § 15.247 (a), operation under this provision is limited to frequency hopping and direct sequence spread spectrum, and the out band emission shall be comply with § 15.247 (c)

4.2 Measurement Procedure

- 1. Setup the configuration per figure 1 and 2 for frequencies measured below and above 1 GHz respectively.
- 2. For emission frequencies measured below 1 GHz, it is performed in a semi-anechoic chamber to determine the accurate frequencies of higher emissions. For emission frequencies measured above 1 GHz, a pre-scan be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.
 - Note : A band pass filter was used to avoid pre-amplifier saturated when measure TX operation mode in frequency band above 1 GHz.
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.
- 7. Check the three frequencies of highest emission with varying the datarate, placement of ANT. cables associated with EUT to obtain the worse case and record the result.

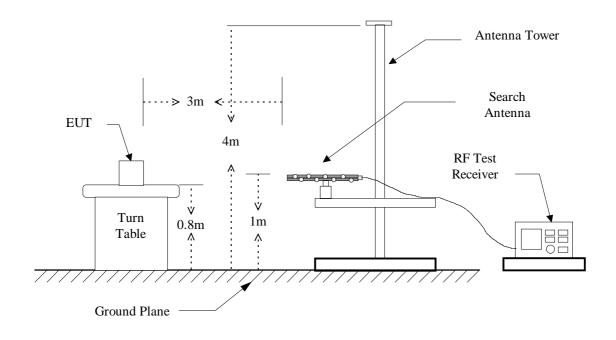
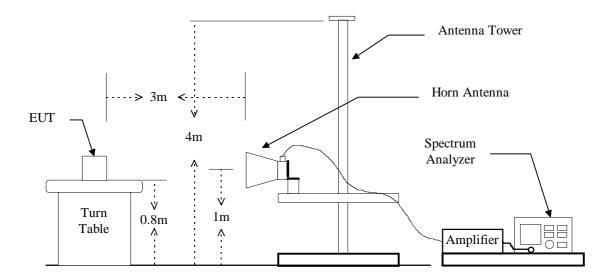



Figure 1 : Frequencies measured below 1 GHz configuration

Figure 2 : Frequencies measured above 1 GHz configuration

4.3 Measuring Instrument

Equipment	Manufacturer	Model No.	Next Cal. Due
EMI Test Receiver	Hewlett-Packard	8546A	01/31/2004
Horn Antenna	EMCO	3115	05/09/2004
LogBicone Antenna	Schwarzbeck	9160	10/18/2004
Horn Antenna	ЕМСО	3116	06/28/2004
Preamplifier	Hewlett-Packard	8449B	09/17/2005
Spectrum Analyzer	Hewlett-Packard	8564EC	09/16/2005

The following instrument are used for radiated emissions measurement :

Measuring instrument setup in measured frequency band when specified detector function is used :

Frequency Band	Instrument	Function	Resolution	Video	
(MHz)			bandwidth	Bandwidth	
	RF Test Receiver	Quasi-Peak	120 kHz	300 kHz	
30 to 1000	Spectrum Analyzer	Peak	120 kHz	300 kHz	
1000	Spectrum Analyzer	Peak	1 MHz	1 MHz	
Above 1000	Spectrum Analyzer	Average	1 MHz	10 Hz	

4.4 Radiated Emission Data

4.4.1 RF Portion

(1) Antenna I, Modulation Standard: IEEE 802.11b
 Operation Mode: Receiving /Transmitting
 Test Date: Nov. 17, 2003
 Temperature: 23

Humidity: 67 %

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency	Reading (dBuV)				Factor	Result	:@3m	Limit	@3m	Margin	Table	Ant.
		Н	V	r	(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4824.000	48.1	33.2	49.2	34.2	-4.4	44.8	29.8	74.0	54.0	-24.2	180	1.0
7236.000	47.7	35.0	47.4	35.0	1.2	48.9	36.2	74.0	54.0	-17.8	180	1.0
12060.000	48.2	34.9	47.8	35.0	2.8	51.0	37.8	74.0	54.0	-16.2	180	1.0
14472.000								74.0	54.0			
19296.000								74.0	54.0			

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency	Reading (dBuV)				Factor	Result	t @3m	Limit	@3m	Margin	Table	Ant.
		Н	V	r	(dB)	dB) (dBuV/m)		(dBuV/m)		(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4874.000	49.0	33.1	51.3	34.2	-4.4	46.9	29.8	74.0	54.0	-24.2	180	1.0
7311.000	47.6	35.0	47.9	35.0	1.2	49.1	36.2	74.0	54.0	-17.8	180	1.0
12185.000	48.5	35.0	48.1	35.0	2.8	51.3	37.8	74.0	54.0	-16.2	180	1.0
19496.000								74.0	54.0			

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency	Reading (dBuV)				Factor	Result	t @3m	Limit	@3m	Margin	Table	Ant.		
		Н	V	r	(dB)	(dBu	V/m)	n) (dBuV/m)		(dBuV/m)		(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)		
4924.000	49.2	33.1	54.0	34.2	-4.4	50.2	29.8	74.0	54.0	-23.8	180	1.0		
7386.000	47.2	34.8	47.8	35.0	1.2	49.0	36.2	74.0	54.0	-17.8	180	1.0		
19696.000								74.0	54.0					
22158.000								74.0	54.0					

Note :

1. Item of margin shown in above table refer to average limit.

2. Remark "---" means that the emissions level is too low to be measured.

(2) Antenna I, Modulation Standard: IEEE 802.11g Operation Mode: Receiving /Transmitting Test Date: Nov. 17, 2003 Temperature: 23

Humidity: 67 %

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency		Reading	(dBuV)		Factor	Result	t @3m	Limit	@3m	Margin	Table	Ant.
		H	V		(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4824.000	48.5	33.1	49.1	34.0	-4.4	44.7	29.6	74.0	54.0	-24.4	180	1.0
7236.000	47.6	35.0	47.4	35.0	1.2	48.8	36.2	74.0	54.0	-17.8	180	1.0
12060.000	48.2	35.0	47.7	35.0	2.8	51.0	37.8	74.0	54.0	-16.2	180	1.0
14472.000								74.0	54.0			
19296.000								74.0	54.0			

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency		Reading	(dBuV)		Factor	Result	@3m	Limit	@3m	Margin	Table	Ant.
		Н	V		(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4874.000	50.2	34.5	51.4	34.9	-4.4	47.0	30.5	74.0	54.0	-23.5	180	1.0
7311.000	47.8	35.0	47.9	35.1	1.2	49.1	36.3	74.0	54.0	-17.7	180	1.0
12185.000	48.6	35.0	48.1	35.0	2.8	51.4	37.8	74.0	54.0	-16.2	180	1.0
19496.000								74.0	54.0			

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency		Reading	(dBuV)		Factor	Result	t @3m	Limit	@3m	Margin	Table	Ant.
		Н	V	r	(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4924.000	48.9	34.0	50.9	34.5	-4.4	49.5	30.1	74.0	54.0	-23.9	180	1.0
7386.000	47.3	35.0	47.8	35.3	1.2	49.9	36.5	74.0	54.0	-17.5	180	1.0
19696.000								74.0	54.0			
22158.000								74.0	54.0			

Note :

1. Item of margin shown in above table refer to average limit.

2. Remark "---" means that the emissions level is too low to be measured.

(3) Antenna II, Modulation Standard: IEEE 802.11b Operation Mode: Receiving /Transmitting

Test Date: Nov. 28, 2003

Temperature: 20

Humidity: 65 %

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency		Reading	(dBuV)		Factor	Result	t @3m	Limit	@3m	Margin	Table	Ant.
		Н	V		(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4824.000	45.3	33.0	45.8	34.1	-4.4	41.4	29.7	74.0	54.0	-24.3	180	1.0
7236.000	47.7	35.1	47.5	35.0	1.2	48.9	36.3	74.0	54.0	-17.7	180	1.0
12060.000	48.3	34.9	47.8	35.1	2.8	51.5	37.9	74.0	54.0	-16.1	180	1.0
14472.000								74.0	54.0			
19296.000								74.0	54.0			

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency		Reading	(dBuV)		Factor	Result	t @3m	Limit	@3m	Margin	Table	Ant.
		Н	V		(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4874.000	46.0	33.1	45.2	34.4	-4.4	41.6	30.0	74.0	54.0	-24.0	180	1.0
7311.000	47.5	35.0	47.8	35.1	1.2	49.0	36.3	74.0	54.0	-17.7	180	1.0
12185.000	48.5	35.0	48.0	35.0	2.8	51.3	37.8	74.0	54.0	-16.2	180	1.0
19496.000								74.0	54.0			

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency		Reading	(dBuV)		Factor	Result	@3m	Limit	@3m	Margin	Table	Ant.
		Н	V	r	(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4924.000	45.2	33.2	46.7	34.3	-4.4	42.3	29.9	74.0	54.0	-24.1	180	1.0
7386.000	47.3	35.0	47.8	35.2	1.2	49.0	36.4	74.0	54.0	-17.6	180	1.0
19696.000								74.0	54.0			
22158.000								74.0	54.0			

Note :

1. Item of margin shown in above table refer to average limit.

2. Remark "---" means that the emissions level is too low to be measured.

(4) Antenna II, Modulation Standard: IEEE 802.11g Operation Mode: Receiving /Transmitting Test Date: Nov. 28, 2003 Temperature: 20

Humidity: 65 %

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency		Reading	(dBuV)		Factor	Result	t @3m	Limit	@3m	Margin	Table	Ant.
	1	Н	V		(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4824.000	45.4	33.0	46.0	34.2	-4.4	41.6	29.8	74.0	54.0	-24.2	180	1.0
7236.000	47.8	35.1	47.6	35.0	1.2	49.0	36.3	74.0	54.0	-17.7	180	1.0
12060.000	48.3	34.9	47.8	35.0	2.8	51.1	37.0	74.0	54.0	-17.0	180	1.0
14472.000								74.0	54.0			
19296.000								74.0	54.0			

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency		Reading	(dBuV)		Factor	Result	@3m	Limit	@3m	Margin	Table	Ant.
]	Н	V		(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4874.000	46.1	33.1	46.2	34.3	-4.4	41.8	29.9	74.0	54.0	-24.1	180	1.0
7311.000	47.4	35.0	47.8	35.0	1.2	49.0	36.2	74.0	54.0	-17.8	180	1.0
12185.000	48.6	35.0	48.3	35.0	2.8	51.4	37.8	74.0	54.0	-16.2	180	1.0
19496.000								74.0	54.0			

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency		Reading	(dBuV)		Factor	Result	t @3m	Limit	@3m	Margin	Table	Ant.
		Н	V	r	(dB)	(dBu	V/m)	(dBu	V/m)	(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4924.000	45.1	33.3	46.8	34.4	-4.4	42.4	30.0	74.0	54.0	-24.0	180	1.0
7386.000	47.2	35.0	47.8	35.1	1.2	49.0	36.3	74.0	54.0	-17.7	180	1.0
19696.000								74.0	54.0			
22158.000								74.0	54.0			

Note :

1. Item of margin shown in above table refer to average limit.

2. Remark "---" means that the emissions level is too low to be measured.

4.4.2 Other Emission

- (1) Antenna I, Modulation Standard: IEEE 802.11b
- a) Emission frequencies below 1 GHz

Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (m)
55.310	V	30.1	7.8	37.9	40.0	-2.1	186	1.1
58.130	Н	28.8	7.5	36.3	40.0	-3.7	180	2.0
126.030	V	23.8	10.6	34.4	43.5	-9.1	179	1.1
162.890	Н	26.3	11.6	37.9	43.5	-5.6	175	2.1
255.040	Н	21.3	15.6	36.9	46.0	-9.1	174	1.9
255.040	V	19.6	15.6	35.2	46.0	-10.8	175	1.0
324.820	Н	20.0	17.5	37.5	46.0	-8.5	12	1.9
324.880	V	16.4	17.5	33.9	46.0	-12.1	10	1.0
484.930	V	15.2	22.3	37.5	46.0	-8.5	170	1.2
487.840	Н	18.6	22.3	40.9	46.0	-5.1	169	2.1
644.970	Н	17.9	26.1	44.0	46.0	-2.0	10	2.4
644.980	V	16.2	26.1	42.3	46.0	-3.7	10	1.2

Test Date: Oct. 30, 2003	Temperature: 25

Humidity: 61 %

b) Emission frequencies above 1 GHz

Radiated emission frequencies above 1 GHz to 25 GHz were too low to be measured.

Note : Please see appendix 1 for Ploted Datas

(2) Antenna I, Modulation Standard: IEEE 802.11g

a) Emission frequencies below 1 GHz

Test Date: Nov. 13, 2003 Ter

Temperature: 22

Humidity: 65 %

Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (m)
55.240	V	30.2#	7.8	38.0#	40.0	-2.0	185	1.0
57.240	Н	28.7#	7.8	36.5#	40.0	-3.5	180	1.9
95.340	Н	24.8#	9.6	34.4#	43.5	-9.1	134	1.5
95.340	V	27.9#	9.6	37.5#	43.5	-6.0	130	1.6
102.630	V	27.1#	9.4	36.5#	43.5	-7.0	180	1.0
161.490	Н	26.9#	11.6	38.5#	43.5	-5.0	177	2.0
161.490	V	23.0#	11.6	34.6#	43.5	-8.9	175	2.0
251.130	Н	29.7	15.6	45.3	46.0	-0.7	185	1.9
251.130	V	26.7#	15.6	42.3#	46.0	-3.7	185	2.0
481.300	Н	18.1#	22.3	40.4#	46.0	-5.6	170	2.1
481.300	V	17.1#	22.3	39.4#	46.0	-6.6	170	2.1
640.900	Н	11.9#	26.1	38.0#	46.0	-8.0	10	2.4
640.900	V	12.9#	26.1	39.0#	46.0	-7.0	54	2.0
799.800	Н	14.3#	27.6	41.9#	46.0	-4.1	54	2.0
799.800	V	12.7#	27.6	40.3#	46.0	-5.7	180	1.0

b) Emission frequencies above 1 GHz

Radiated emission frequencies above 1 GHz to 25 GHz were too low to be measured.

Note : Please see appendix 1 for Ploted Datas

(3) Antenna II, Modulation Standard: IEEE 802.11b

a) Emission frequencies below 1 GHz

	Test Date:	Oct. 28.	2003	Tem
--	------------	----------	------	-----

3 Temperature: 20

Humidity: 65 %

Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (m)
37.830	Н	25.6#	11.1	36.7#	40.0	-3.3	40	1.0
37.830	V	27.7#	11.1	38.8#	40.0	-1.2	50	1.6
95.340	Н	33.4	9.6	43.0	43.5	-0.5	130	1.6
95.340	V	32.6#	9.6	42.2#	43.5	-1.3	130	1.4
134.490	Н	27.8#	10.6	38.4#	43.5	-5.1	180	1.0
134.490	V	32.6	10.6	43.2	43.5	-0.3	183	1.2
196.590	Н	26.1#	12.7	38.8#	43.5	-4.7	188	1.7
196.590	V	30.1	12.7	42.8	43.5	-0.7	190	1.9
250.010	Н	23.0#	15.6	38.6#	46.0	-7.4	185	1.9
250.010	V	20.8#	15.6	36.4#	46.0	-9.6	185	2.0
327.300	Н	26.0	19.0	45.0	46.0	-1.0	66	1.8
327.300	V	26.0#	19.0	45.0#	46.0	-1.0	65	1.9
586.300	Н	17.4#	24.9	42.3#	46.0	-3.7	69	2.0
780.990	V	18.9#	24.9	43.8#	46.0	-2.2	70	2.0
843.900	V	16.4	28.6	45.0	46.0	-1.0	140	1.7

b) Emission frequencies above 1 GHz

Radiated emission frequencies above 1 GHz to 25 GHz were too low to be measured.

Note : Please see appendix 1 for Ploted Datas

Ant. High

(m)

1.6

1.4

65 %

(4) Antenna II, Modulation Standard: IEEE 802.11g

a) Emission frequencies below 1 GHz

Test Date: Oct. 28, 2003			Temp	erature: 20	Humidi	ty: 65 %		
	Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)	Table Degree (Deg.)
	95.340	Н	32.8#	9.6	42.4#	43.5	-1.1	130
	95.340	V	33.3	9.6	42.9	43.5	-0.6	130

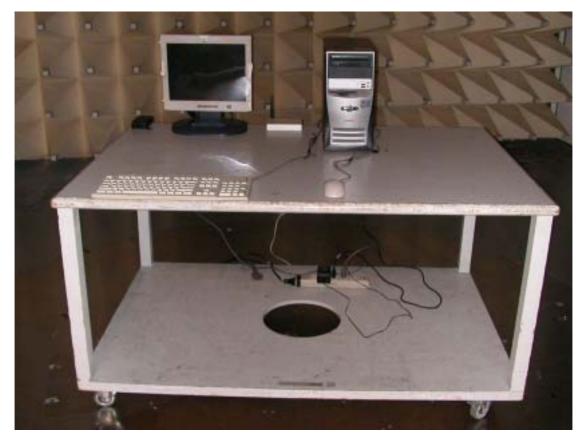
133.680 Η 32.4 10.6 43.0 43.5 -0.5 180 1.0 133.680 V 31.9# 10.6 42.5# 43.5 -1.0 183 1.2 196.590 29.7# 12.7 42.4# 43.5 -1.1 Η 188 1.7 V 196.590 29.6 12.7 42.3 43.5 -1.2 190 1.9 251.940 Η 21.5# 15.6 37.1# 46.0 -8.9 185 1.9 V 251.940 21.5 15.6 37.1 46.0 -8.9 185 2.0 25.2# 19.0 44.2# 46.0 327.300 Η -1.8 66 1.8 V 19.7 -7.3 327.300 19.0 38.7 46.0 65 1.7 586.300 Η 19.0# 24.9 43.9# 46.0 -2.1 69 2.0 V -7.5 586.300 13.6 24.9 38.5 46.0 69 1.9

b) Emission frequencies above 1 GHz

Radiated emission frequencies above 1 GHz to 25 GHz were too low to be measured.

Note : Please see appendix 1 for Ploted Datas

4.5 Field Strength Calculation


The field strength is calculated by adding the Antenna Factor, High Pass Filter Loss(if used) and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

where

Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

4.6 Photos of Radiation Measuring Setup

5 CONDUCTED EMISSION MEASUREMENT

5.1 Standard Applicable

For unintentional and intentional device, Line Conducted Emission Limits are in accordance to § 15.107(a) and § 15.207(a) respectively. Both Limits are identical specification.

5.2 Measurement Procedure

- 1. Setup the configuration per figure 3.
- 2. A preliminary scan with a spectrum monitor is performed to identify the frequency of emission that has the highest amplitude relative to the limit by operating the EUT in selected modes of operation, typical cable positions, and with a typical system configuration.
- 3. Record the 6 highest emissions relative to the limit.
- 4. Measure each frequency obtained from step 3 by a test receiver set on quasi peak detector function, and then record the accuracy frequency and emission level. If all emissions measured in the specified band are attenuated more than 20 dB from the limit, this step would be ignored, and the peak detector function would be used.
- 5. Confirm the highest three emissions with variation of the EUT cable configuration and record the final data.
- 6. Repeat all above procedures on measuring each operation mode of EUT.

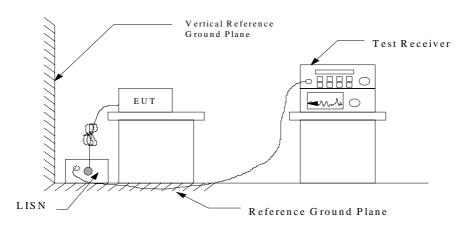


Figure 3 : Conducted emissions measurement configuration

5.3 Conducted Emission Data

Operation Mode: Transmitting / Receiving

Test Date: Nov. 01, 2003						Ten	nperatu	re: 24			Humid	ity: 64 %
Freq.	Meter Reading (dBuV)		Factor	Result(dBuV)			Limit (dBuV)		Margins (dB)			
(MHz)	Q.P	Value	AVG.	Value	(dB)	Q.P	Value	AVG.	Value	Q.P	AVG.	Q.P. or AVG.
	L1	L2	L1	L2		L1	L2	L1	L2	Value	Value	Q.I 01 A VO.
0.150	***	49.1			0.1	***	49.2			66.0	56.0	-16.8
0.154	48.3	***			0.1	48.4	***			65.8	55.8	-17.4
0.228	47.8	***			0.1	47.9	***			62.5	52.5	-14.6
0.235	***	48.1			0.1	***	48.2			62.3	52.3	-14.1
0.372	44.0	***			0.1	44.1	***			58.5	48.5	-14.4
0.396	***	44.4			0.1	***	44.5			57.9	47.9	-13.4
0.493	***	42.7			0.1	***	42.8			56.1	46.1	-13.3
0.568	40.1	***			0.1	40.2	***			56.0	46.0	-15.8
1.683	36.7	***			0.2	36.9	***			56.0	46.0	-19.1
1.988	***	40.3			0.2	***	40.5			56.0	46.0	-15.5
23.129	34.1	34.5			0.5	34.6	35.0			60.0	50.0	-25.0

Note:

- 1. The full frequency range scanning test data is shown in appendix 2 pages.
- 2. "***" means the value was too low to be measured.
- 3. If the data table appeared symbol of "----" means the Q.P. value is under the limit for AVG. so, the AVG. value doesn't need to be measured.
- 4. The estimated measurement uncertainty of the result measurement is \pm 3dB.

Note : Please see appendix 2 for Ploted Datas

5.4 Result Data Calculation

The result data is calculated by adding the LISN Factor to the measured reading. The basic equation with a sample calculation is as follows:

RESULT = READING + LISN FACTOR (Included Cable Loss) Assume a receiver reading of 22.5 dB μ V is obtained, and LISN Factor is 0.1 dB, then the total of disturbance voltage is 22.6 dB μ V.

RESULT = $22.5 + 0.1 = 22.6 \text{ dB } \mu \text{ V}$ Level in $\mu \text{ V} = \text{Common Antilogarithm}[(22.6 \text{ dB } \mu \text{ V})/20]$ = $13.48 \ \mu \text{ V}$

5.5 Conducted Measurement Equipment

The following test equipment are used during the conducted test.

Equipment	Manufacturer	Model No.	Next Cal. Due
RF Test Receiver	Rohde and Schwarz	ESCS30	09/18/2004
Line Impedance Stabilization network	Telemeter	NNB-4/32T	03/27/2004
Line Impedance Stabilization network	Rolf Heine	NNB-2/16Z	04/04/2004

5.6 Photos of Conduction Measuring Setup

6 ANTENNA REQUIREMENT

6.1 Standard Applicable

For intentional device, according to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to § 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.2 Antenna Construction and Directional Gain

Highly efficient dipole antennas fix on the PCB. The directional gain of antenna used for transmitting is Peak less than 3.0dBi and the details antenna construction. Antenna I: type: monopole antnna; antenna gain: +2.0 dBi. Antenna II: type: monopole antnna; antenna gain: +2.0 dBi.

7 EMISSION BANDWIDTH MEASUREMENT

7.1 Standard Applicable

According to 15.247(a)(2), for direct sequence system, the minimum 6dB bandwidth shall be at least 500 kHz.

7.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 4. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Figure 4: Emission bandwidth measurement configuration.

FUT	Spectrum
LUI	Analyzer

7.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due	
Plotter	Hewlett-Packard	7440A	N/A	
Spectrum Analyzer	Hewlett-Packard	8564EC	09/16/2005	

ETC Report No. : ET92S-11-084-01

7.4 Measurement Data

(1) Modulation Standard: IEEE 802.11b

Test Date: <u>Nov. 13, 2003</u>	Temperature: 22	Humidity: <u>65 %</u>
b) Channel 06 : 6 d	B Emission Bandwidth is 9.97 MHz B Emission Bandwidth is 10.00 MHz B Emission Bandwidth is 10.03 MHz	
(2) Modulation Standard:	IEEE 802.11g	
Test Date: <u>Nov. 13, 2003</u>	Temperature: 22	Humidity: <u>65 %</u>
	B Emission Bandwidth is 16.43 MHz	

- b) Channel 06 : 6 dB Emission Bandwidth is 16.53 MHz
- c) Channel 11 : 6 dB Emission Bandwidth is 16.60 MHz

Note: Please see Appendix 3 for ploted datas

8 OUTPUT POWER MEASUREMENT

8.1 Standard Applicable

For direct sequence system, according to 15.247(b), the maximum peak output power of the transmitter shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 5. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 2 MHz and VBW to 3 MHz.
- 4. Measure the highest amplitude appearing on spectral display and record the level to calculate result data.
- 5. Repeat above procedures until all frequencies measured were complete.

Figure 5: Output power and measurement configuration.

8.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due	
Plotter	Hewlett-Packard	7440A	N/A	
Spectrum Analyzer	Hewlett-Packard	8564EC	09/16/2005	

8.4 Measurement Data

Test Dat	te: <u>Nov. 13, 2003</u>	Temperature: 22	Humidity: <u>65 %</u>		
a) b) c)	Channel 06 : Output Peak	Power is 19.6 dBm or 91.2 mW Power is 20.2 dBm or 104.7 mW Power is 20.4 dBm or 109.6 mW			
(2) Modu	lation Standard: IEEE 802.1	1g			
Test Dat	te: <u>Nov. 13, 2003</u>	Temperature: 22	Humidity: 65 %		
 a) Channel 01 : Output Peak Power is 16.4 dBm or 43.7 mW b) Channel 06 : Output Peak Power is 16.8 dBm or 47.8 mW c) Channel 11 : Output Peak Power is 16.8 dBm or 47.9 mW 					

Note: 1. Please see Appendix 4 for ploted datas

9 100 kHz BANDWIDTH OF BAND EDGES MEASUREMENT

9.1 Standard Applicable

According to 15.247(c), if any 100 kHz bandwidth outside these frequency bands, the radio frequency power that is produced by the modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 kHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in § 15.209(a), whichever results in the lesser attenuation.

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 5. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Equipment	Manufacturer	Model No.	Next Cal. Due
Plotter	Hewlett-Packard	7440A	N/A
Spectrum Analyzer	Hewlett-Packard	8564EC	09/16/2005

9.3 Measurement Equipment

ETC Report No. : ET92S-11-084-01

9.4 Measurement Data

(1	Modulation	Standard:	IEEE 802.11b
١	. . ,	modulution	Standara.	ILLL 002.110

Test Date: <u>Nov. 13, 2003</u>	Temperature: 22	Humidity: <u>65 %</u>
---------------------------------	-----------------	-----------------------

a) Lower Band Edge: maximum value is -47.33 dBm that is attenuated more than 20dB

b) Upper Band Edge: maximum value is -48.17 dBm that is attenuated more than 20dB

(2) Modulation Standard: IEEE 802.11b

	Test Date: Nov. 13, 2003	Temperature: 22	Humidity: 65 %
--	--------------------------	-----------------	----------------

a) Lower Band Edge: maximum value is -43.67 dBm that is attenuated more than 20dB

b) Upper Band Edge: maximum value is -50.33 dBm that is attenuated more than 20dB

Note: Please see Appendix 5 for ploted datas

10 RADIATED MEASUREMENT AT BANDEDGE WITH FUNDAMENTAL FREQUENCIES

10.1 Standard Applicable

According to 15.247(c), radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

10.2 Measurement Procedure

- 1. Setup the configuration per figure 2 for 2.39GHz and 2.4835GHz measured.
- 2. Set the spectrum analyzer on 1MHz resolution bandwidth for each frequency measured.
- 3. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position th highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.
- 4. Repeat step 3 until all frequencies need to be measured were complete.
- 5. Repeat step 4 with search antenna in vertical polarized orientations.
- 6. Measurement applied to channel 1, 6, 11, recorded the result.

10.3 Measuring Instrument

Equipment	Manufacturer	Model No.	Next Cal. Due
EMI Test Receiver	Hewlett-Packard	8546A	01/31/2004
Horn Antenna	EMCO	3115	05/09/2004
LogBicone Antenna	Schwarzbeck	9160	10/18/2004
Horn Antenna	EMCO	3116	06/28/2004
Preamplifier	Hewlett-Packard	8449B	09/17/2005
Spectrum Analyzer	Hewlett-Packard	8564EC	09/16/2005

The following instrument are used for radiated emissions measurement:

Measuring instrument setup in measured frequency band when specified detector function is used:

Frequency Band	Instrument	Function	Resolution	Video
(MHz)			bandwidth	Bandwidth
	Spectrum Analyzer	Peak	1 MHz	1 MHz
2390 & 2483.5	Spectrum Analyzer	Average	1 MHz	10 Hz

10.4 Radiated Emission Data

(1) Antenna I, Modulation Standard: IEEE 802.11b

Test Date: Nov. 17, 2003 Temperature: 23 Humidity: 67 %

a) Channel 1

Operation Mode: Receiving /Transmitting

Fundamental Frequency: 2412 MHz

Frequency (MHz)	-	Reading (dBuV) H V Peak Ave Peak Ave			Factor (dB) Corr.		t @3m V/m) Ave		@3m V/m) Ave.	Margin (dB)	Table Deg. (Deg.)	Ant. High (m)
2390.000	27.5	15.2	29.7	20.1	28.3	58.0	48.4	74.0	54.0	-5.6	180	1.0
2483.500	28.7	15.3	30.3	19.2	28.3	58.6	47.5	74.0	54.0	-6.5	180	1.0

b) Channel 6

Operation Mode: Receiving / Transmitting

Fundamental Frequency: 2437 MHz

Frequency		Reading	g (dBuV)		Factor		t @3m		@3m	Margin (dB)	Table	Ant.
	ŀ	ł	V Poak Ave		(dB)	``	(dBuV/m) Peak Ave		(dBuV/m) Peak Ave.		Deg. (Deg.)	High
(MHz)	Peak	Ave	Peak	Ave	Corr.						(= -9.)	(m)
2390.000	28.1	15.0	29.6	20.2	28.3	57.9	48.5	74.0	54.0	-5.5	180	1.0
2483.500	28.6	15.3	30.4	17.0	28.3	58.7	45.3	74.0	54.0	-8.7	180	1.0

c) Channel 11

Operation Mode: Receiving / Transmitting

Frequency		Reading	g (dBuV)		Factor		t @3m		@3m	Margin	Table	Ant.
	ŀ	ł	V Book Avo		(dB)	``	(dBuV/m) Peak Ave		V/m) Ave.	(dB)	Deg. (Deg.)	High
(MHz)	Peak	Ave	Peak	Ave	Corr.			Peak			((m)
2390.000	28.8	15.5	29.5	20.6	28.3	57.8	48.9	74.0	54.0	-5.1	180	1.0
2483.500	29.0	15.8	30.2	17.7	28.3	58.5	46.0	74.0	54.0	-8.0	180	1.0

(2) Antenna I, Modulation Standard: IEEE 802.11g

Test Date: Nov. 14, 2003

Temperature: 22

Humidity: 65 %

a) Channel 1

Operation Mode: Receiving /Transmitting

Fundamental Frequency: 2412 MHz

Frequency (MHz)	H Peak	Reading H Ave					t @3m V/m) Ave	Limit (dBu Peak	@3m V/m) Ave.	Margin (dB)	Table Deg. (Deg.)	Ant. High (m)
2375.730	28.0	15.2	29.8	21.2	28.3	58.1	49.3	74.0	54.0	-4.7	180	1.0
2485.950	28.3	15.8	39.3	19.7	28.3	67.6	48.0	74.0	54.0	-6.0	180	1.0

b) Channel 6

Operation Mode: Receiving / Transmitting

Fundamental Frequency: 2437 MHz

Frequency		Reading	g (dBuV)		Factor		t @3m		@3m	Margin	Table	Ant.
	ŀ	4	V Poak Avo		(dB)	(dBu Peak	V/m) Ave	(dBu Peak	V/m) Ave.	(dB)	Deg. (Deg.)	High
(MHz)	Peak	Ave	Peak	Ave	Corr.						ν σ,	(m)
2389.300	27.0	15.0	27.3	20.5	28.3	55.6	48.8	74.0	54.0	-5.2	180	1.0
2489.140	28.0	15.8	30.5	17.2	28.3	58.8	45.3	74.0	54.0	-8.7	180	1.0

c) Channel 11

Operation Mode: Receiving / Transmitting

Frequency	ŀ	Reading I	∫ (dBuV) ∖	/	Factor (dB)		t @3m V/m) Ave	Limit (dBu Peak	@3m V/m) Ave.	Margin (dB)	Table Deg. (Deg.)	Ant. High
(MHz)	Peak	Ave	Peak	Ave	Corr.							(m)
2389.500	27.5	15.5	29.7	20.7	28.3	58.0	49.0	74.0	54.0	-5.0	180	1.0
2488.200	28.8	15.8	30.3	17.9	28.3	58.6	45.8	74.0	54.0	-8.2	180	1.0

(3) Antenna II, Modulation Standard: IEEE 802.11b

Test Date: Nov. 28, 2003 T

Temperature: 20

Humidity: 65 %

a) Channel 1

Operation Mode: Receiving /Transmitting

Fundamental Frequency: 2412 MHz

Frequency (MHz)	H Peak	Reading (dBuV) H V Ave Peak Ave 15.5 27.3 15.8			Factor (dB) Corr.		t @3m V/m) Ave	Limit (dBu Peak	@3m V/m) Ave.	Margin (dB)	Table Deg. (Deg.)	Ant. High (m)
2390.000	28.0	15.5	27.3	15.8	28.3	56.3	44.1	74.0	54.0	-9.9	180	1.0
2483.500	28.6	16.4	29.2	17.0	28.3	57.5	45.3	74.0	54.0	-8.7	180	1.0

b) Channel 6

Operation Mode: Receiving / Transmitting

Fundamental Frequency: 2437 MHz

Frequency		Reading	(dBuV)		Factor		@3m		@3m	Margin	Table	Ant.
	ŀ	ł	V Rock Avo		(dB)	(dBu Peak	V/m) Ave	(dBu Peak	V/m) Ave.	(dB)	Deg. (Deg.)	High
(MHz)	Peak	Ave	Peak	Ave	Corr.						、 Ο /	(m)
2390.000	27.6	15.4	27.4	15.5	28.3	55.9	43.8	74.0	54.0	-10.2	180	1.0
2483.500	28.7	16.2	29.6	17.4	28.3	57.9	45.7	74.0	54.0	-8.3	180	1.0

c) Channel 11

Operation Mode: Receiving / Transmitting

Frequency	ŀ	Reading I	ן (dBuV) ∖	/	Factor (dB)		t @3m V/m) Ave	Limit (dBu Peak	@3m V/m) Ave.	Margin (dB)	Table Deg. (Deg.)	Ant. High
(MHz)	Peak	Ave	Peak	Ave	Corr.							(m)
2390.000	27.5	15.3	27.5	15.5	28.3	55.8	43.8	74.0	54.0	-10.2	180	1.0
2483.500	28.5	16.2	29.5	17.3	28.3	57.8	45.6	74.0	54.0	-8.4	180	1.0

(4) Antenna II, Modulation Standard: IEEE 802.11g

Test Date: Nov. 28, 2003 Test

Temperature: 20

Humidity: 65 %

a) Channel 1

Operation Mode: Receiving /Transmitting

Fundamental Frequency: 2412 MHz

Frequency (MHz)	H Peak	Reading H Ave	(dBuV) \ Peak	/ Ave	Factor (dB) Corr.		t @3m V/m) Ave		@3m V/m) Ave.	Margin (dB)	Table Deg. (Deg.)	Ant. High (m)
2390.0	28.1	15.6	27.4	15.8	28.3	56.4	44.1	74.0	54.0	-9.9	180	1.0
2483.5	28.5	16.4	29.3	17.2	28.3	57.6	45.5	74.0	54.0	-8.5	180	1.0

b) Channel 6

Operation Mode: Receiving / Transmitting

Fundamental Frequency: 2437 MHz

Frequency		Reading	(dBuV)		Factor		t @3m		@3m	Margin	Table	Ant.
	H	4	١	/	(dB)	(dBu Peak	V/m) Ave	(dBu Peak	V/m) Ave.	(dB)	Deg. (Deg.)	High
(MHz)	Peak	Ave	Peak	Ave	Corr.						ν σ,	(m)
2390.0	27.4	15.4	27.1	15.4	28.3	55.7	43.7	74.0	54.0	-10.3	180	1.0
2483.5	28.5	16.3	29.6	17.5	28.3	57.9	45.8	74.0	54.0	-8.2	180	1.0

c) Channel 11

Operation Mode: Receiving / Transmitting

Frequency		Reading	(dBuV)	1	Factor		: @3m V/m)	Limit (dBu	@3m V/m)	Margin (dB)	Table Deg.	Ant.
(MHz)	Peak	Ave	Peak	Ave	(dB) Corr.	Peak	Ave	Peak	Ave.		(Deg.)	High (m)
2390.0	27.7	15.4	27.8	15.5	28.3	56.1	43.8	74.0	54.0	-10.2	180	1.0
2483.5	28.8	16.3	30.0	17.2	28.3	58.3	45.5	74.0	54.0	-8.5	180	1.0

11 POWER DENSITY MEASUREMENT

11.1 Standard Applicable

According to 15.247(d), for direct sequence systems, the transmitted power density averaged over any 1 second interval shall not be greater than 8 dBm in any 3 kHz bandwidth within these bands.

11.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 5. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set EUT to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of spectrum analyzer on highest level appearing on spectral display within a 300 kHz frequency span.
- 4. Set the spectrum analyzer on a 3 kHz resolution bandwidth and 10 kHz video bandwidth as well as max. hold function, then record the measurement result.
- 5. Repeat above procedures until all measured frequencies were complete.

Equipment	Manufacturer	Model No.	Next Cal. Due
Plotter	Hewlett-Packard	7440A	N/A
Spectrum Analyzer	Hewlett-Packard	8564EC	09/16/2005

11.3 Measurement Equipment

11.4 Measurement Data

(1) Modulation Standard: IEEE 802.11b

Test Date: Nov. 17, 2003 Temperature: 23 Humidity: 67 %

- a) Channel 01 : Maximun Power Density of 3 kHz Bandwidth is -9.67 dBm
- b) Channel 06 : Maximun Power Density of 3 kHz Bandwidth is -8.83 dBm
- c) Channel 11 : Maximun Power Density of 3 kHz Bandwidth is -9.00 dBm

(2) Modulation Standard: IEEE 802.11g

Test Date: Nov. 14, 2003	Temperature: 22	Humidity: 65 %
--------------------------	-----------------	----------------

- a) Channel 01 : Maximun Power Density of 3 kHz Bandwidth is -24.05 dBm
- b) Channel 06 : Maximun Power Density of 3 kHz Bandwidth is -23.33 dBm
- c) Channel 11 : Maximun Power Density of 3 kHz Bandwidth is -23.50 dBm

Note: Please see Appendix 6 for ploted datas

12 RF Exposure Evaluation

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency radiation as specified in 1.1307(b) LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (nW/cm ²)	Average Time (Minutes)
(A) Limits for Occup	ational/control Expos	ures		
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for Genera	al Population/Uncontr	olled Exposures		
300-1500			F/300	6
1500-100,000			1	30

F=Frequency in MHz

12.1 Friis Formula

Friis transmission formula: $Pd=(Pout*G)/(4*pi*r^2)$

Where

Pd=power density in mW/cm²

Pout=output power to antenna in mW

G=gain of antenna in linear scale

Pi=3.1416

R=distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1 mW/cm^2 . If we know the maximum gain of the antenna and the total power input to the antenn, through the calculation, we will know the distance where the MPE limit is reached.

12.2 EUT Operation condition

A software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

12.3 Test Result of RF Exposure Evaluation

Product: Wireless Broadband Router Test Item: RF Exposure Evaluation Data Test site: No. 2 chamber Test Mode: Normal Operation

12.3.1 Antenna Gain

Antenna I Gain: The maximum Gain is 2.0dBi. Antenna II Gain: The maximum Gain is 2.0dBi.

12.3.2 Output Power Into Antenna & RF Exposure Evaluation Distance

Test Da	te : <u>Nov. 17, 2003</u>	Temperature : <u>23</u>	Humidity: <u>67 %</u>
Channel	Channel Frequency (MHz)	Output Power to Antenna (dBm)	Minimum allowable Distance ®From Skin (cm)
01	2412	19.6	3.81
06	2437	20.2	4.08
11	2462	20.4	4.18

(1) Antenna I, Modulation Standard: IEEE 802.11b

(2) Antenna I, Modulation Standard: IEEE 802.11g

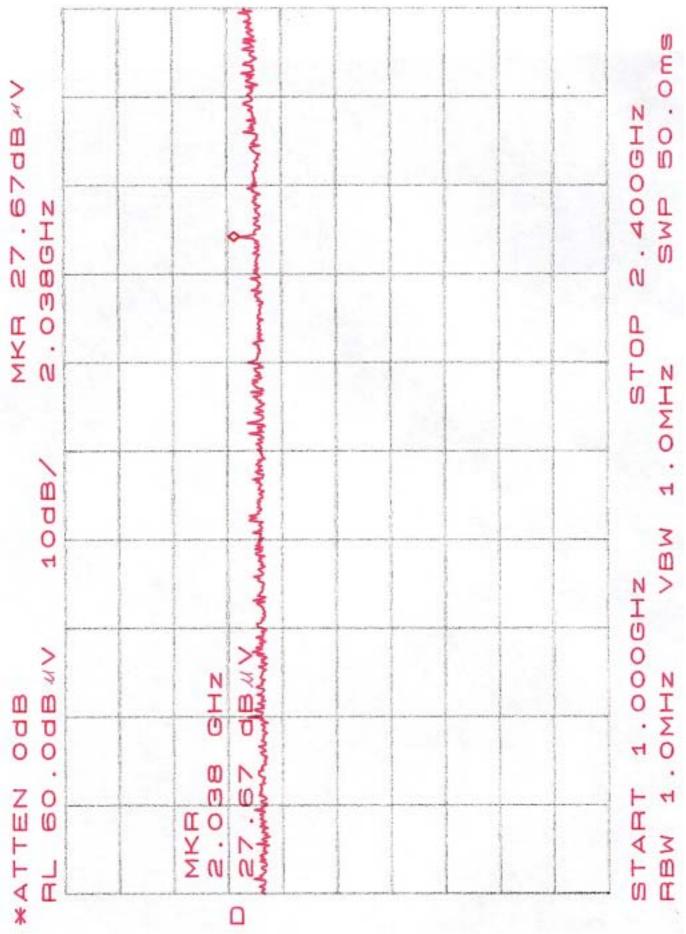
Test Date : Nov. 17, 2003 Temperature : 23 Humidity: 67 % **Channel Frequency** Output Power to Antenna Minimum allowable Distance Channel (MHz) (dBm) [®]From Skin (cm) 2.64 01 2412 16.4 2437 16.8 2.76 06 11 2462 16.8 2.76

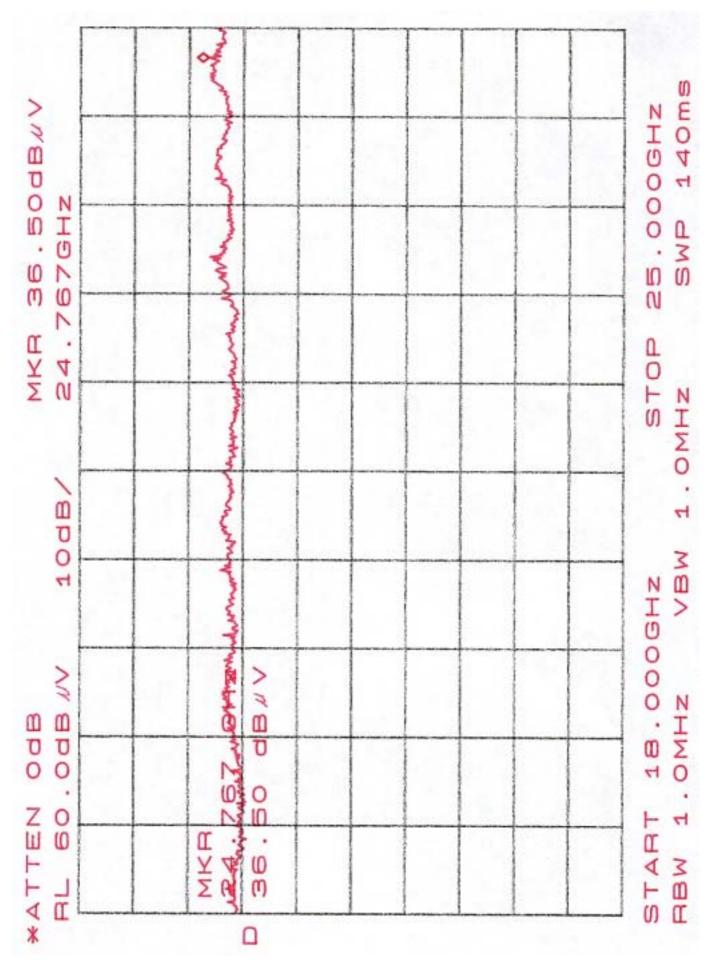
The distance r (4th column) calculated from the Friis transmission formula is far shorter than 20 cm separation requirement. So, RF exposure limit warning or SAR test are not required.

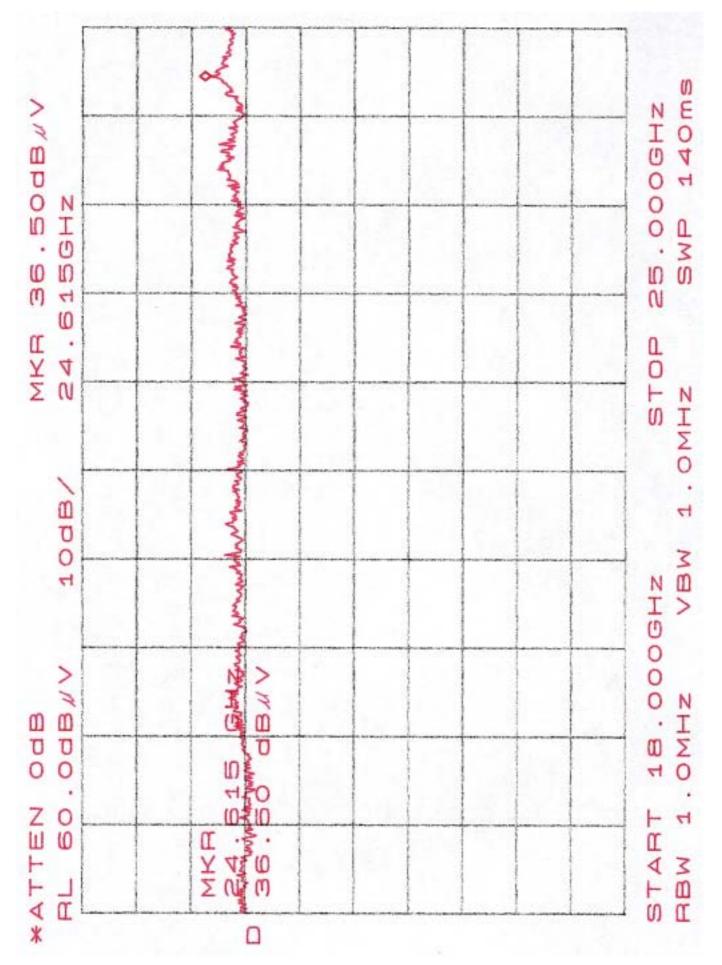
(3) Antenna II, Modulation Standard: IEEE 802.11b

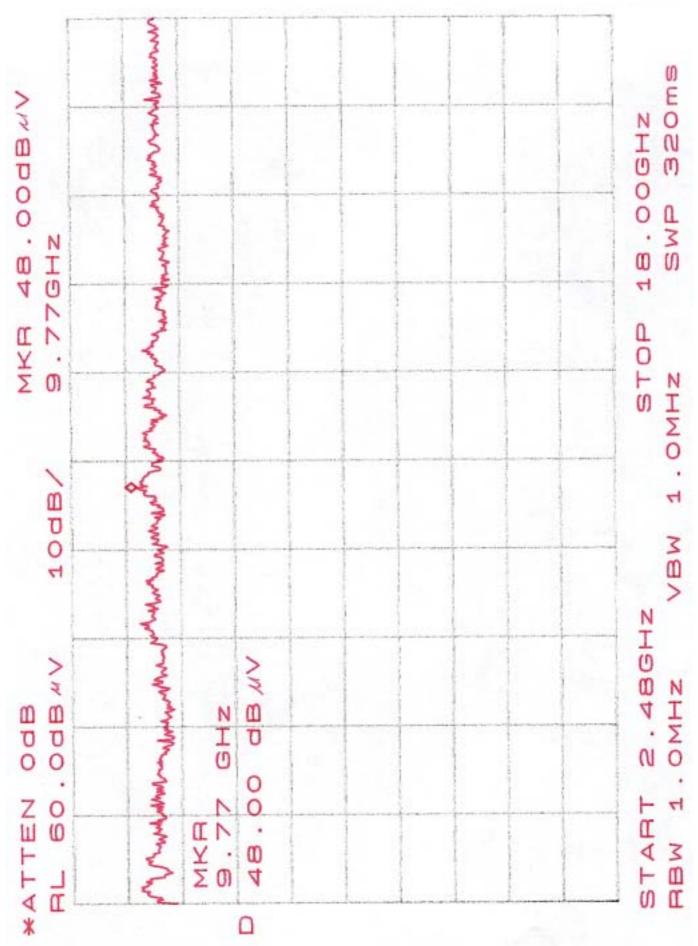
Test Da	ate : <u>Nov. 28, 2003</u>	Temperature : <u>20</u>	Humidity: <u>65 %</u>
Channel	Channel Frequency (MHz)	Output Power to Antenna (dBm)	Minimum allowable Distance ®From Skin (cm)
01	2412	19.6	3.81
06	2437	20.2	4.08
11	2462	20.4	4.18

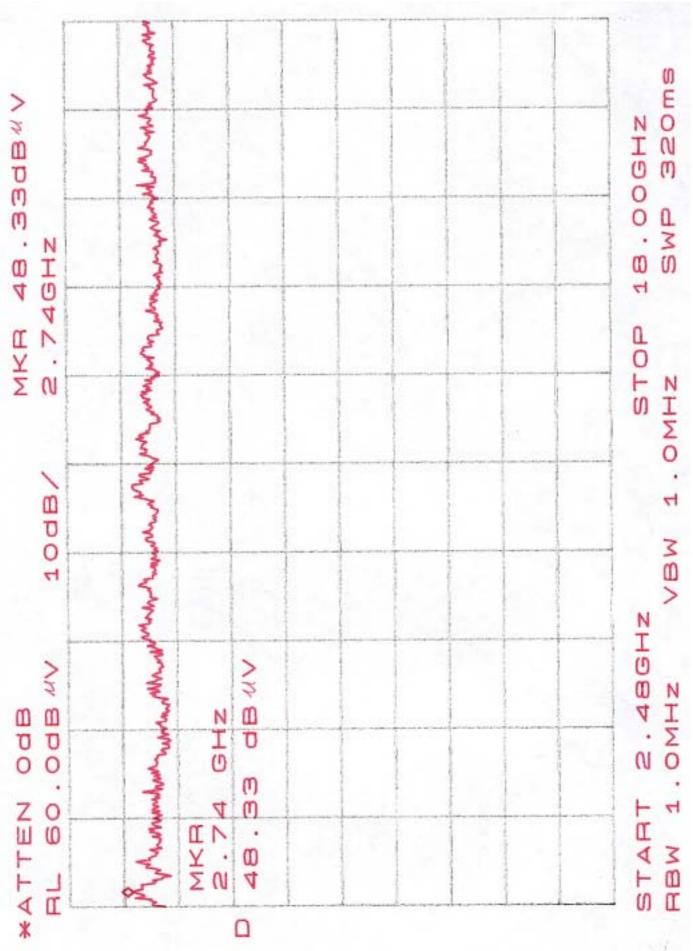
(4) Antenna II, Modulation Standard: IEEE 802.11g

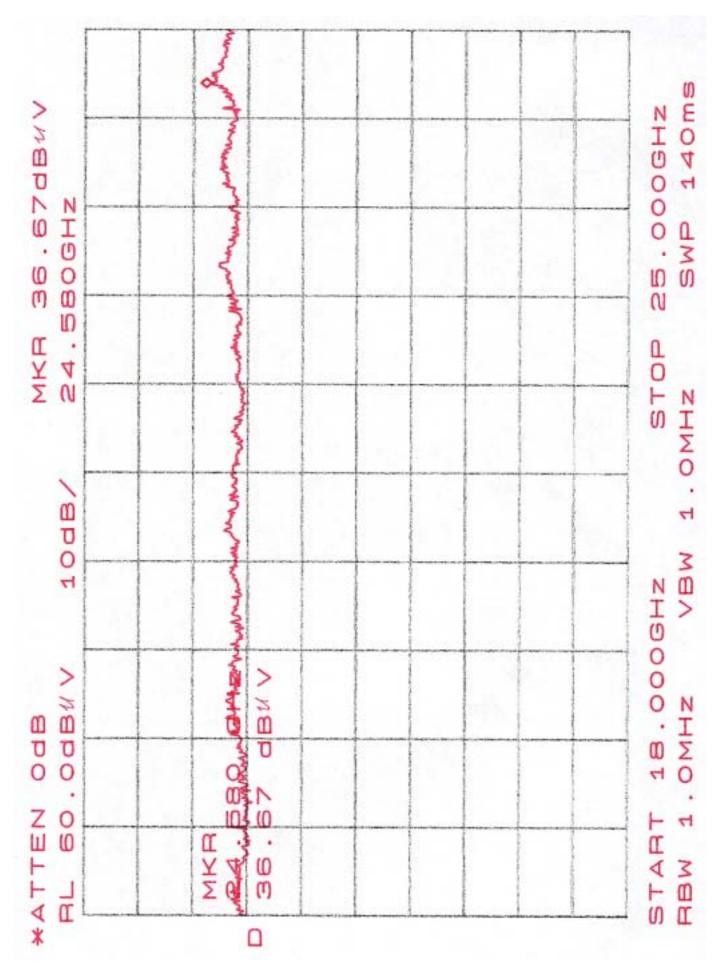

Test Da	te : <u>Nov. 28, 2003</u>	Temperature : <u>20</u>	Humidity: <u>65 %</u>
Channel	Channel Frequency (MHz)	Output Power to Antenna (dBm)	Minimum allowable Distance ®From Skin (cm)
01	2412	16.4	2.64
06	2437	16.8	2.76
11	2462	16.8	2.76

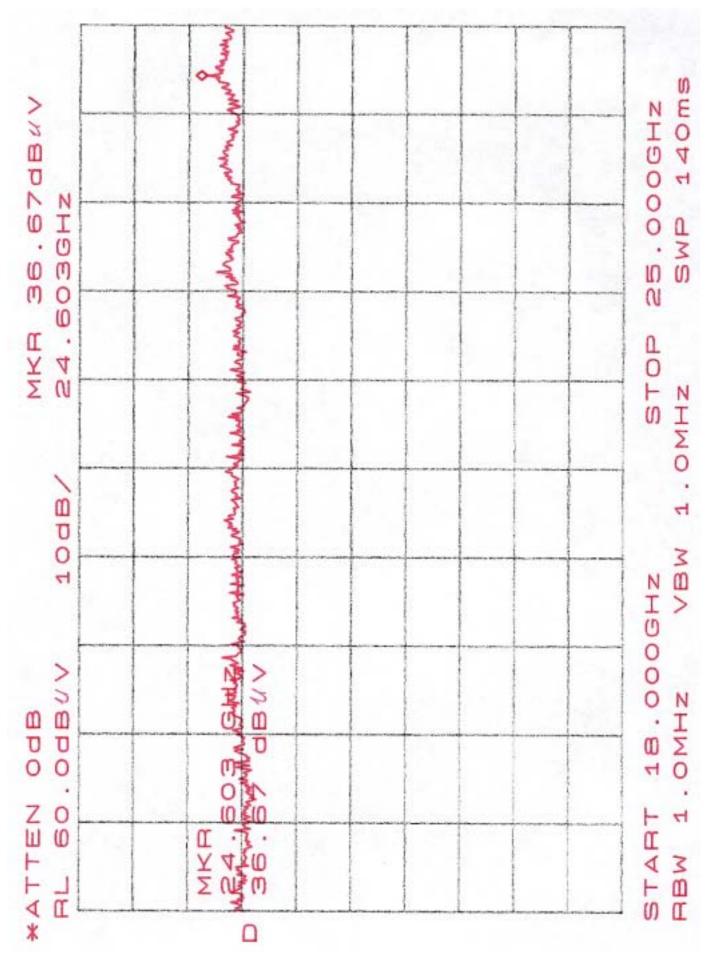

The distance r (4th column) calculated from the Friis transmission formula is far shorter than 20 cm separation requirement. So, RF exposure limit warning or SAR test are not required.

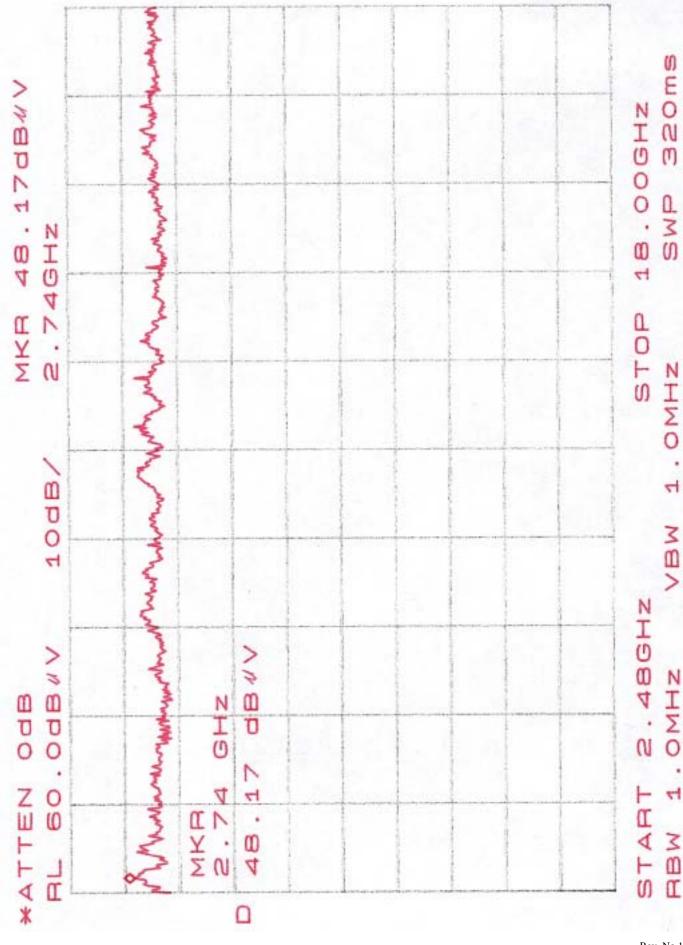

ETC Report No. : ET92S-11-084-01


Appendix 1: Ploted Datas of Radiated Emissions

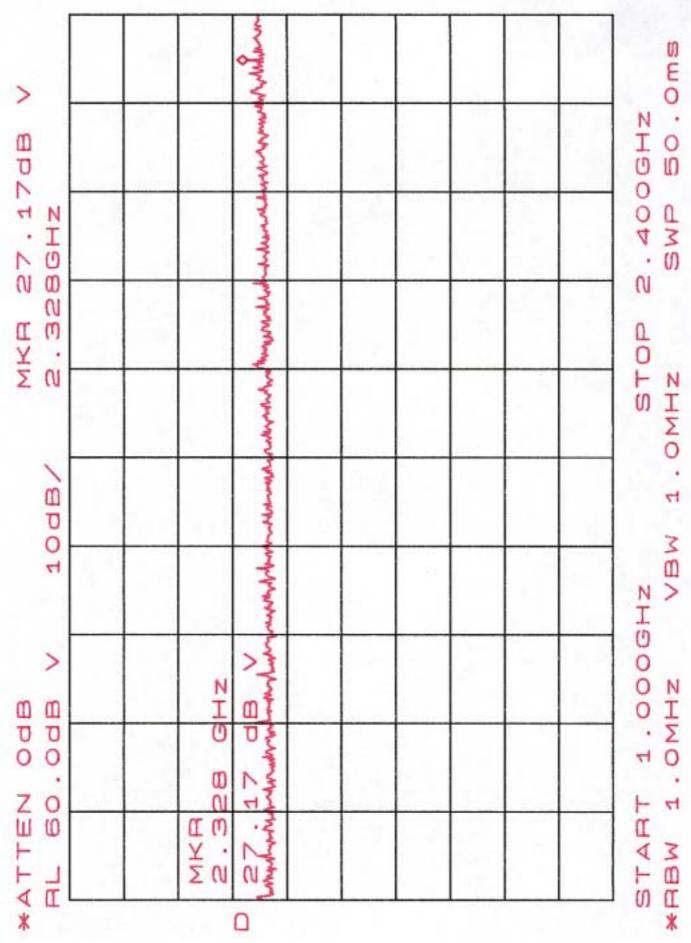

>	multim	
		400GH X
N H U		
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		N L O
N		S H
18PO		
4 0		N
B #/ <		U0000.
		. 0 0
•		
	E M NY X N N X N	S T A R
z o		

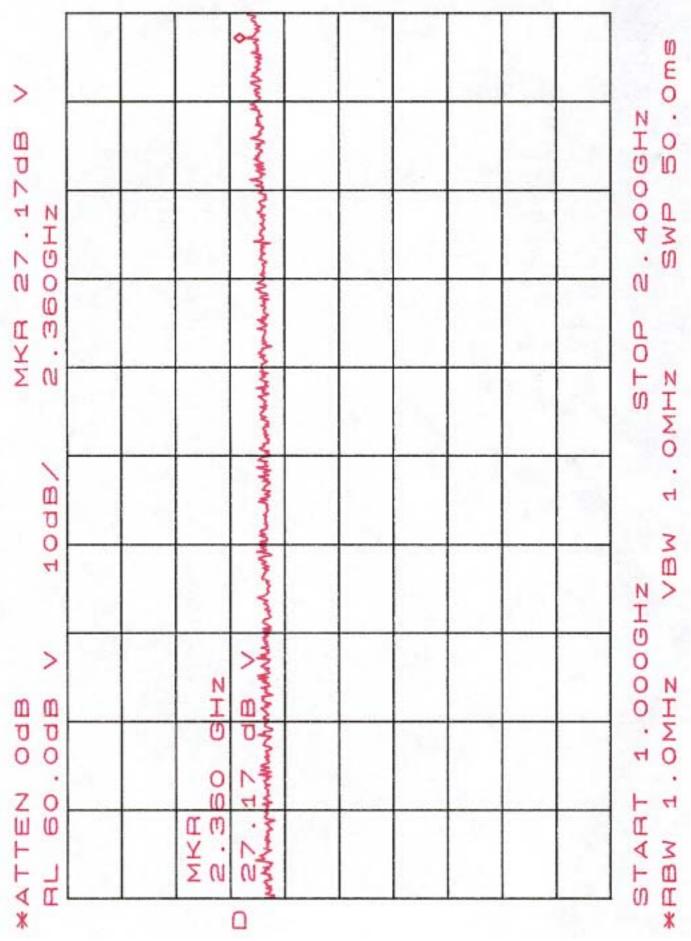


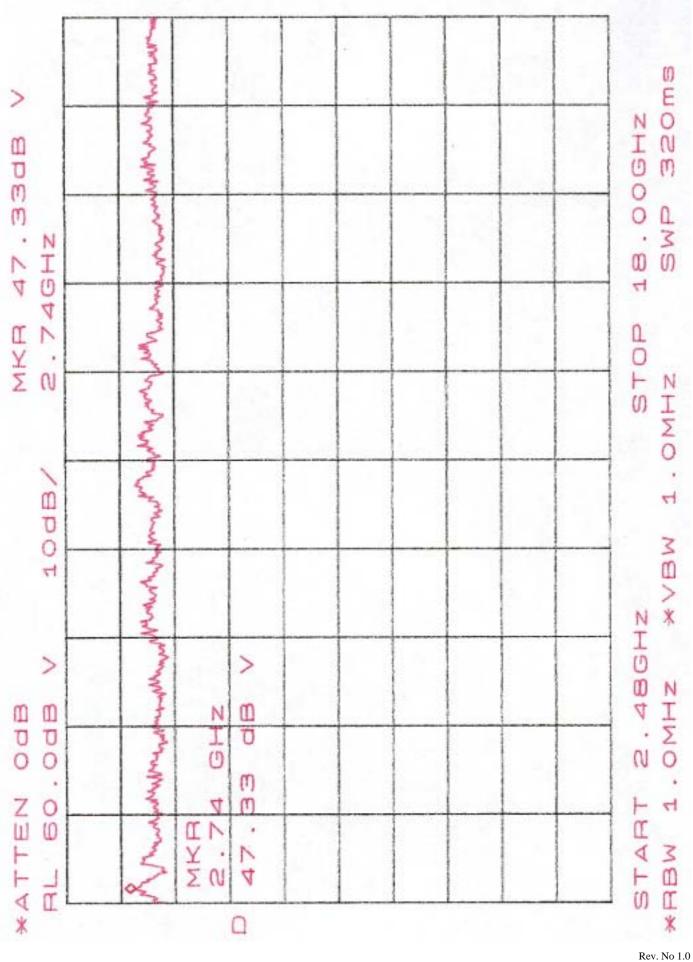



Sheet 53 of 106 Sheets FCC ID. : P27IP806SM

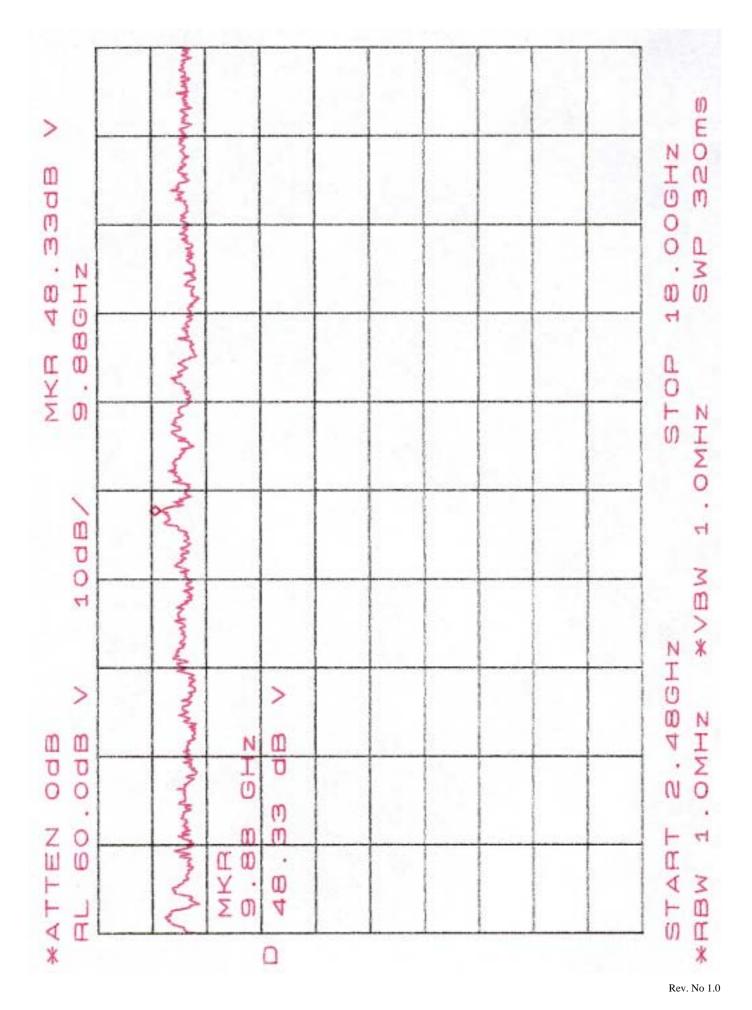
	1					-	-
	N						
All the of the o	V/V E	And when the second	Nerman	-	whenteren	-	annual and
						1	

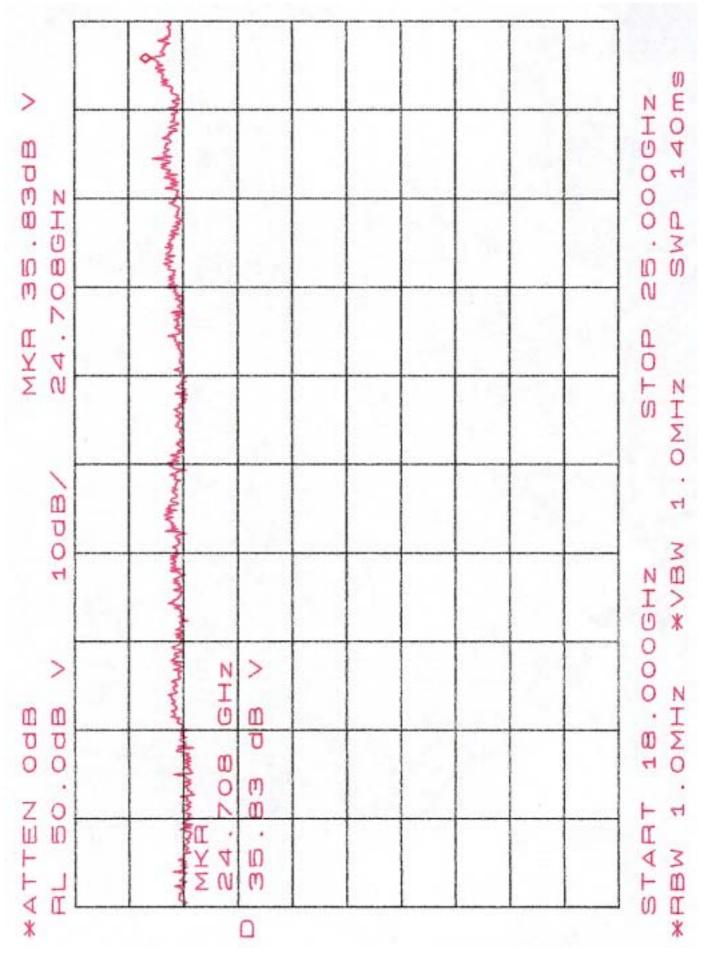

100B 2.038GHX 2.038GHX		all requires a superior many and many and many and			
N∥ B N N	O	Amprover American		_	
RL 60	m D D				

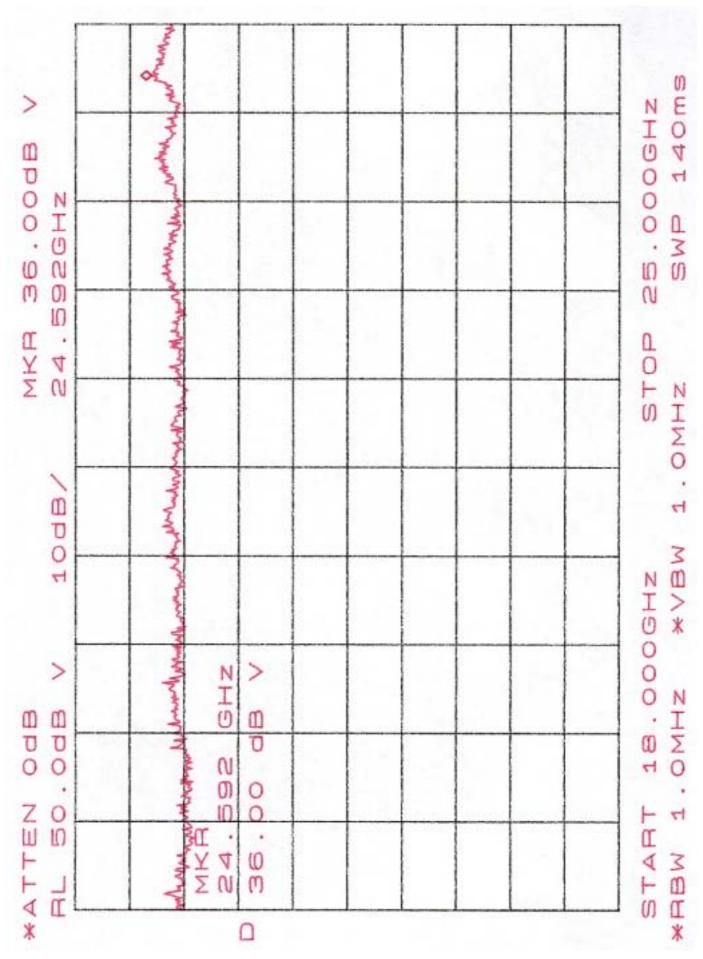


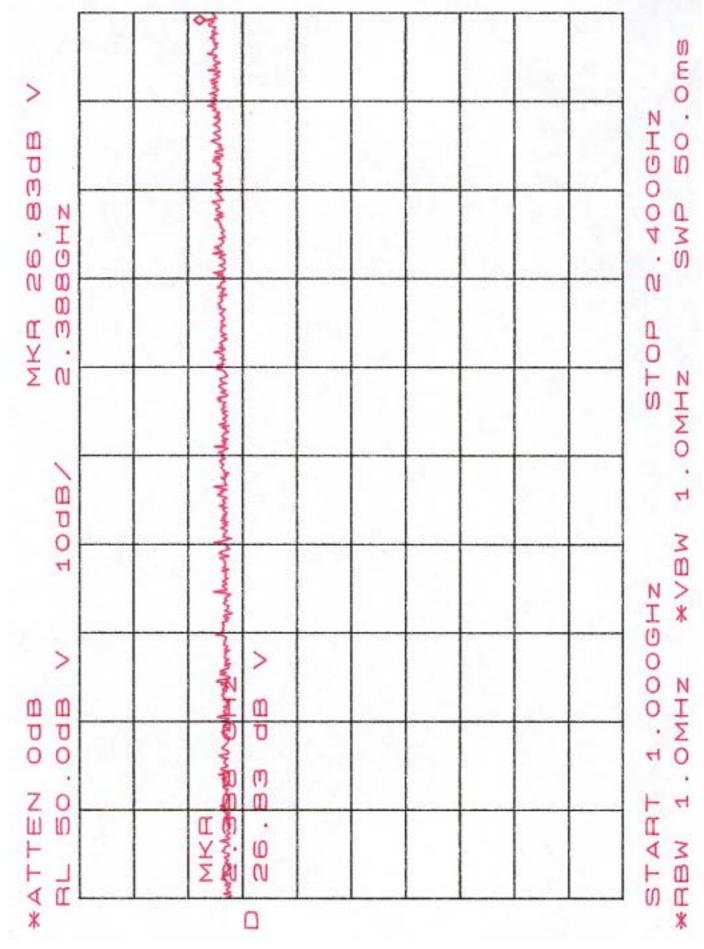


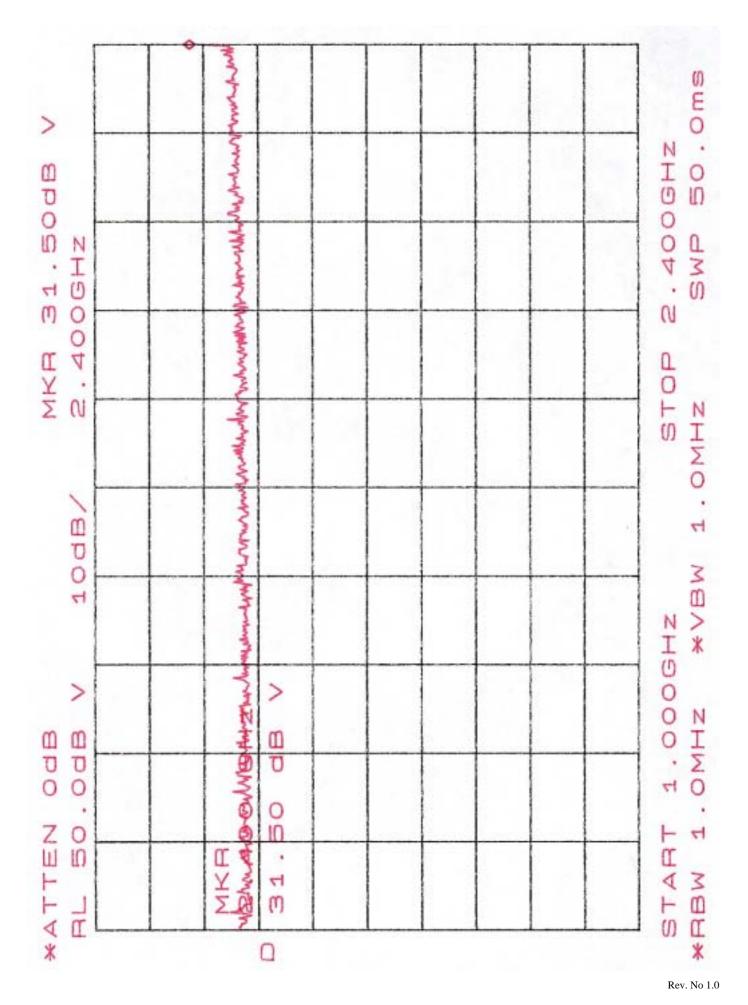
Ŧ				
and the second				N H U O O O
and the second second				0.0
the manual				
- Rower				0 I
montened				N I
and the second	N H U	d B // V		2.48GHz
Winner		4 0 0		START
	William manufacture and manufacture and	WINNING BILLS		

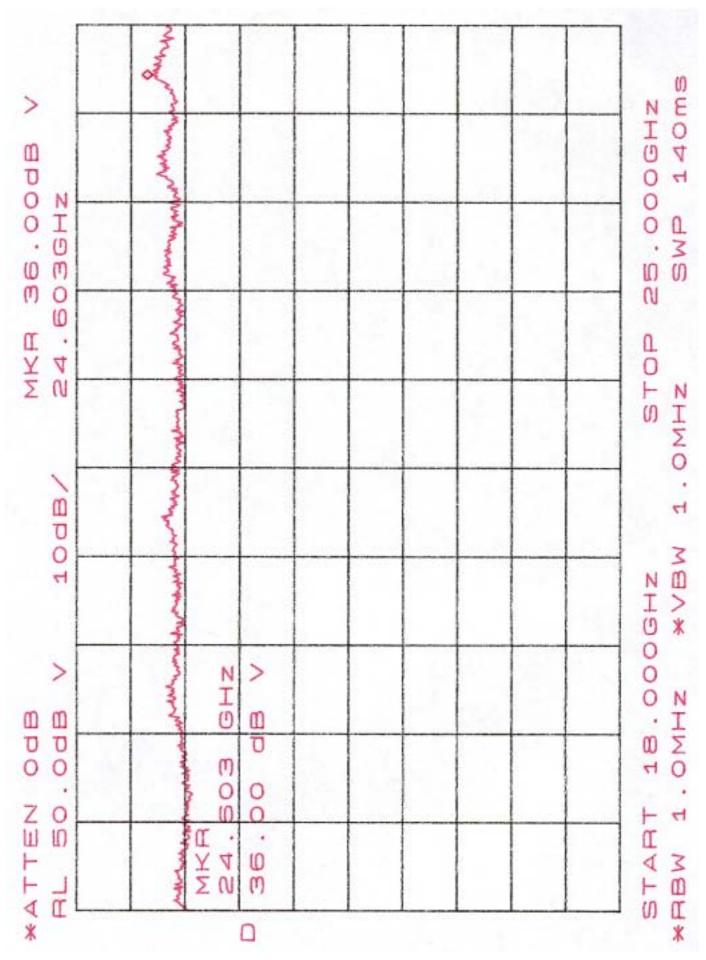


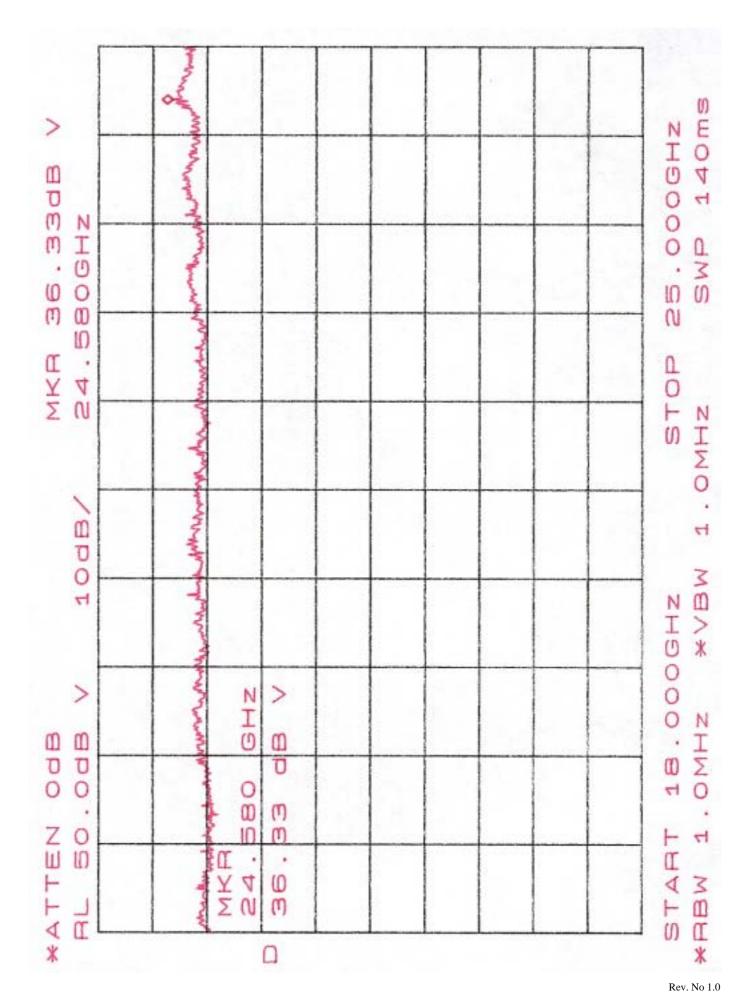

Sheet 60 of 106 Sheets FCC ID. : P27IP806SM

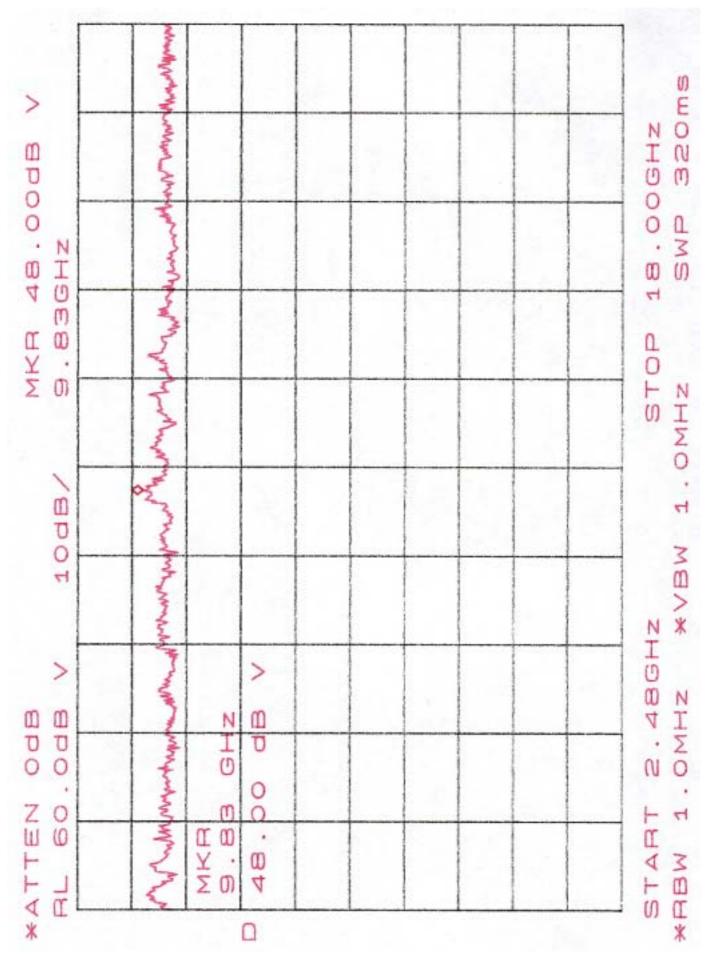


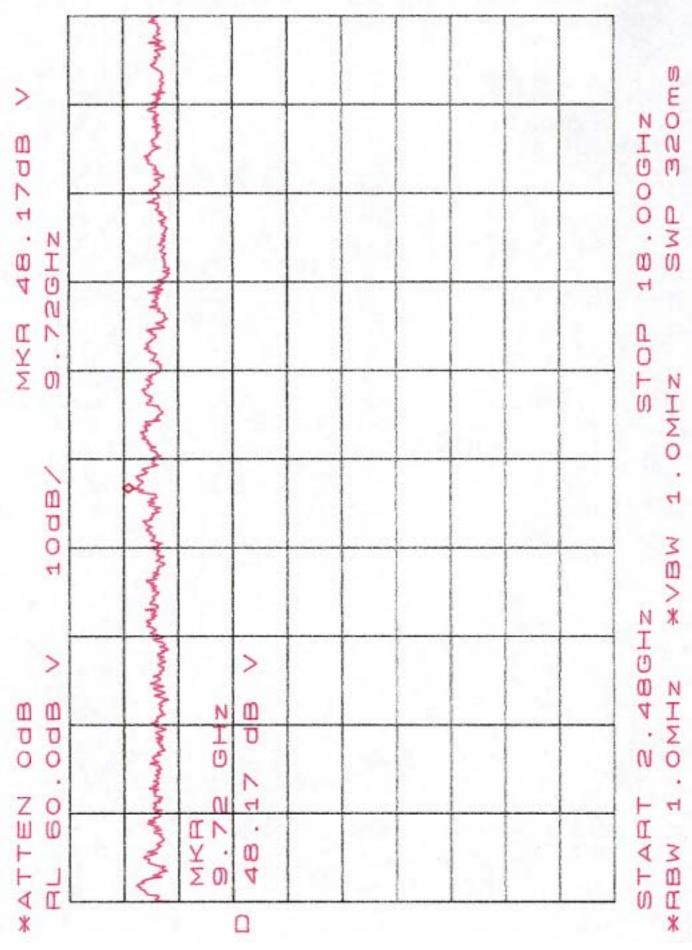

.

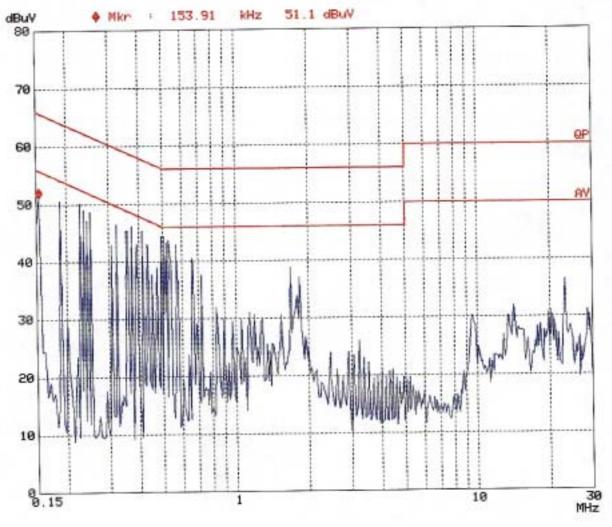


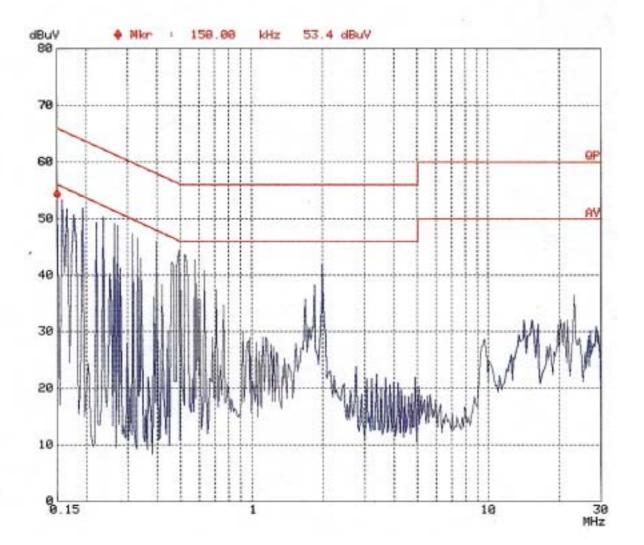



Sheet 65 of 106 Sheets FCC ID. : P27IP806SM



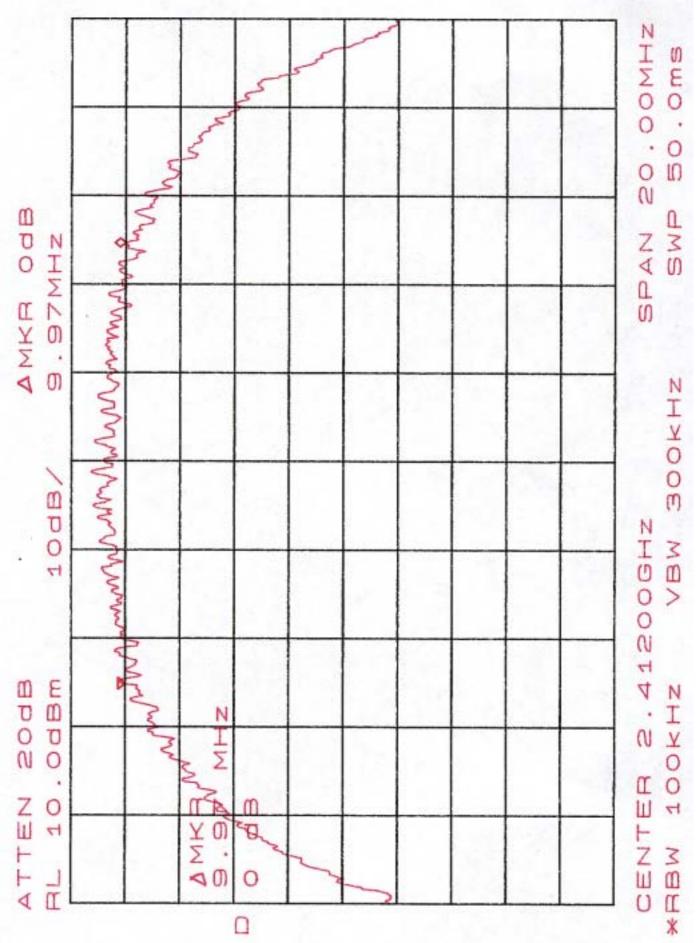

Sheet 67 of 106 Sheets FCC ID. : P27IP806SM


Sheet 69 of 106 Sheets FCC ID. : P27IP806SM

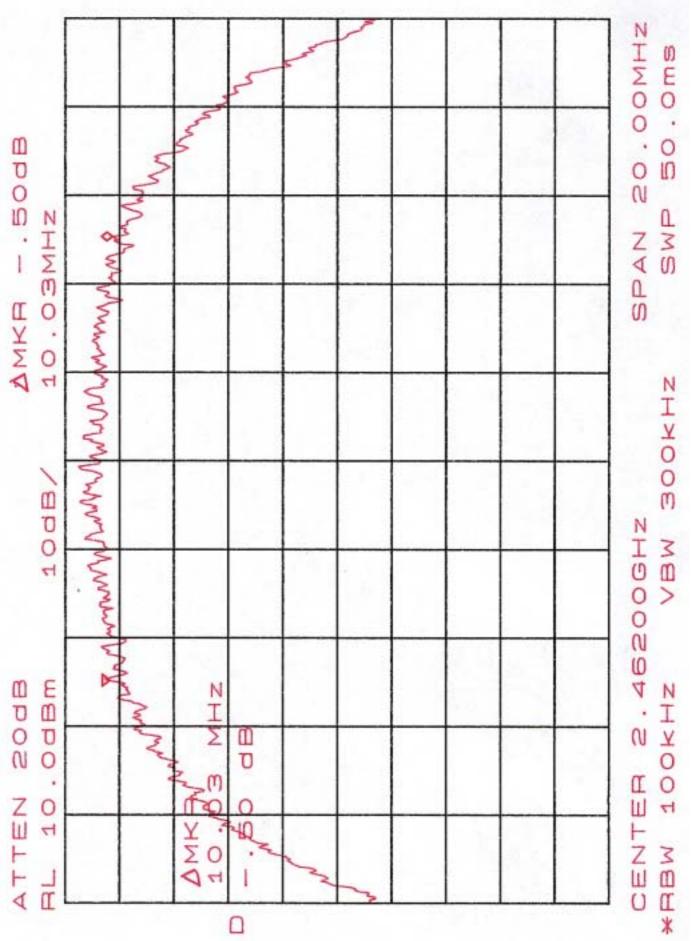


Appendix 2: Ploted Datas of Power Line Conducted Emissions

Conduc Peak V Operator: Test Spec: Comment: File name: Date:	tion E alue JERRY FCC L1 55022.RE 31. Oct	S	on Ti	est		
Overview Sca F Start 150k 1M 3M 10M	n Settings requencies Stop 1M 3M 10M 30M	(4 Ranges) Step 3.9k 3.9k 3.9k 3.9k 3.9k	IF BW 9k 9k 9k 9k 9k	Receiv Detector PK PK PK PK	ver Sett M-Time 0.05ms 0.05ms 1ms 1ms	reamp OFF OFF OFF OFF OFF

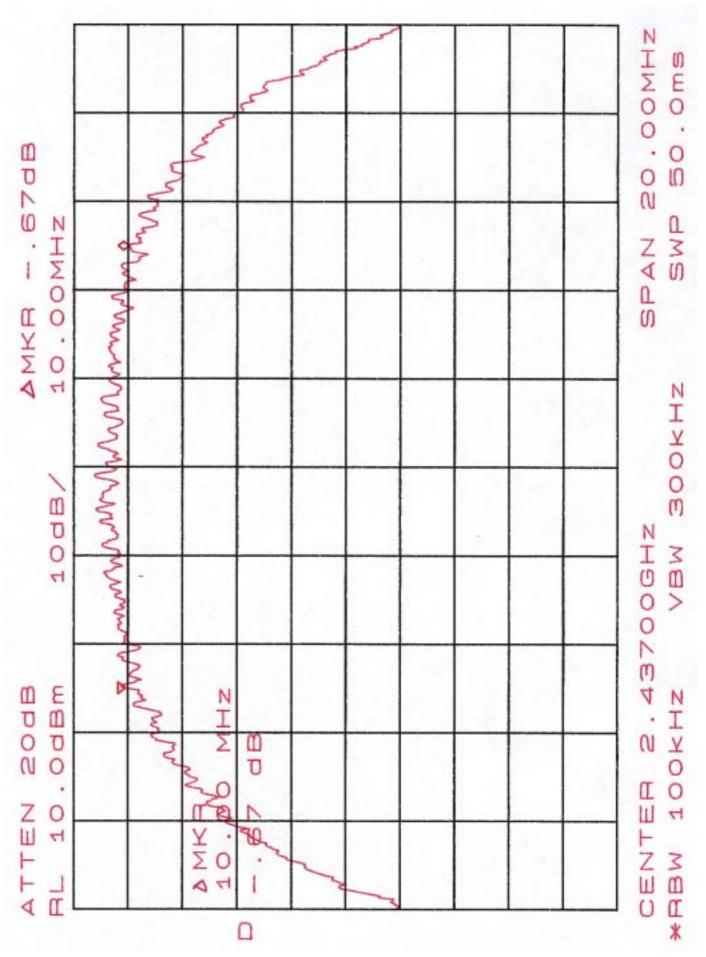


Conduc Peak N Operator: Test Spec: Comment: File name: Date:	ction E /alue JERRY FCC L2 55022.RE 31. Oct	S	on T	est			
	an Settings Frequencies			Receiv	er Sett	ings	
Start	0000	Step	IF BW	Detector	M-Time	Atten P	reamp
150k	1M	3.9k	9k	PK	0.05ms	10dBLN	OFF
1M	3M	3.9k	9k	PK	0.05ms	10dBLN	OFF
3M	10M	3.9k	9k	PK	1ms	10dBLN	OFF
10M	30M	3.9k	9k	PK	1ms	10dBLN	OFF

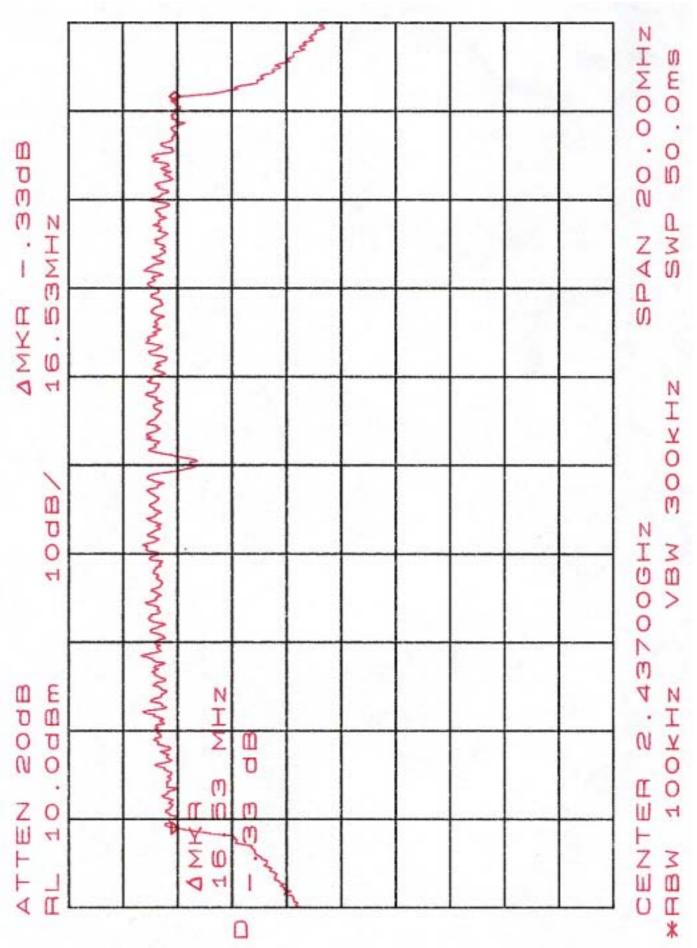


ETC Report No. : ET92S-11-084-01

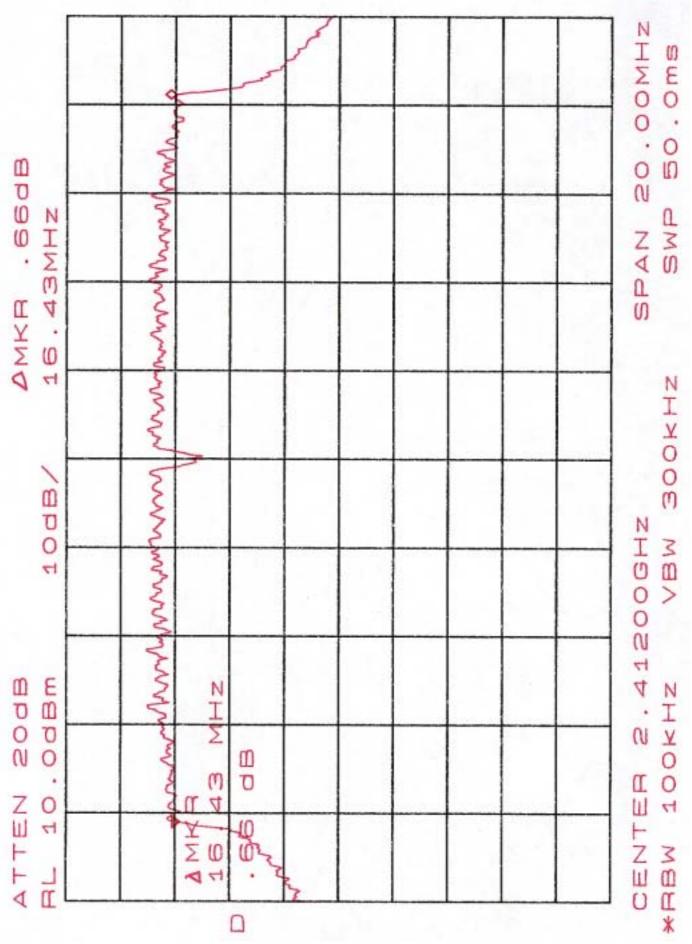
Appendix 3: Ploted Datas of Emissions Bandwidth

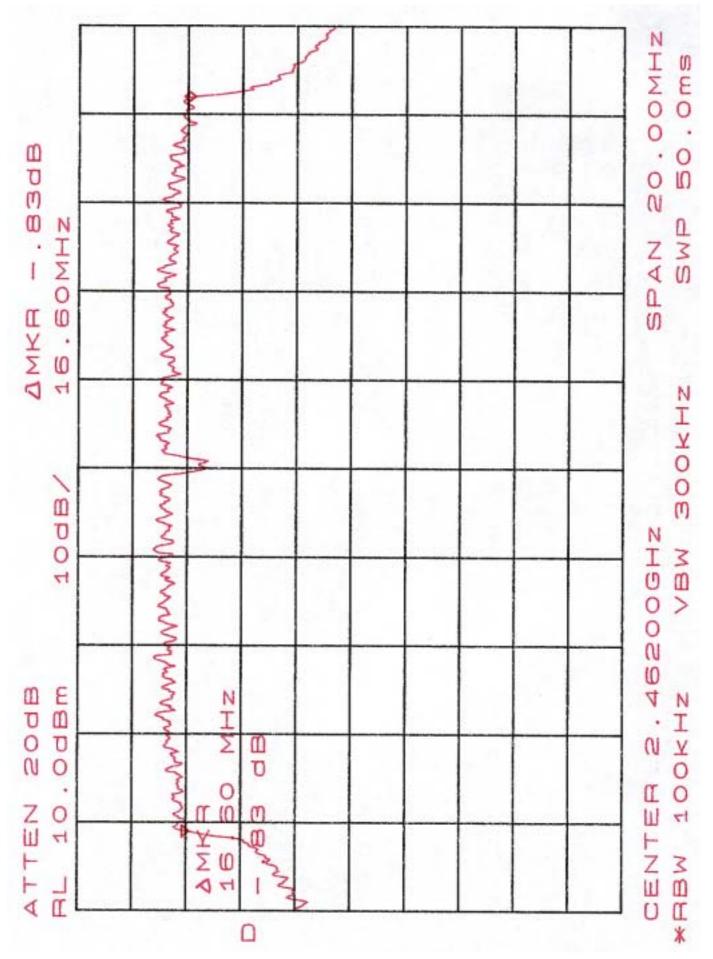


Sheet 76 of 106 Sheets FCC ID. : P27IP806SM

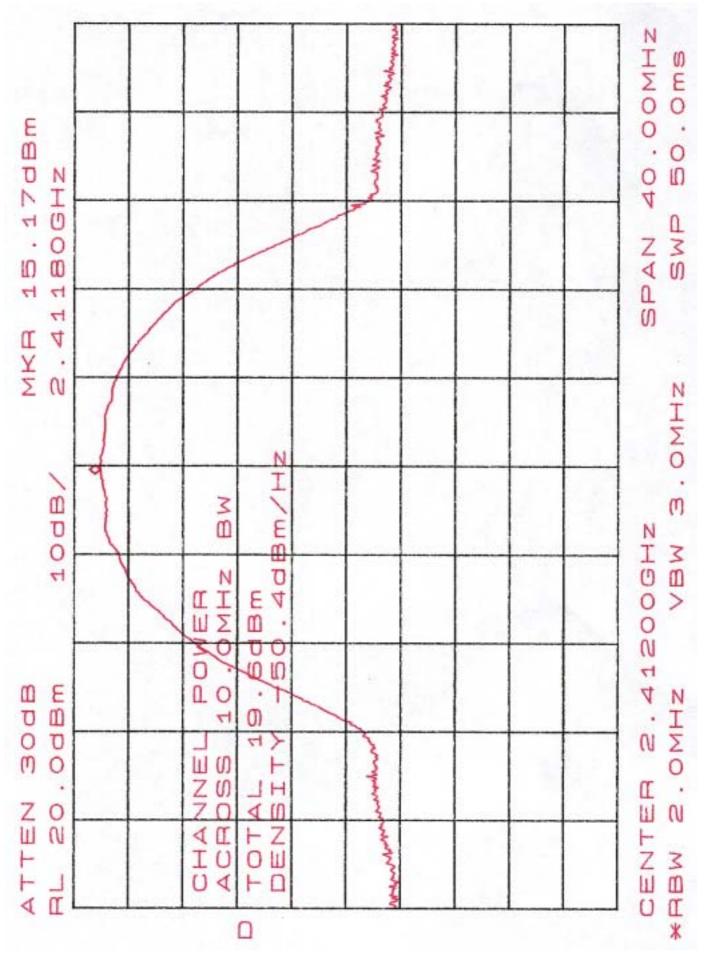


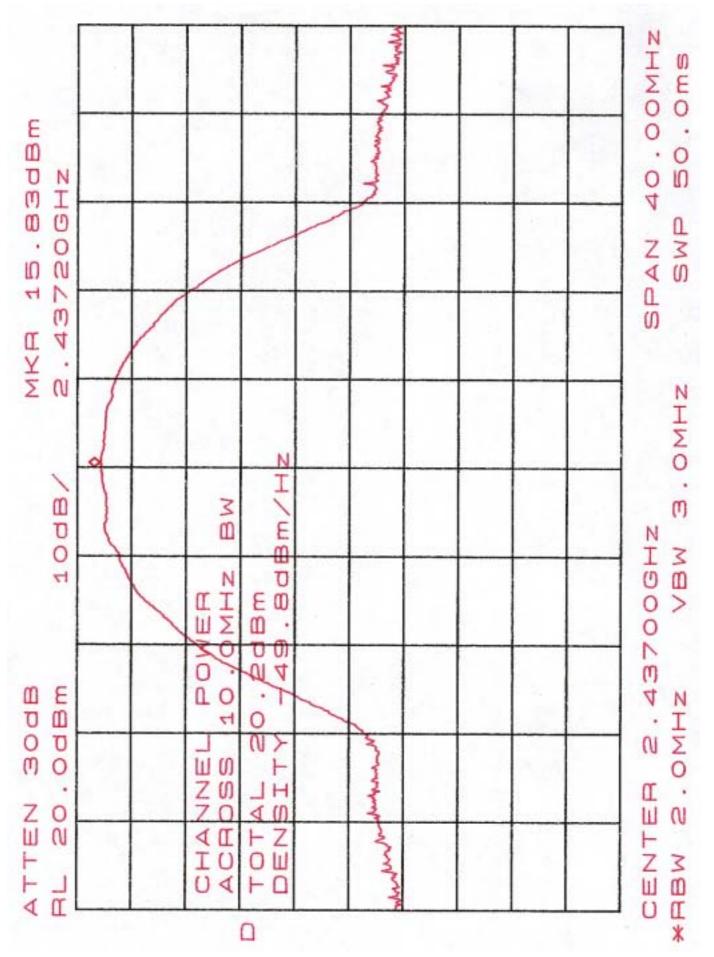
Sheet 77 of 106 Sheets FCC ID. : P27IP806SM

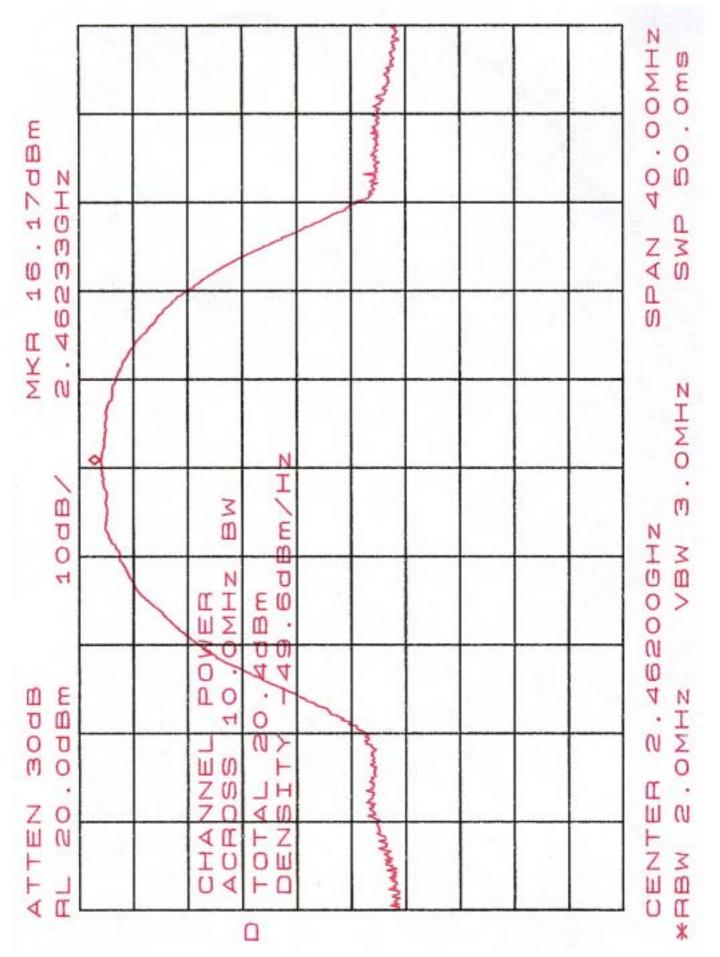

Rev. No 1.0

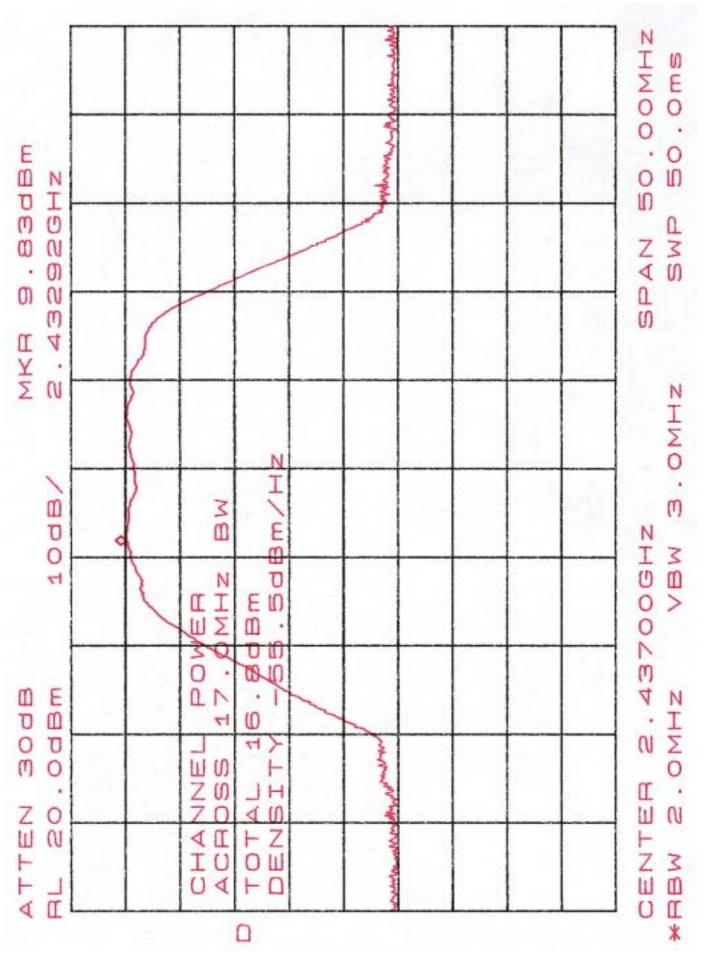

Sheet 78 of 106 Sheets FCC ID. : P27IP806SM

Sheet 79 of 106 Sheets FCC ID. : P27IP806SM

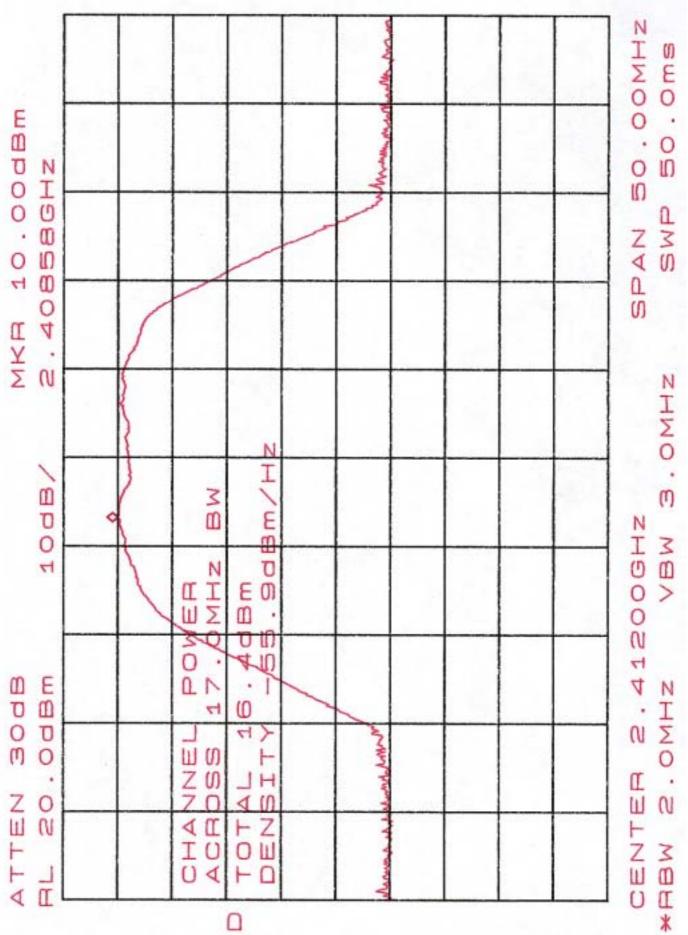


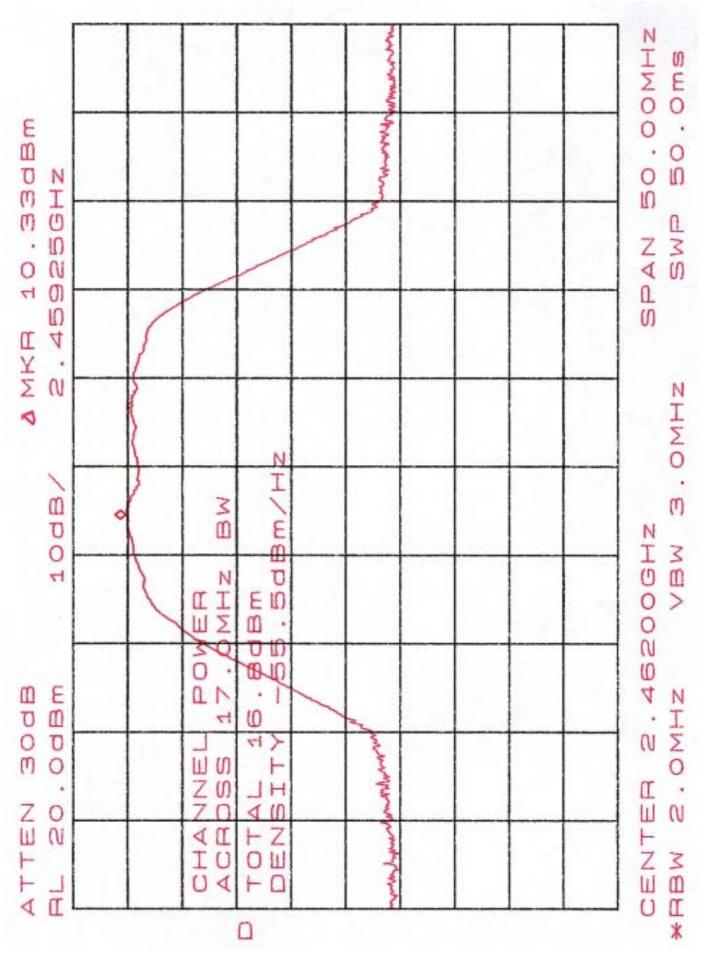

Sheet 80 of 106 Sheets FCC ID. : P27IP806SM



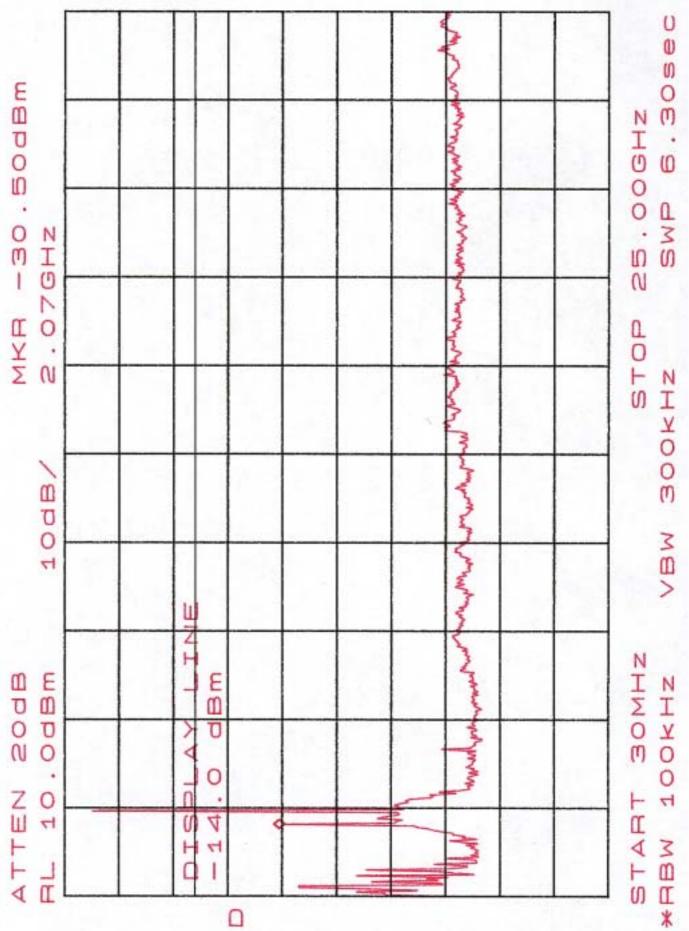

ETC Report No. : ET92S-11-084-01

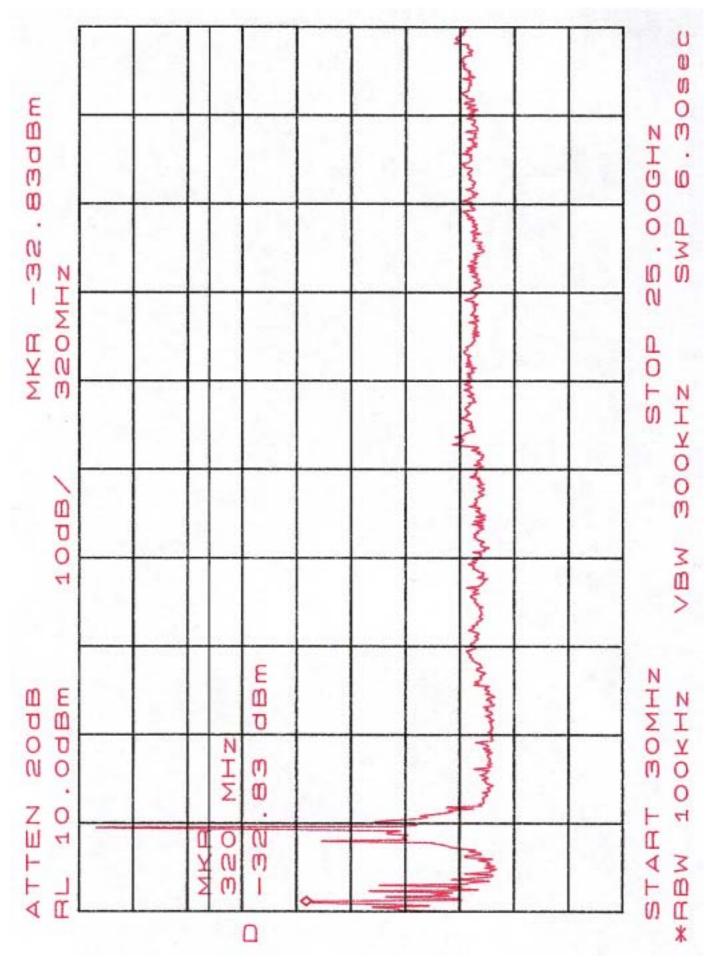
Appendix 4: Ploted Datas of Output Peak Power



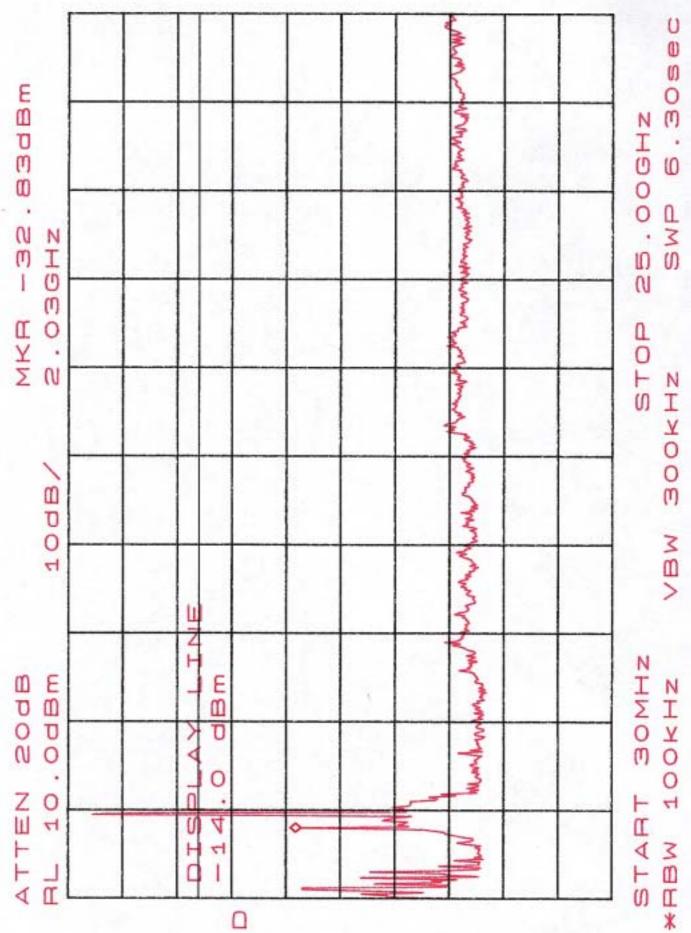


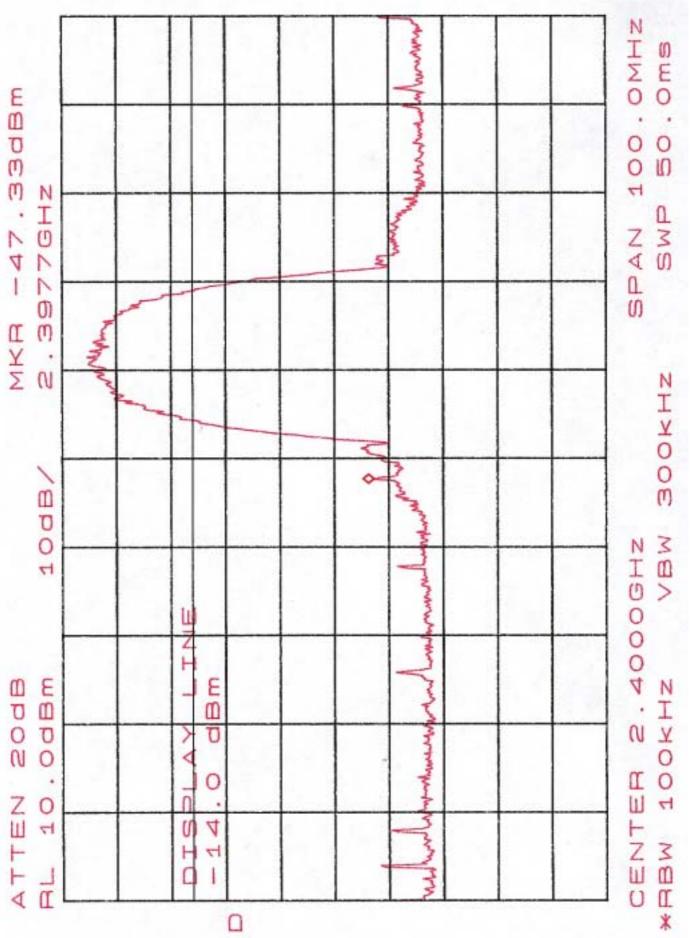
Sheet 86 of 106 Sheets FCC ID. : P27IP806SM


Rev. No 1.0

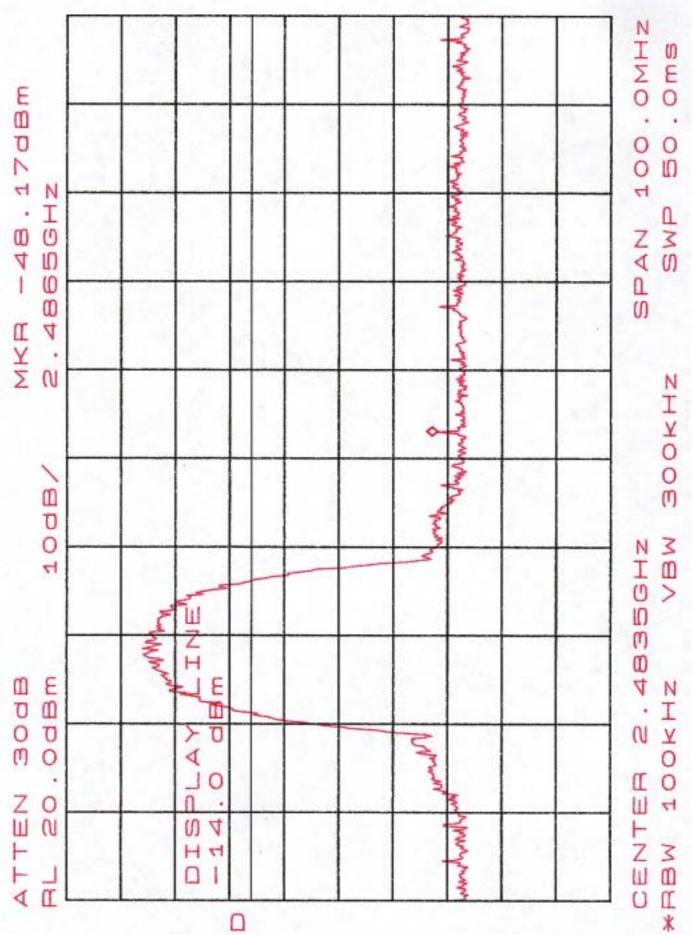


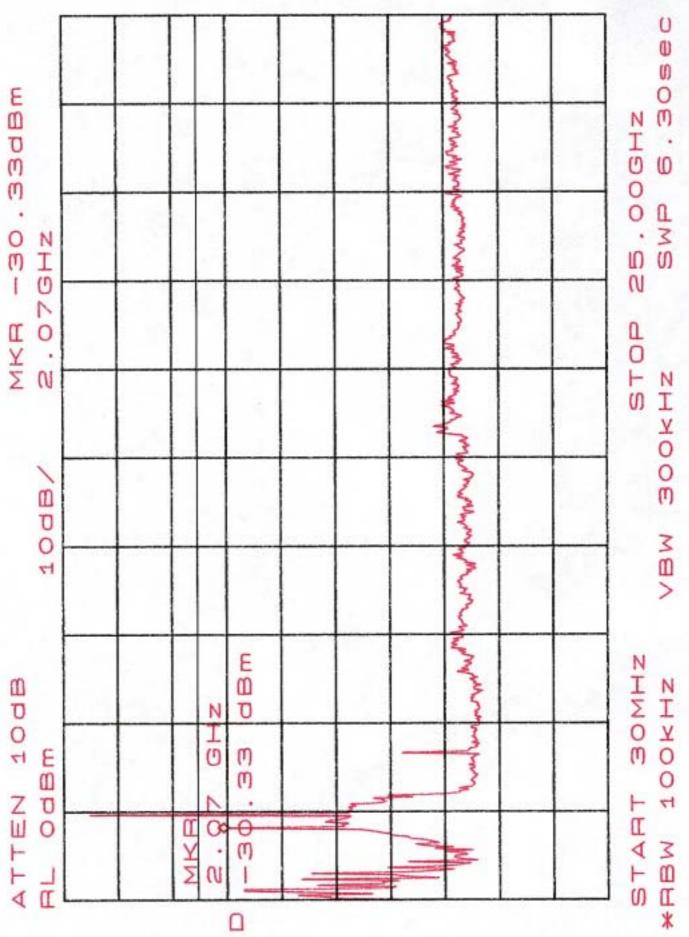
Sheet 88 of 106 Sheets FCC ID. : P27IP806SM


ETC Report No. : ET92S-11-084-01

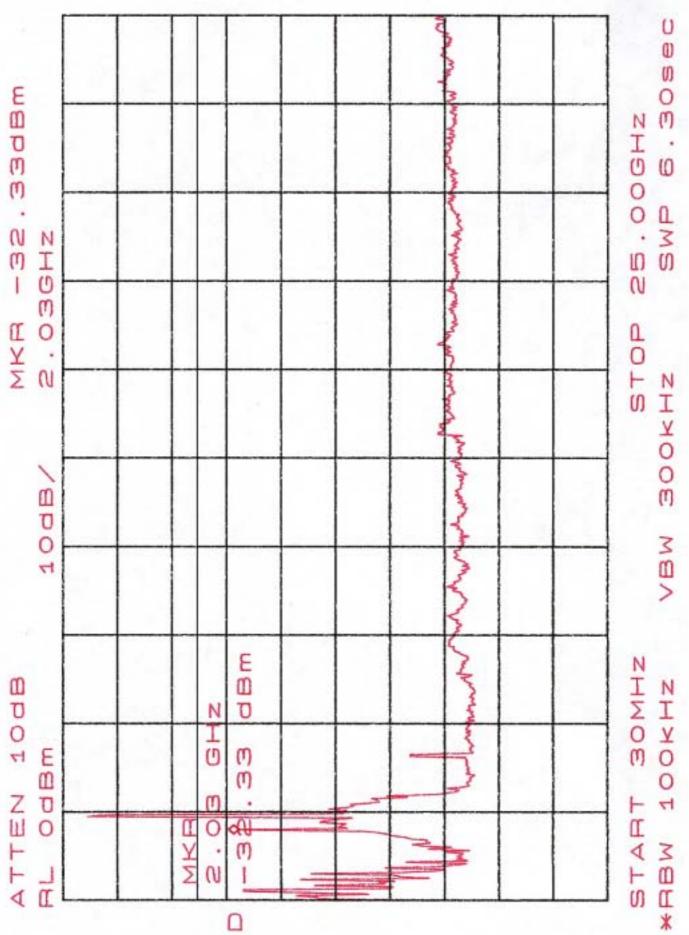

Appendix 5: Ploted Datas of Band Edge Emission

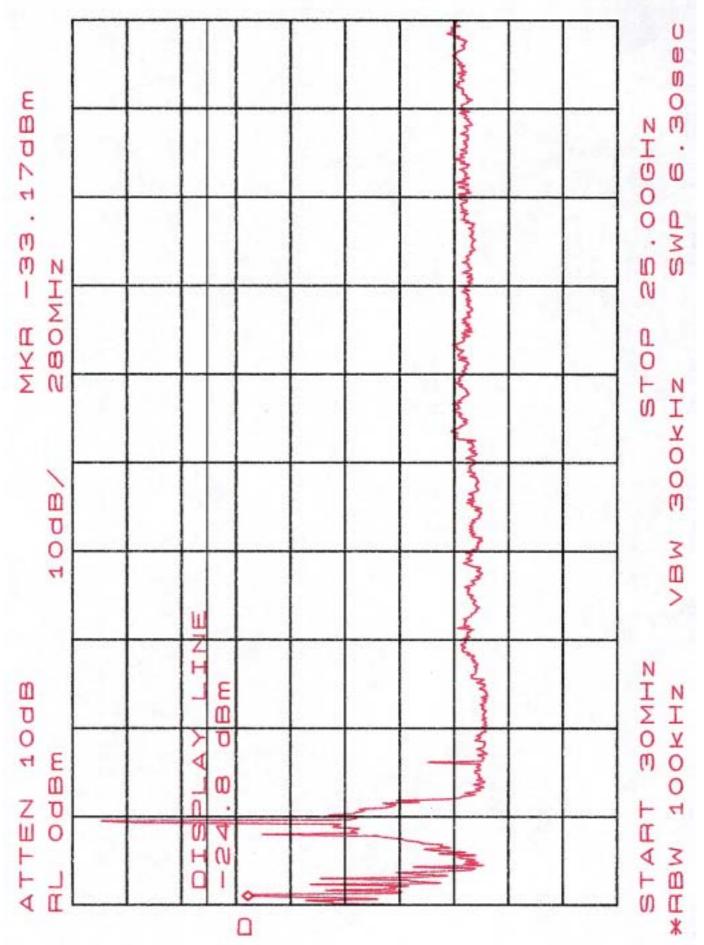
Sheet 91 of 106 Sheets FCC ID. : P27IP806SM

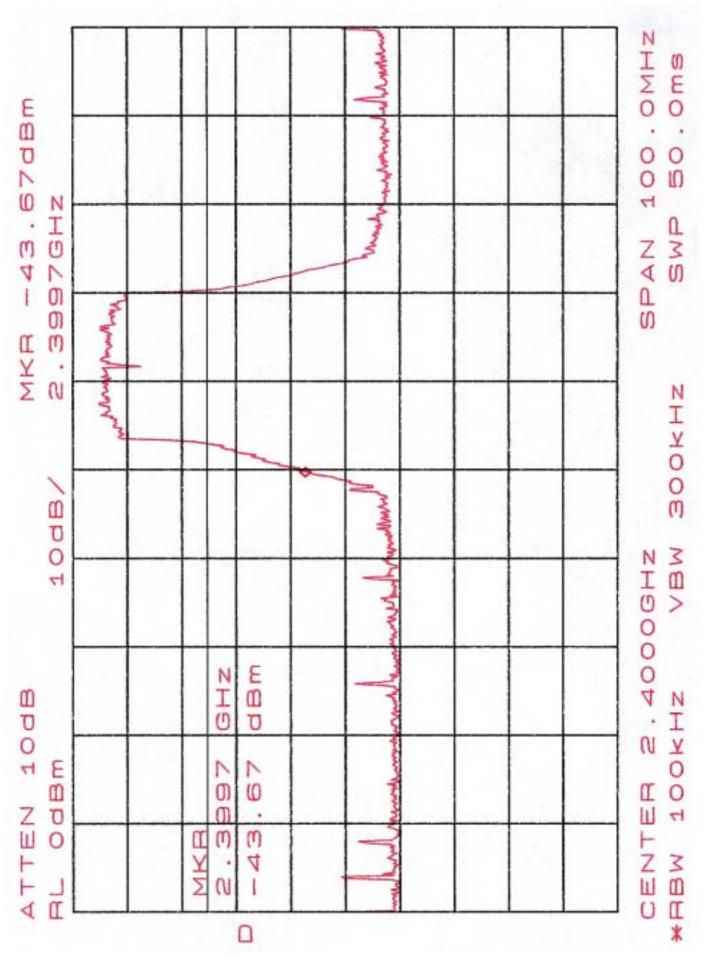


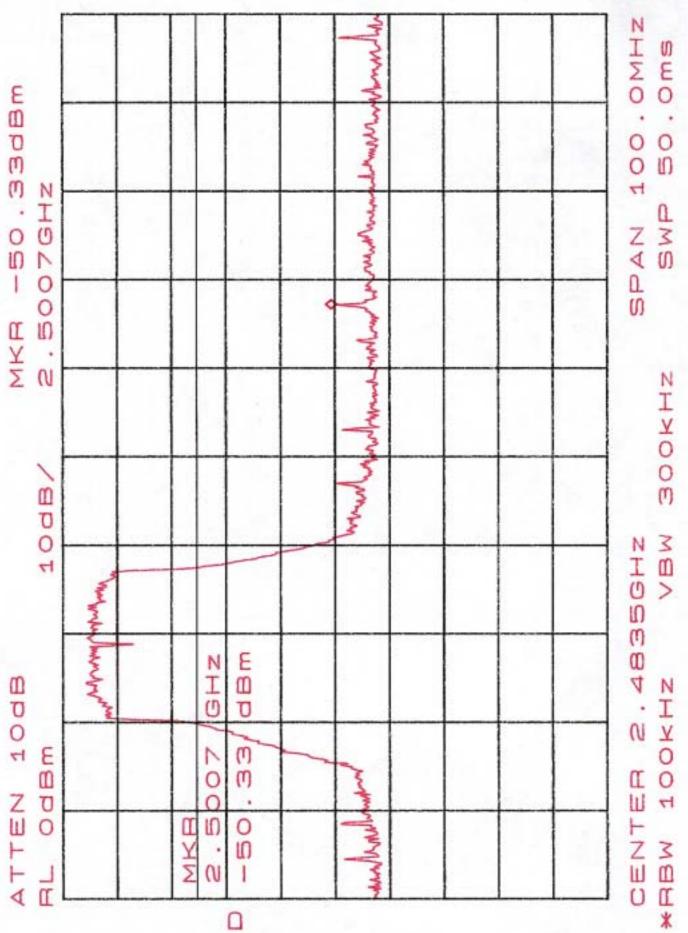

1. Contract 1. Con

Rev. No 1.0

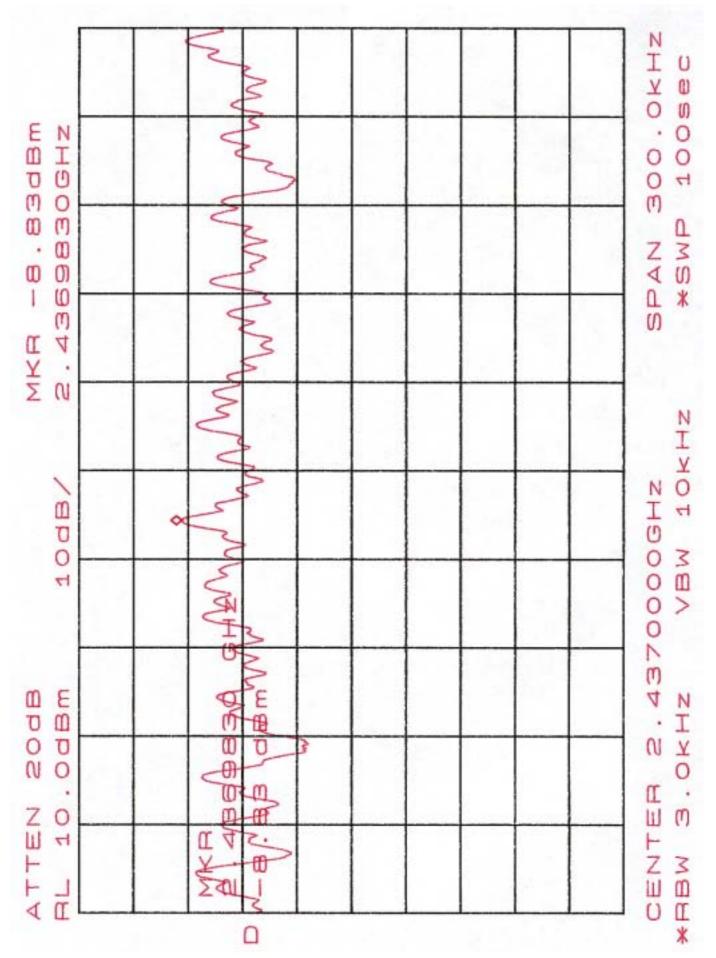

Sheet 93 of 106 Sheets FCC ID. : P27IP806SM

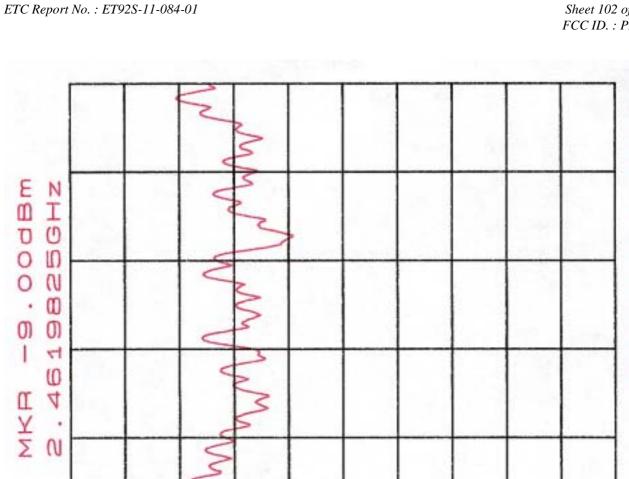

•

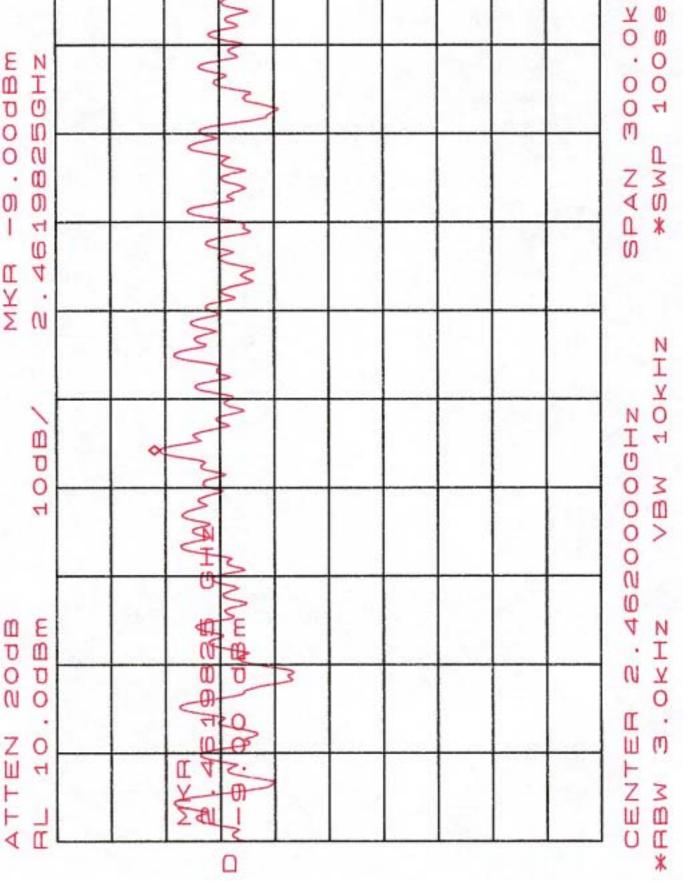

Sheet 95 of 106 Sheets FCC ID. : P27IP806SM



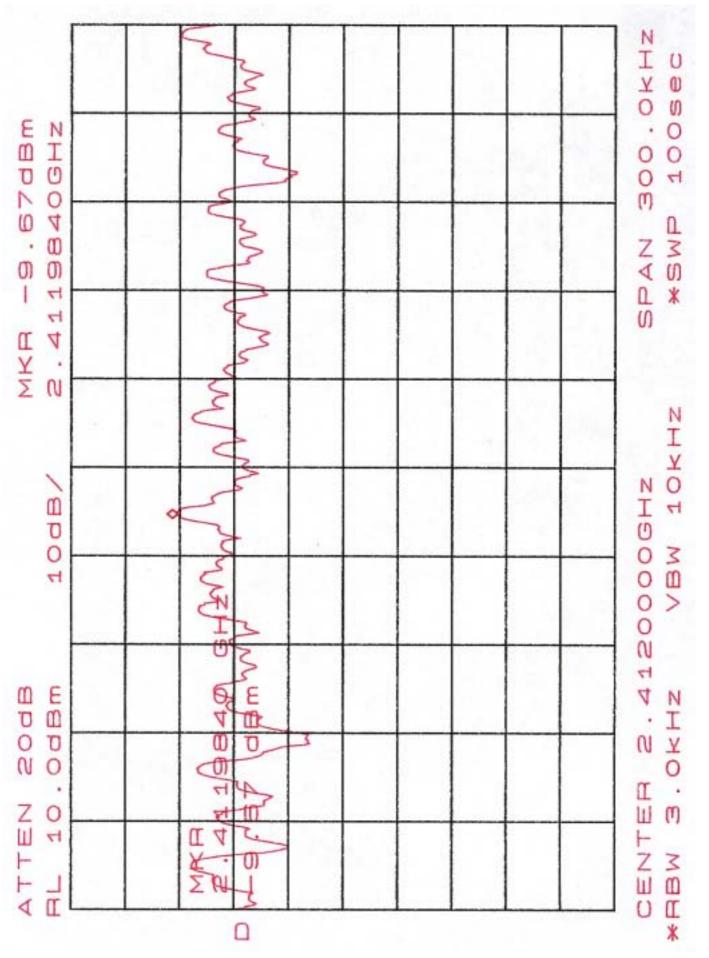
.

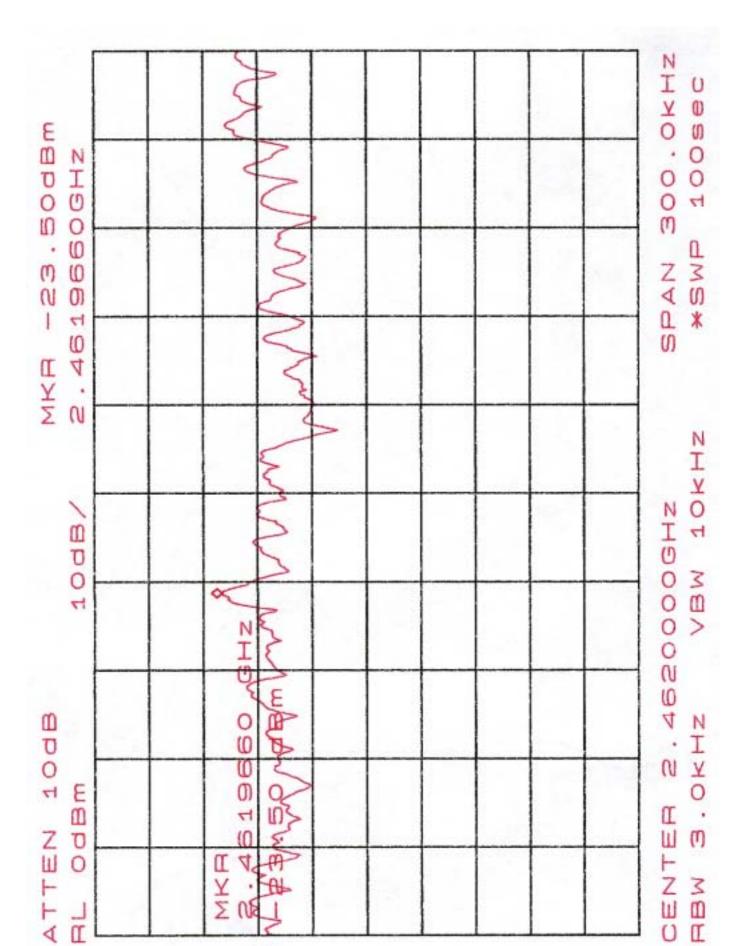

Sheet 97 of 106 Sheets FCC ID. : P27IP806SM



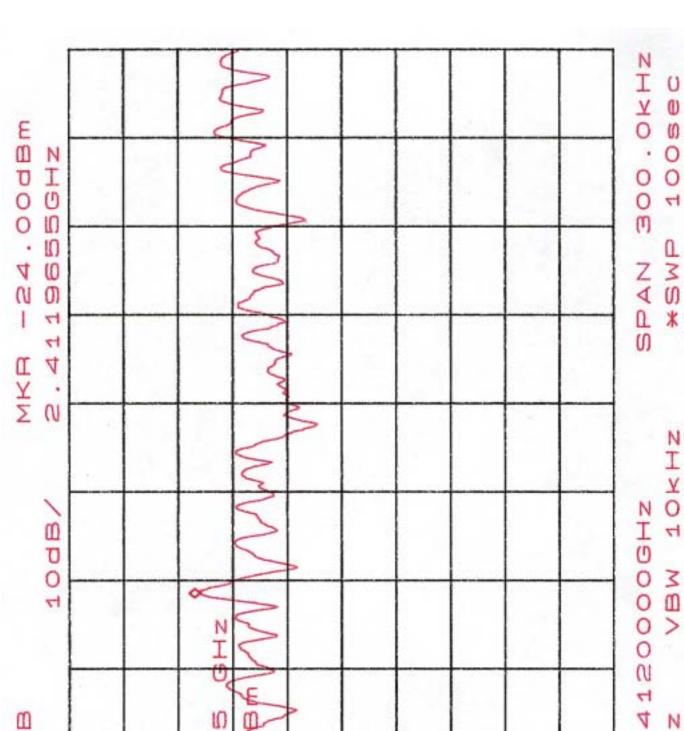

ETC Report No. : ET92S-11-084-01

Appendix 6: Ploted Datas of Power Density


Sheet 101 of 106 Sheets FCC ID. : P27IP806SM


NI

0


Sheet 104 of 106 Sheets FCC ID. : P27IP806SM

Sheet 105 of 106 Sheets FCC ID. : P27IP806SM

Rev. No 1.0

I *

m

D

0

Ο

đ

7

 $(\mathbf{U}$

Ω

D

0

σ

1

T

4

N

α

XΣ

10dB

L E Z E

+

4

Ε

0

D

0

α

Rev. No 1.0

MBH

*

N

•

N

α

11 m

H

C E Z

0 X I

.