

Page: 1 / 44 Rev.: 00

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

Test Standard	FCC Part 15.247
Product name	Alocity All-in-One Access Control Reader
Brand Name	Alocity, Inc; Sercomm
Model No.	F3D100; ACC453
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

and la

Shawn Wu Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw www.ccsrf.com

Page: 2 / 44 Rev.: 00

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	December 7, 2021	Initial Issue	ALL	Allison Chen

Page: 3 / 44 Rev.: 00

Table of contents

1.	GENERAL INFORMATION	4
1.1	EUT INFORMATION	4
1.2	EUT CHANNEL INFORMATION	5
1.3	ANTENNA INFORMATION	5
1.4	MEASUREMENT UNCERTAINTY	6
1.5	FACILITIES AND TEST LOCATION	7
1.6	INSTRUMENT CALIBRATION	7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	9
1.8	TEST METHODOLOGY AND APPLIED STANDARDS	9
2.	TEST SUMMARY	0
3.	DESCRIPTION OF TEST MODES1	1
3.1	THE WORST MODE OF OPERATING CONDITION1	1
3.2	THE WORST MODE OF MEASUREMENT12	2
3.3	EUT DUTY CYCLE	3
4.	TEST RESULT	
4.1	AC POWER LINE CONDUCTED EMISSION	
4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%) 1	7
4.3	OUTPUT POWER MEASUREMENT	0
4.4	POWER SPECTRAL DENSITY	2
4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	5
4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION	9
APPE	NDIX 1 - PHOTOGRAPHS OF EUT	

Page: 4 / 44 Rev.: 00

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	Sercomm Corporation 8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan
Manufacturer	Sercomm Corporation 8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan
Equipment	Alocity All-in-One Access Control Reader
Trade Name	Alocity, Inc; Sercomm
Model No.	F3D100; ACC453
Model Discrepancy	Difference of the model numbers (list on this report) are just for marketing purpose only.
Received Date	October 18, 2021
Date of Test	October 21 ~ November 15, 2021
Power Supply	Power from POE. (DC 48V)

Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

3. Disclaimer: The variant model numbers / trademarks are assessed as identical in hardware and software to each other, hence all variants are fully covered by the test results in this test report without further verification test.

Page: 5 / 44 Rev.: 00

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	GFSK for BLE 1 Mbps
Number of channels	40 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

Number of frequencies to be tested					
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Type	□ PCB □ Dipole □ Coils □ PIFA ⊠ Chip
Antenna Gain	Gain :2 dBi
Antenna Connector	N/A

Remark:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203.

Page: 6 / 44 Rev.: 00

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~1G (Horizontally)	+/- 3.91
3M Semi Anechoic Chamber / 30M~1G (Vertically)	+/- 4.57
3M Semi Anechoic Chamber / 1G~6G	+/- 5.20
3M Semi Anechoic Chamber / 6G~18G	+/- 5.18
3M Semi Anechoic Chamber / 18G~40G	+/- 3.68

Remark:

1.This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 44 Rev.: 00

Report No.: TMWK2110000946KR

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.)

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	Jack Chen	-
RF Conducted	Lance Chen	-
Radiation	Ray Li, Tony Chao	-

Remark: The lab has been recognized as the FCC accredited lad under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Coaxial Cable	Woken	WC12	CC003	06/28/2021	06/27/2022
Power Meter	Anritsu	ML2487A	6K00003260	05/24/2021	05/23/2022
Power Seneor	Anritsu	MA2490A	032910	05/24/2021	05/23/2022
EXA Signal Analyzer	KEYSIGHT	N9010B	MY55460167	09/07/2021	09/06/2022
Software	Radio Test Software Ver. 21				

AC Conducted Emission Room					
Name of Equipment Manufacturer Model Serial Number Calibration Calibration Date Due					
CABLE	EMCI	CFD300-NL	CERF	06/28/2021	06/27/2022
EMI Test Receiver	R&S	ESCI	100064	07/05/2021	07/04/2022
LISN	SCHAFFNER	NNB 41	03/10013	02/02/2021	02/01/2022
Software	EZ-EMC(CCS-3A1-CE-wugu)				

Remark: Each piece of equipment is scheduled for calibration once a year.

Page: 8 / 44 Rev.: 00

3M 966 Chamber Test Site						
Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due	
Band Reject Filters	MICRO TRONICS	BRM 50702	120	02/08/2021	02/07/2022	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/19/2021	07/18/2022	
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/24/2021	02/23/2022	
Coaxial Cable	EMCI	EMC105	190914+327109/4	09/17/2021	09/16/2022	
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/06/2021	01/05/2022	
Horn Antenna	ETS LINDGREN	3116	26370	12/11/2020	12/10/2021	
Horn Antenna	ETS LINDGREN	3117	55165	07/29/2021	07/28/2022	
K Type Cable	Huber+Suhner	SUCOFLEX 102	29406/2	12/09/2020	12/08/2021	
K Type Cable	Huber+Suhner	SUCOFLEX 102	22470/2	12/09/2020	12/08/2021	
Pre-Amplifier	EMEC	EM330	060609	02/24/2021	02/23/2022	
Pre-Amplifier	HP	8449B	3008A00965	12/25/2020	12/24/2021	
Pre-Amplifier	MITEQ	AMF-6F-18004000-37-8P	985646	09/08/2021	09/07/2022	
Signal Analyzer	R&S	FSV 40	101073	09/07/2021	09/06/2022	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Software	e3 6.11-20180419c					

Remark: Each piece of equipment is scheduled for calibration once a year.

.

Page: 9 / 44 Rev.: 00

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

	EUT Accessories Equipment							
No.	No. Equipment Brand Model Series No. FCC ID IC							
	N/A							

	Support Equipment								
No. Equipment Brand Model Series No. FCC ID					IC				
1	NB(J)	TOSHIBA	PT345T-00L002	N/A	PD97260H	N/A			
2	Adapter	SONICWALL	PD-9001GR/AC	N/A	N/A	N/A			

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247.

Page: 10 / 44 Rev.: 00

2. TEST SUMMARY

FCC Standard Section	Report Section	Test Item	Result
15.203	1.3	Antenna Requirement	Pass
15.207(a)	4.1	AC Conducted Emission	Pass
15.247(a)(2)	4.2	6 dB Bandwidth	Pass
-	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(3)	4.3	Output Power Measurement	Pass
15.247(e)	4.4	Power Spectral Density	Pass
15.247(d)	4.5	Conducted Band Edge	Pass
15.247(d)	4.5	Conducted Spurious Emission	Pass
15.247(d)	4.6	Radiation Band Edge	Pass
15.247(d)	4.6	Radiation Spurious Emission	Pass

Page: 11 / 44 Rev.: 00

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	BLE Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2442MHz 3.Highest Channel : 2480MHz

Remark:

Г

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

Page: 12 / 44 Rev.: 00

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission						
Test Condition	Test Condition AC Power line conducted emission for line and neutral					
Power supply Mode Mode 1: EUT power by POE						
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4						

Radiated Emission Measurement Above 1G				
Test Condition	Radiated Emission Above 1G			
Power supply Mode Mode 1: EUT power by POE				
Worst Mode	Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			

Radiated Emission Measurement Below 1G					
Test Condition	Test Condition Radiated Emission Below 1G				
Power supply Mode	Power supply Mode Mode 1: EUT power by POE				
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4					

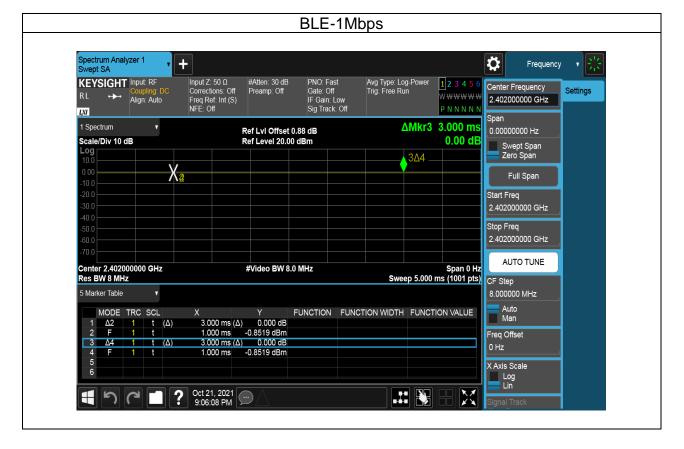
Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(X-Plane) were recorded in this report
- 3. AC power line conducted emission and for below 1G radiation emission were performed the EUT transmit at the highest output power channel as worse case.

Page: 13 / 44 Rev.: 00

3.3 EUT DUTY CYCLE

Temperature: 24.5°C


Humidity:

61% RH

Test date: C Tested by: L

October 21, 2021 Lance Chen

Duty Cycle							
Configuration	Duty Cycle (%)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW Setting (kHz)			
BLE-1Mbps	100.00	0.00	0.33	0.01			

Page: 14 / 44 Rev.: 00

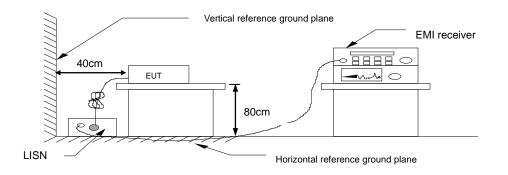
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a),

Frequency Range	Limits(dBµV)			
(MHz)	Quasi-peak	Average		
0.15 to 0.50	66 to 56*	56 to 46*		
0.50 to 5	56	46		
5 to 30	60	50		


* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed above horizontal ground plane and 0.4m above vertical ground plane
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup

4.1.4 Test Result PASS

Page: 15 / 44 Rev.: 00

Test Data

0.1900

0.4180

0.4260

0.4700

									<u></u>	
Test N	Node:		Mode			Temp/H			(°C)/ 47%	
Pha	ise:		Line	•		Test Date		October 21, 2021		2021
Config	uration		BLE-1M	lbps	Te	est Eng	jineer	J	ack Che	n
					//////////////////////////////////////			Limit1: Limit2:		
-20								YA*1649		
0.1	150	0	.5	(MHz)	5			30.000	
Frequency (MHz)	Quasi Peak reading (dBuV)	Average reading (dBuV)	Correction factor (dB)	Quasi Peak result (dBuV)	Average result (dBuV)	Quasi Peak limit (dBuV)	Average limit (dBuV)	Quasi Peak margin (dB)	Average margin (dB)	Remar
0.1580	37.98	31.42	10.29	48.27	41.71	65.57	55.57	-17.30	-13.86	Pass
0.1660	34.15	27.63	10.29	44.44	37.92	65.16	55.16	-20.72	-17.24	Pass

Note: Correction factor = LISN loss + Cable loss.

20.24

21.94

23.29

13.36

30.99

30.70

31.68

21.90

10.29

10.29

10.29

10.29

41.28

40.99

41.97

32.19

30.53

32.23

33.58

23.65

64.04

57.49

57.33

56.51

54.04

47.49

47.33

46.51

-22.76

-16.50

-15.36

-24.32

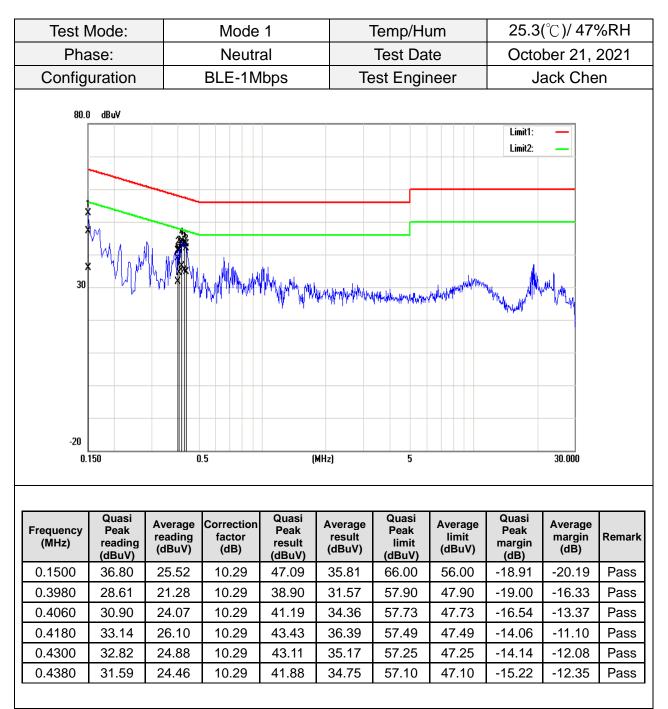
-23.51

-15.26

-13.75

-22.86

Pass


Pass

Pass

Pass

Page: 16 / 44 Rev.: 00

Note: Correction factor = LISN loss + Cable loss.

Page: 17 / 44 Rev.: 00

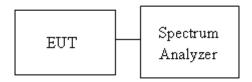
4.26dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

4.2.1 Test Limit

According to §15.247(a)(2),

6 dB Bandwidth :

Limit


Shall be at least 500kHz

4.2.2 Test Procedure

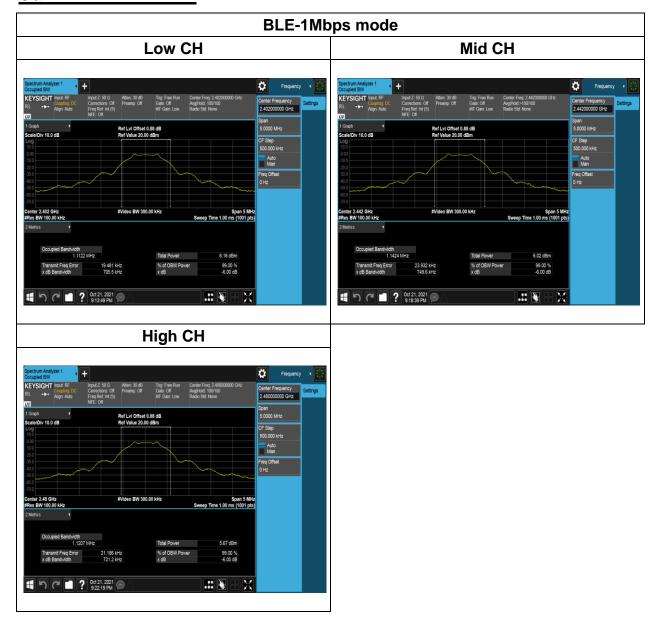
Test method Refer as ANSI C63.10: 2013,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. SA set RBW =100KHz, VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup

Page: 18 / 44 Rev.: 00

4.2.4 Test Result


Temperature:	24.5 ℃	Test date:	October 21, 2021
Humidity:	61% RH	Tested by:	Lance Chen

Test mode: BLE-1Mbps mode / 2402-2480 MHz							
Channel	Frequency (MHz)	6dB BW (MHz)	6dB limit (kHz)				
Low	2402	0.7055					
Mid	2442	0.7496	≥500				
High	2480	0.7212					

Page: 19 / 44 Rev.: 00

Test Data 6dB BANDWIDTH

Page: 20 / 44 Rev.: 00

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

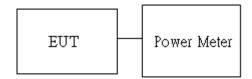
According to §15.247(b)(3),

Peak output power :

FCC

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement,

Limit	Antenna not exceed 6 dBi : 30dBm
	[Limit = 30 - (DG - 6)]
	Point-to-point operation


Average output power : For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

Page: 21 / 44 Rev.: 00

4.3.4 Test Result

Temperature:	24.5 ℃	Test date:	October 21, 2021
Humidity:	61% RH	Tested by:	Lance Chen

Peak output power :

BLE mode:

СН	Frequency (MHz)	Power set	Peak Power Output (dBm)	Required Limit (dBm)
Low	2402	5	0.87	30
Mid	2442	5	0.63	30
High	2480	5	0.44	30

Average output power :

BLE mode:

СН	Frequency (MHz)	Power set	Max. Avg. Output Power (dBm)	Required Limit (dBm)
Low	2402	5	0.79	30
Mid	2442	5	0.56	30
High	2480	5	0.36	30

Page: 22 / 44 Rev.: 00

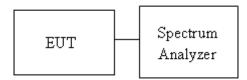
4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit


Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] Point-to-point operation :

4.4.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

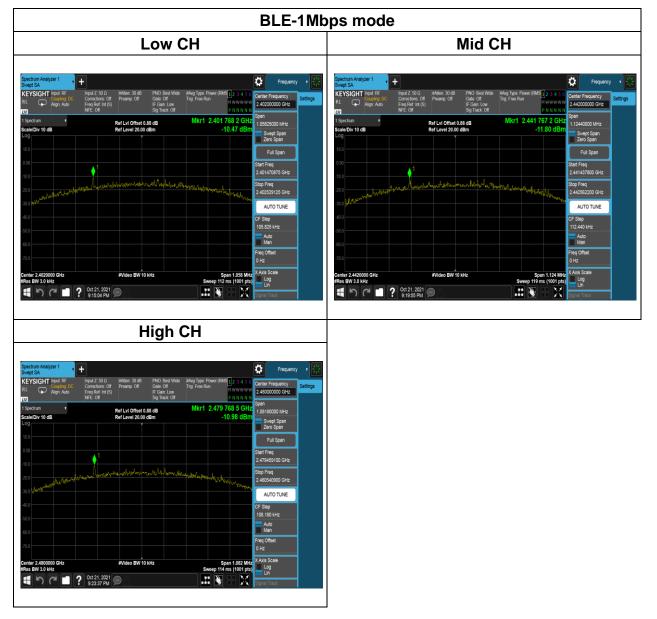
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup

Page: 23 / 44 Rev.: 00

4.4.4 Test Result

Temperature:	24.5 ℃	Test date:	October 21, 2021
Humidity:	61% RH	Tested by:	Lance Chen


BLE mode

Frequency (MHz)	RF Power Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2402	-10.47	8	PASS
2442	-11.80	8	PASS
2480	-10.98	8	PASS

Page: 24 / 44 Rev.: 00

Test Data

Page: 25 / 44 Rev.: 00

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

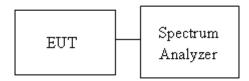
4.5.1 Test Limit

According to §15.247(d),

FCC: In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.5.2 Test Procedure

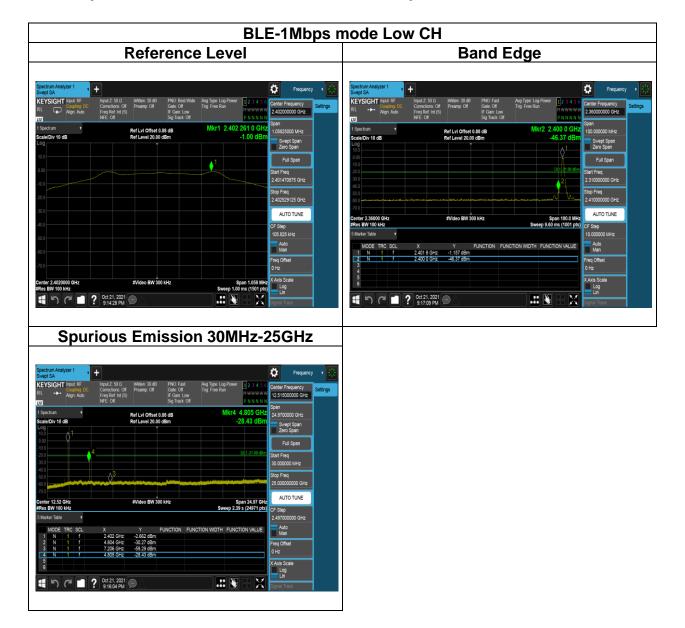

Test method Refer as ANSI C63.10:2013.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.5.3 Test Setup

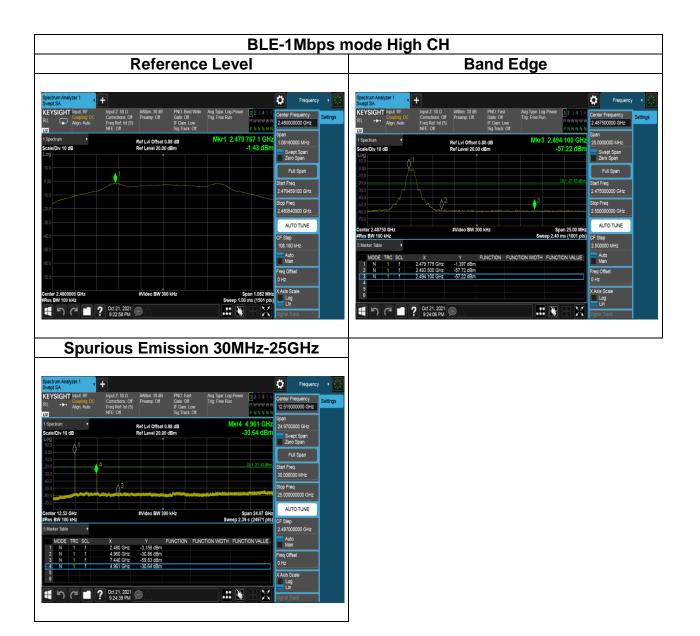


4.5.4 Test Result

Test Data

Temperature:	24.5 °C	Test date:	October 21, 2021
Humidity:	61% RH	Tested by:	Lance Chen

Page: 26 / 44 Rev.: 00



Page: 27 / 44 Rev.: 00

Reference	e Level	Spurious Emission	30MHz-25GHz
Refuter Analyzer 1 est Cas Part Sam Provide To any for the formation of the second	Image: Span Figure 1 2.3 4.5 (%) Center Frequency Center Frequency Mix1 2.441 765 9 GHz 2.450000 GHz Semgal Mix1 2.441 765 9 GHz -1.07 GBm Semgal Start Freq Semgal Semgal July 1.2441 765 9 GHz Semgal Semgal July 1.2441 765 9 GHz Semgal Semgal July 1.2441 765 9 GHz Semgal Semgal July 1.2441 7600 GHz Start Freq Start Freq Start Freq Start Freq Start Freq July 1.2440 Semgal Start Freq Start Freq Span 1.124 Mtz Start Freq Start Freq Start Freq Start Freq Start Freq July 1.2440 Semgal <t< th=""><th>RL → Aign Aub Conscious OI Frequential Intition Peramp OI Frequential Intition Gana OI Frequential Intition 1 Sportum * Ref Lvi Offset 0.88 dB Ref Lvi Offset 0.88 dB Collection 0 0 Ref Lvi Offset 0.88 dB Ref Lvi Offset 0.88 dB Collection 0 0 0 0 Ref Lvi Offset 0.88 dB Ref Lvi Offset 0.88 dB Collection 0 0 0 0 0 0 Ref Lvi Offset 0.88 dB Ref Lvi Offset 0.88 dB Collection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<</th><th>Prequency Prequency Prequency</th></t<>	RL → Aign Aub Conscious OI Frequential Intition Peramp OI Frequential Intition Gana OI Frequential Intition 1 Sportum * Ref Lvi Offset 0.88 dB Ref Lvi Offset 0.88 dB Collection 0 0 Ref Lvi Offset 0.88 dB Ref Lvi Offset 0.88 dB Collection 0 0 0 0 Ref Lvi Offset 0.88 dB Ref Lvi Offset 0.88 dB Collection 0 0 0 0 0 0 Ref Lvi Offset 0.88 dB Ref Lvi Offset 0.88 dB Collection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	Prequency Prequency

Page: 28 / 44 Rev.: 00

Page: 29 / 44 Rev.: 00

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)			
(MHz)	Transmitters Receivers			
30-88	100 (3 nW)	100 (3 nW)		
88-216	150 (6.8 nW)	150 (6.8 nW)		
216-960	200 (12 nW)	200 (12 nW)		
Above 960	500 (75 nW)	500 (75 nW)		

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 30 / 44 Rev.: 00

Report No.: TMWK2110000946KR

4.6.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9KHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

Remark:

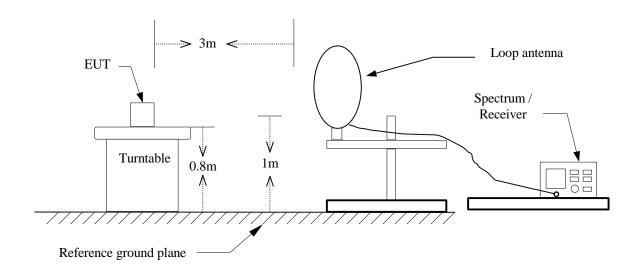
 Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
 No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

- 4. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

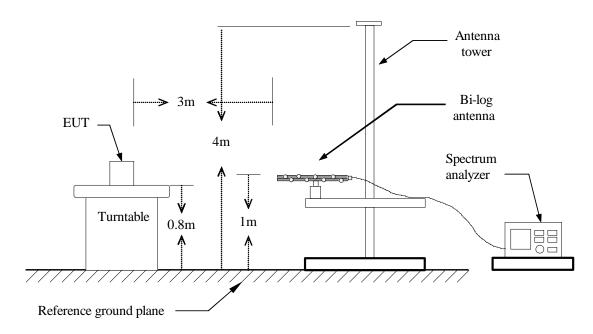
If Duty Cycle \geq 98%, VBW=10Hz.

'If Duty Cycle < 98%, VBW=1/T.

5. Data result :

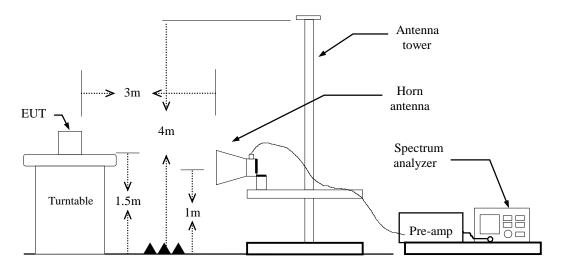

Actual FS=Spectrum Reading Level + Factor

Margin=Actual FS- Limit



Page: 31 / 44 Rev.: 00

4.6.3 Test Setup <u>9kHz ~ 30MHz</u>


30MHz ~ 1GHz

Page: 32 / 44 Rev.: 00

Above 1 GHz

4.6.4 Test Result

Band Edge Test Data

Test Mode:	BLE-1Mbps Low CH	Mbps Low CH Temp/Hum	
Test Item	Band Edge	Test Date	October 25, 202
Polarize	Vertical	Test Engineer	Ray Li
Detector	Peak / Average		
120 Level (dBuV/m)			
110			
90			
70			
50 marchaethron	anomiansana and	hard a second and a second seco	Munichan Marine Property 6
30			
10			
0 ² 310	2348. 2386. Freque	2424. ncy (MHz)	2462. 2500

Freq.	Detector Mode	Spectrum	Factor	Actual FS	Limit @3m	Margin
MHz	PK/QP/AV	Reading Level dBµV	dB	гз dBµV/m	dBµV/m	dB
2373.65	Peak	40.46	12.39	52.85	74.00	-21.15
2373.65	Average	26.54	12.39	38.93	54.00	-15.07
2402.00	Peak	82.61	12.54	95.15	-	-
2402.00	Average	81.38	12.54	93.92	-	-
2489.55	Peak	38.42	13.12	51.54	74.00	-22.46
2489.55	Average	26.41	13.12	39.53	54.00	-14.47

Page: 33 / 44 Rev.: 00

2500.00

Average

Page: 34 / 44 Rev.: 00

Test Mo	do:			2	Тс	mn/Lur		23.0 (°C	;)/ 63%RF
			Mbps Low (emp/Hum		· · · ·	
Test Ite			Band Edge			est Date			er 25, 202
Polariz	e	ŀ	Horizontal		Tes	t Engine	er	R	ay Li
Detect	or	Pea	ak / Average						
120	V/m)								
110					 			: : : :	: : :
					1				
90				j					
									1
70	 		 		+			 	
									F
50	man	www.waa	en speakerstander	et have	warm	- Martine and	m	sononen	- marine
	2	2							E
30					 			 	
10								· · · · · · · · · · · · · · · · · · ·	
0 <mark></mark> 2310	2348	B.	2386.	1.1	24	2 4.		2462.	2500
			Fre	equency ((MHz)				
Freq.	Detecto	r	Spectrum	Fac	ctor	Actua	1	Limit	Margin
	Mode	Re	ading Level			FS		@3m	
MHz	PK/QP/A	V	dBµV	d	В	dBµV/r	n	dBµV/m	dB
2350.28	Peak		40.14	12	.28	52.42		74.00	-21.58
2350.28	Average	•	26.50	12	.28	38.78		54.00	-15.22
2402.00	Peak		81.49		.54	94.03		-	-
2402.00	Average	•	80.42	12	.54	92.96		-	-
2500.00	Peak		39.49	13	.19	52.68		74.00	-21.32
2000.00									

13.19

39.33

54.00

-14.67

26.14

Page: 35 / 44 Rev.: 00

Test Mo	de: B	LE-1Mbps High	CH 1	ſemp/Hum	23.9(° ℃)/ 63%Rł
Test Ite	m	Band Edge		Test Date	October	[.] 25, 202
Polariz	ze	Vertical	Те	st Engineer	Ra	ay Li
Detect	or	Peak / Average				
120	V/m)					
110						
90			·		3	
					∭	
70			·			
						5
50	- Annow Marine Marine	manuman	manan	3 Marphalanorous dues	manuman	harrison
	2					6
30						
10						
0 <mark></mark> 2310	2348.	2386.	-	2424.	2462.	2500
		Fr	equency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
2350.28	Peak	39.27	12.28	51.55	74.00	-22.45
2350.28	Average	26.52	12.28	38.80	54.00	-15.20
2480.00	Peak	72.41	13.06	85.47	-	-
2480.00	Average	71.20	13.06	84.26	-	-
2489.17	Peak	38.66	13.12	51.78	74.00	-22.22

Page: 36 / 44 Rev.: 00

Test Mo	de:	BLE	-1Mb	ops Hię	gh CH	Т	emp/Hu	m	23.9(°C)/ 63%RF
Test Ite	em		Ban	d Edg	е	٦	Fest Dat	е	Octobe	r 25, 202
Polariz	ze		Но	rizonta	I	Tes	st Engin	eer	R	ay Li
Detect	or	Р	eak	/ Avera	age					
120	IV/m)									
110							- - - -	 		
		M			1					
90		····· Mr.						-		1
)	Ma							
70			- Jan	1			 	 - 	+	
				www	mon	manan				
50				2	 		invijsor n	*****	and the contraction	Manasalan
30					ן ו 					·
10					 		 	 		
0 <mark></mark>	248	30.	1	2485	; 5.	24	: 490.	1	2495.	2500
					Frequen	cy (MHz)				
Freq.	Detecto		-	ectrum		actor	Actu	al	Limit	Margin
	Mode			ng Lev	el		FS		@3m	
MHz	PK/QP/	AV		ΒμV		dB	dBµV		dBµV/m	dB
2329.38	Peak			0.60		12.25	52.8		74.00	-21.15
2329.38	Averag			6.51		12.25	38.7		54.00	-15.24
2480.00	Peak			6.63		13.06	89.6		-	-
2480.00	Averag			5.49		13.06	88.5		-	-
2484.23	Peak		3	8.05		13.08	51.1	3	74.00	-22.87
2484.23	Averag		-	6.05		13.08	39.1	^	54.00	-14.87

Page: 37 / 44 Rev.: 00

Below 1G Test Data

Test Mo		BLE-1Mbps Mo		Temp/Hun		°C)/ 59%R⊦
Test Ite		30MHz-1GHz	<u>:</u>	Test Date		nber 15, 202
Polariz	ze	Vertical		Test Engine	er To	ony Chao
Detect	or	Peak				
120 Level (dBu	ıV/m)					
110						
90						
70						
50	 	· · · · · · · · · · · · · · · · · · ·				
	1	2	3 4		5	6
30						
10						
0 <mark></mark>	224.	418.	1 1	612.	806.	1000
		I	Frequency (I	MHz)		
Freq.	Detector	Spectrum	Facto	or Actual	Limit	Margin
•	Mode	Reading Level		FS	@3m	J J
MHz	PK/QP/A	/ dBµV	dB	dBµV/n	n dBµV/m	dB
120.21	Peak	49.60	-9.19	9 40.41	43.50	-3.09
312.27	Peak	46.94	-8.3	6 38.58	46.00	-7.42
480.08	Peak	45.42	-3.3	6 42.06	46.00	-3.94
527.61	Peak	43.78	-3.00		46.00	-5.22
040.05	Peak	32.68	1.77		46.00	-11.55
810.85		31.98	3.96	35.94	54.00	-18.06

107.60

180.35

264.74

287.05

299.66

Peak

Peak

Peak

Peak

Peak

43.02

50.22

44.67

44.14

44.82

Page: 38 / 44 Rev.: 00

MHz	Mode PK/QP/AV	Reading Level dBµV	dB	FS dBµV/m	@3m dBµV/m	dB
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
30	224.		Frequency (MHz)	012.	800.	1000
030	224.	418.		612.	806.	1000
10					 	
30						
1 2	2 3 4	56				
50						
70					· +	
90						
110						
120 Level (dBu	ıV/m)					
Detect	tor	Peak				
Polariz	ze	Horizontal	Т	est Engineer	Ton	iy Chao
Test Ite	em	30MHz-1GH	z	Test Date	Novemb	per 15, 20
Test Mo	ue.	BLE-1Mbps Mo	bde	Temp/Hum	20.9((C)/ 59%RI

-10.95

-11.53

-9.33

-8.84

-8.80

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

32.07

38.69

35.34

35.30

36.02

43.50

43.50

46.00

46.00

46.00

-11.43

-4.81

-10.66

-10.70

-9.98

Page: 39 / 44 Rev.: 00

Above 1G Test Data

	iesi Dala					
Test Mo	ode: E	BLE-1Mbps Low	' CH	Temp/Hum	23.9(°(C)/ 63%RH
Test Ite	em	Harmonic		Test Date	Octobe	er 25, 202´
Polari	ze	Vertical		Test Engine	er F	Ray Li
Detec	tor	Peak / Averag	ie			
120	uV/m)				·	
110						
90						
70						
10						
50	1	3				
30	2	•				
10						
0 <u>1000</u>	6100.	11200.	Frequency (M	16300. IHz)	21400.	26500
Freq.	Detector	Spectrum	Facto		Limit	Margin
MHz	Mode	Reading Level	dD	FS dBu//m	@3m	٩D
4804.00	PK/QP/AV Peak	dBµV 35.09	dB 9.47	dBµV/m 44.56	dBµV/m 74.00	dB -29.44
4804.00		23.34	9.47	32.81	54.00	-29.44
7206.00	Average Peak	32.57	13.51		74.00	-27.92
1200.00	rean	32.37	13.31	40.00	74.00	-21.92

7206.00

N/A

Average

Remark: 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

13.51

34.66

54.00

-19.34

21.15

Page: 40 / 44 Rev.: 00

			Frequ	iency (MHz)			
0 <mark>1000</mark>	6100.		11200.	163	00.	21400.	26500
10						1 1 1	1
30		·	 I I I		 I I I		
	f	4					
50	1 	-3	 				
70							
90							
110			 			 	
120 Level (dBuV	//m)						
Detect	or	Peal	k / Average				
Polariz			orizontal	les	t Engineer	-	Ray Li
Test Ite			armonic		est Date	-	per 25, 202
Test Mo	de:	BI E-1N	/lbps Low C	H I IE	emp/Hum	23.90	°C)/ 63%R⊦

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4804.00	Peak	38.06	9.47	47.53	74.00	-26.47
4804.00	Average	29.99	9.47	39.46	54.00	-14.54
7206.00	Peak	33.05	13.51	46.56	74.00	-27.44
7206.00	Average	21.03	13.51	34.54	54.00	-19.46
N/A						

Remark:

Page: 41 / 44 Rev.: 00

0 <mark>1000</mark>	6100.	11200. Frequer	16300. ncy (MHz)	21400.	26500
10			· · · · · · · · · · · · · · · · · · ·		
30					
	2 4				
50	1 3				
70					
90					
110			· · · · · · · · · · · · · · · · · · ·		
120 Level (dBuV/	m)				;
Detecto	r Pe	eak / Average			
Polarize		Vertical	Test Engin	eer R	ay Li
Test Iter	n	Harmonic	Test Dat	e Octobe	er 25, 202
Test Mod	e: BLE	1Mbps Mid CH	Temp/Hu	m 23.9(C	2)/ 63%RI

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4884.00	Peak	34.73	9.59	44.32	74.00	-29.68
4884.00	Average	22.21	9.59	31.80	54.00	-22.20
7326.00	Peak	32.77	13.24	46.01	74.00	-27.99
7326.00	Average	21.34	13.24	34.58	54.00	-19.42
N/A						

Remark:

Page: 42 / 44 Rev.: 00

90 70 50 2 2			30				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		0	50	2				
		0	70					
90		0						
			90					
110		DLevel (dBuV/m)	110					
120 Level (dBuV/m)			120 Level (dBuV/i	n)				
Detector Peak / Average			Polarize		Horizontal	Test Eng	gineer	Ray Li
	Ray Li	Polarize Horizontal Test Engineer Ray Li	Test Item	า	Harmonic	Test D	oate Octob	oer 25, 2021
Polarize Horizontal Test Engineer R			Test Mode	J. D	LE-1Mbps Mid	CH Temp/ł	20.0(°C)/ 63%R⊦

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4884.00	Peak	36.34	9.59	45.93	74.00	-28.07
4884.00	Average	30.05	9.59	39.64	54.00	-14.36
7326.00	Peak	33.21	13.24	46.45	74.00	-27.55
7326.00	Average	21.32	13.24	34.56	54.00	-19.44
N/A						

Remark:

Page: 43 / 44 Rev.: 00

Frequency (MHz)							
0 <mark>1000</mark>	6100.	11200.	16300.	21400.	26500		
10							
		1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I			1		
30							
20	2 4						
50	1			 			
		1 I 1 I 1 I 1 I 1 I		1	1		
70							
					1 1 1		
90		 			 -		
110							
120 Level (dBuV	/m)	i i		i	i		
Level (dBuV	/m)						
Detecto	or Pe	Peak / Average					
Polarize		Vertical		er R	Ray Li		
Test Iter		Harmonic			October 25, 202		
			Test Date				
Test Moc		Mbps High CH	Temp/Hur		23.9(°C)/ 63%		

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	33.58	9.71	43.29	74.00	-30.71
4960.00	Average	22.14	9.71	31.85	54.00	-22.15
7440.00	Peak	32.60	13.54	46.14	74.00	-27.86
7440.00	Average	20.99	13.54	34.53	54.00	-19.47
N/A						

Remark:

Page: 44 / 44 Rev.: 00

0 ^L 1000	6100.	11200. Freques	16300. ncy (MHz)	21400.	26500	
10						
40					: : :	
30						
	¥ 4					
50						
70						
90						
110						
120 Level (dBuV/	/m)					
Detecto	r Pe	Peak / Average				
Polarize		Horizontal		er R	Ray Li	
Test Iter		Harmonic			October 25, 202	
Test Mod		1Mbps High CH			23.9(°C)/ 63%R	

Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
MHz	PK/QP/AV	dBµV	dB	dBµV/m	dBµV/m	dB
4960.00	Peak	35.90	9.71	45.61	74.00	-28.39
4960.00	Average	27.77	9.71	37.48	54.00	-16.52
7440.00	Peak	32.98	13.54	46.52	74.00	-27.48
7440.00	Average	21.06	13.54	34.60	54.00	-19.40
N/A						

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

--End of Test Report--