

FCC C2PC Test Report

FCC ID	: P27-XIONESCM2	
Equipment	: XiOne-SC (B)	
Model No.	: SCXIxxBEIxCO; SCXIxxBEI (Refer to item 1.1.1 for more details.)	
Brand Name	: Comcast Xfinity; Cox; Shaw (Refer to item 1.1.1 for more details.)	
Applicant	: Sercomm Corporation	
Address	: 8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan. R.O.C.	I
Standard	: 47 CFR FCC Part 15.247	
Received Date	: May 06, 2022	
Tested Date	: May 18 ~ May 23, 2022	

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

ong Cher

Along Chen// Assistant Manager

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	9
1.3	Test Setup Chart	9
1.4	The Equipment List	.10
1.5	Test Standards	.11
1.6	Reference Guidance	.11
1.7	Deviation from Test Standard and Measurement Procedure	.11
1.8	Measurement Uncertainty	.11
2	TEST CONFIGURATION	.12
2.1	Testing Facility	.12
2.2	The Worst Test Modes and Channel Details	.12
3	TRANSMITTER TEST RESULTS	.13
3.1	Unwanted Emissions into Restricted Frequency Bands	.13
3.2		
0.2	Conducted Output Power	.16
3.3	AC Power Line Conducted Emissions	.16 .17

Appendix A. Unwanted Emissions into Restricted Frequency Bands

Appendix B. Conducted Output Power

Appendix C. AC Power Line Conducted Emissions

Release Record

Report No.	Version	Description	Issued Date
FR161001-05AD	Rev. 01	Initial issue	Jun. 08, 2022

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emission	[dBuV]: 5.505MHz 50.29 (Margin -9.71dB) - QP	Pass
15.247(d)	Unwanted Emissions	[dBuV/m at 3m]: 421.96MHz	Pass
15.209		40.84 (Margin -5.16dB) - PK	F 855
15.247(b)(1)	Conducted Output Power	Power [dBm]: 12.65	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

This is a Class II Permissive Change report (C2PC).

This report is issued as a supplementary report to original report no. FR161001-04AD. The modifications are listed as follows:

- Adding 2nd source (RF and non-RF components) listed in part list document.

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description		
Comcast Xfinity; Cox; Shaw	SCXIxxBEIxCO; SCXIxxBEI	XiOne-SC (B)	Where "x" may be any alphanumeric for External Body Color.		
 All models are electrically identical, different model names are for marketing purpose. The above models, model SCXI11BEI was selected as a representative one for the final test and only its data was recorded in this report. 					

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate		
2400-2483.5	BR	2402-2480	0-78 [79]	1 Mbps		
2400-2483.5	EDR	2402-2480	0-78 [79]	2 Mbps		
2400-2483.5	EDR	2402-2480	0-78 [79]	3 Mbps		
Note 1: Bluetooth BR uses a GESK						

Note 1: Bluetooth BR uses a GFSK.

Note 2: Bluetooth EDR uses a combination of π /4-DQPSK and 8DPSK.

1.1.3 Antenna Details

Ant. No.	Туре	Connector	Gain (dBi)	Remarks
1	Printing	No	3.85	

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	5.0Vdc from AC adapter

1.1.5 Accessories

	Accessories				
No.	Equipment	Description			
1	AC adapter	Brand: LEADER Model: ML08-7050150-A1 I/P: 100-120V~ 50/60Hz, 0.25A O/P: 5.0Vdc, 1.5A Power Line: 1.8m non-shielded without core			
2	AC adapter	Brand: NetBit Model: NBC08A050150HU I/P: 100-120V~ 50/60Hz, 0.2A O/P: 5.0Vdc, 1.5A Power Line: 1.81m non-shielded without core			
3	AC adapter	Brand: AcBel Model: WAK010 I/P: 100-120V~ 60Hz, 0.25A O/P: 5.0Vdc, 1.5A Power Line: 1.78m non-shielded without core			

1.1.6 Channel List

Frequency band (MHz)				2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.7 Test Tool and Duty Cycle

Test Tool	Tera Term, V4.66 Bluetooth Simulator, Brand: R&S, Model: CMW270				
Modulation Mode	Duty Cycle Of Test Signal (%) Duty Factor (dB)				
DH5	78.76%	1.04			
2DH5	78.38%	1.06			
3DH5	77.61%	1.10			

1.1.8 Power Index of Test Tool

Madulatian Mada	Test Frequency (MHz)			
	2402	2441	2480	
GFSK / 1Mbps	0x09 0 0x0	0x09 0 0x0	0x09 0 0x0	
π/4-DQPSK / 2Mbps	0x09 0 0x0	0x09 0 0x0	0x09 0 0x0	
8DPSK / 3Mbps	0x09 0 0x0	0x09 0 0x0	0x09 0 0x0	

1.2 Local Support Equipment List

Support Equipment List							
No.	Equipment	Brand	Model	FCC ID	Remarks		
1	Notebook	DELL	Latitude E5470	DoC			
2	LCD Monitor	ASUS	MX27UCS				

1.3 Test Setup Chart

The Equipment List 1.4

Test Item	Conducted Emission					
Test Site	Conduction room 1 / (CO01-WS)					
Tested Date	May 20, 2022					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Receiver	R&S	ESR3	101658	Feb. 16, 2022	Feb. 15, 2023	
LISN	R&S	ENV216	101579	Apr. 21, 2022	Apr. 20, 2023	
LISN (Support Unit)	SCHWARZBECK	NSLK 8127	8127667	Jan .07, 2022	Jan .06, 2023	
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 19, 2021	Oct. 18, 2022	
50 ohm terminal (Support Unit)	NA	50	04	May 25, 2021	May 24, 2022	
Measurement Software	AUDIX	e3	6.120210k	NA	NA	
Note: Calibration Inter	rval of instruments liste	d above is one year.				

Note: Calibration Interval of instruments listed above is one year.

Test Item	Radiated Emission					
Test Site	966 chamber1 / (03Cl	H01-WS)				
Tested Date	May 18, 2022					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Receiver	R&S	ESR3	101657	Mar. 15, 2022	Mar. 14, 2023	
Spectrum Analyzer	R&S	FSV40	101498	Nov. 29, 2021	Nov. 28, 2022	
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 08, 2021	Nov. 07, 2022	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jun. 30, 2021	Jun. 29, 2022	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 03, 2021	Dec. 02, 2022	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170508	Jan. 11, 2022	Jan. 10, 2023	
Preamplifier	EMC	EMC02325	980225	Jun. 29, 2021	Jun. 28, 2022	
Preamplifier	Agilent	83017A	MY39501308	Sep. 28, 2021	Sep. 27, 2022	
Preamplifier	EMC	EMC184045B	980192	Jul. 14, 2021	Jul. 13, 2022	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 05, 2021	Oct. 04, 2022	
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 05, 2021	Oct. 04, 2022	
LF cable 11M	EMC	EMCCFD400-NW-N W-11000	200801	Oct. 05, 2021	Oct. 04, 2022	
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 05, 2021	Oct. 04, 2022	
RF Cable	EMC	EMC104-35M-35M- 8000	210920	Oct. 05, 2021	Oct. 04, 2022	
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 05, 2021	Oct. 04, 2022	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	
Note: Calibration Interval of instruments listed above is one year.						

Test Item	RF Conducted					
Test Site	TH01-WS)					
Tested Date	May 23, 2022					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Spectrum Analyzer	R&S	FSV40	101910	Apr. 18, 2022	Apr. 17, 2023	
Power Meter	Anritsu	ML2495A	1241002	Nov. 07, 2021	Nov. 06, 2022	
Power Sensor	Anritsu	MA2411B	1207366	Nov. 07, 2021	Nov. 06, 2022	
Measurement Software	Sporton	SENSE-15247_FS	V5.10.7.11	NA	NA	
Measurement Software	Sporton	SENSE-15247_FS	V5.10.7.11	NA	NA	

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.130 Hz				
Conducted power	±0.808 dB				
Power density	±0.583 dB				
Conducted emission	±2.715 dB				
AC conducted emission	±2.92 dB				
Unwanted Emission ≤ 1GHz	±3.41 dB				
Unwanted Emission > 1GHz	±4.59 dB				
Time	±0.1%				

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corporation
Test Site	CO01-WS, 03CH01-WS, TH01-WS
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

FCC Designation No.: TW2732

➢ FCC site registration No.: 181692

➢ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
AC Power Line Conducted Emissions	GFSK	2402	1Mbps	
Unwanted Emissions ≤ 1GHz	GFSK	2402	1Mbps	
Unwanted Emissions > 1GHz	GFSK	2480	1Mbps	
Conducted Output Power	GFSK л /4 DQPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1Mbps 2Mbps 3Mbps	

NOTE:

1. Three adapters (LEADER, NetBit & AcBel) had been covered during the pretest and found that **LEADER** adapter was the worst case and was selected for final testing.

3 Transmitter Test Results

3.1 Unwanted Emissions into Restricted Frequency Bands

3.1.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.1.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

3.

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:

- $\frac{1 \text{ s} / 1600 \text{ s} 5}{100 \text{ ms}} = -30.1 \text{ dB}$
- 4. Radiated emission above 1GHz / Average value for other emissions
- 4. RBW=1MHz, VBW=1/T and Peak detector

3.1.3 Test Setup

3.1.4 Test Results

Refer to Appendix A.

3.2 Conducted Output Power

3.2.1 Limit of Conducted Output Power

1 Watt

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.

🛛 0.125 Watt

For all other frequency hopping systems in the 2400–2483.5 MHz band.

0.125 Watt

For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.2.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.2.3 Test Setup

3.2.4 Test Results

Ambient Condition 23°C / 67% Tested By Aska Huang

Refer to Appendix B.

3.3 **AC Power Line Conducted Emissions**

Conducted Emissions Limit						
Frequency Emission (MHz)	Quasi-Peak	Average				
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarit	hm of the frequency					

Limit of AC Power Line Conducted Emissions 3.3.1

Note 1: " Decreases with the logarithm of the frequency.

3.3.2 Test Procedures

- The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical 1. conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are 2. connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz. 3.
- This measurement was performed with AC 120V/60Hz 4.

3.3.3 Test Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.3.4 Test Results

Refer to Appendix C.

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666 No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.) No.2-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345 Email: ICC_Service@icertifi.com.tw

—END—

Summary of Peak Power

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	12.65	0.01841
BT-EDR(2Mbps)	9.59	0.00910
BT-EDR(3Mbps)	9.95	0.00989

Result

Mode	Result	Antenna Gain (dBi)	Power (dBm)	Power Limit (dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	3.85	12.65	21.00
2441MHz	Pass	3.85	12.52	21.00
2480MHz	Pass	3.85	12.37	21.00
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	3.85	9.59	21.00
2441MHz	Pass	3.85	9.51	21.00
2480MHz	Pass	3.85	9.32	21.00
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	3.85	9.95	21.00
2441MHz	Pass	3.85	9.84	21.00
2480MHz	Pass	3.85	9.68	21.00

Summary of Average Power

Mode	Power	Power	
	(dBm)	(W)	
2.4-2.4835GHz	-	-	
BT-BR(1Mbps)	12.54	0.01795	
BT-EDR(2Mbps)	7.32	0.00540	
BT-EDR(3Mbps)	7.33	0.00541	

Result

Mode	Result	Antenna Gain (dBi)	Power (dBm)	Power Limit (dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	3.85	12.54	-
2441MHz	Pass	3.85	12.42	-
2480MHz	Pass	3.85	12.26	-
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	3.85	7.32	-
2441MHz	Pass	3.85	7.21	-
2480MHz	Pass	3.85	7.00	-
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	3.85	7.33	-
2441MHz	Pass	3.85	7.23	-
2480MHz	Pass	3.85	7.02	-

Note: Average power is for reference only.

Unwanted Emissions (Below 1GHz)

Unwanted Emission (Above 1GHz)

MODEL:BRAVO/BRAVO-SC							
Itom	BOM Pof Doc	function	main source		Sercomm suggested substitute		
item	DOM.REI DES	iunction	Manufacturer	MPN	Manufacturer	MPN	
1	FB5000,FB5015	BEAD	Murata	FERRITE BEAD BLM15PX601SN1D	INPAQ	MHC1005P601ZBPA90E4	
2	FB5018	BEAD	Murata	FERRITE BEAD BLM15AX102SN1D	CHILISIN	PBY100505T-102Y-N	
3	D4600,D4601,D4602,D8401	TVS	BENCENT	DIODE TVS ARRAY BV-FK05U4CA	мсс	ESD PROTECTOR ESDSLC0524F-TP	
4	D4603, D4604, D8403, D8404	TVS	BENCENT	DIODE TVS BV-FA05UCA	мсс	CSPULC5V0LB(CSP1006-2)	
5	L8002	RF LL	CHILISIN	INDUCTOR CLH1005T-6N8J-S	SUNLORD	SDCL1005C6N8JTDF	
6	L8000	RF LL	Murata	INDUCTOR LQG15HN6N2S02D	SUNLORD	INDUCTOR SDCL1005C6N2STDF	
7	L8001	RF LL	Murata	INDUCTOR LQG15HN5N6S02D	SUNLORD	INDUCTOR SDCL1005C5N6STDF	
8	L8007	RF LL	Murata	INDUCTOR LQP03TN3N9B02D	SUNLORD	SDCL0603Q3N9BT02B03	
9	L6013	RF LL	Murata	INDUCTOR LQP03TN1N1B02D	SUNLORD	SDCL0603Q1N1BT02B03	
10	L6048	RF LL	Murata	INDUCTOR LQP03TN1N3B02D	SUNLORD	SDCL0603Q1N3BT02B03	
11	L6010,L6012	RF LL	Murata	INDUCTOR LQP03TN3N2B02D	SUNLORD	SDCL0603Q3N2BT02B03	
12	L8006	RF LL	ток	INDUCTOR MLG0603P1N5BTZ10	SUNLORD	INDUCTOR SDCL0603Q1N5BT02B03	
13	L7000,L7001	RF LL	Murata	INDUCTOR LQP03TN3N0B02D	SUNLORD	SDCL0603Q3N0BT02B03	

Part List

	14	L6001	RF LL	Murata	INDUCTOR LQP03TN8N2H02D	SUNLORD	SDCL0603Q8N2HT02B03
	15	L7008,L8005	RF LL	CHILISIN	INDUCTOR CLH1005T-22NJ-S	SUNLORD	SDCL1005C22NJTDF
	16	L7002	RF LL	Murata	INDUCTOR LQP03TN2N7B02D	SUNLORD	INDUCTOR SDCL0603Q2N7BT02B03
	17	F7000	RF Filter	ток	RF FILTER(LP) DEA162690LT-5014A5	Walsin	RFLPF1606A13T
	18	L4600,L4601,L4602,L4603	common chock	Murata	COMMON CHOKE NFG0QHB542HS2D	ток	TCM0605T-080-2P-T201
	19	J1	CONN	LIYANG	JACK DC PWR LYDC000147	SHENZHEN UNIT ELECTRONICS	805-02200-000
	20	J8400	CONN	LIYANG	CONN RJ45 LYWK045131	SHENZHEN UNIT ELECTRONICS	845-63060-000
	21	FB5003, FB5004, FB5005, FB5006	BEAD	Murata	FERRITE BEAD BLM03AX121SN1D	SUNLORD	FERRITE BEAD PZ0603D121-R45TF
	22	FB402	BEAD	CHILISIN	FERRITE BEAD 1.5A 0402	TAI-TECH	FERRITE BEAD HCB1005KF-121T15
	23	FB5001, FB5002, FB5016, FB5017	BEAD	Murata	FERRITE BEAD BLM15PD121SN1D	TAI-TECH	FERRITE BEAD HCB1005KF-121T15
	24	L8003	RF LL	CHILISIN	INDUCTOR BSCH001005053N6SCS	SUNLORD	INDUCTOR SDCL1005C3N6STDF
	25	C8004,C8011	RF CAP	Murata	CAP CHIP GJM0335C1E100JB01D	WALSIN	RF03N100J500CT
	26	J6001	RF CONN	Murata	CONN RF MM8030-2610RJ3	ECT	CONN RF 818011998
	27	SK6000	RF CONN	Foxconn	CONN RF KK23011-32-7H	ECT	CONN RF 818000368
	28	U6000,U6002	RF SWITCH	RICHWAVE	RF CHIP RTC6603SP	КСТ	KCT2821L
	29	C8413	САР	Walsin	CAP CHIP 1808B102K202CT	YAGEO	CC1808KKX7RDBB102
l	30	U7000	RF SWITCH	RICHWAVE	RF CHIP RTC6617SP	MAXSCEND	MXD8730