



Project No: Report No.: TM-2305000094P TMWK2305001437KR FCC ID: P27-SLIMG01

Page: 1 / 44 Rev.: 01

# RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

| Test Standard               | FCC Part 15.247                                                                                                                                     |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Product name                | Image sensor with LoRa module                                                                                                                       |
| Brand Name                  | Sercomm                                                                                                                                             |
| Model No.                   | SL-IMG01                                                                                                                                            |
| Test Result                 | Pass                                                                                                                                                |
| Statements of<br>Conformity | Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. |

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

and la

Shawn Wu Supervisor

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



Report No.:

TMWK2305001437KR

Page: 2 / 44 Rev.: 01

## **Revision History**

| Rev. | Issue<br>Date | Revisions                        | Effect Page              | Revised By |
|------|---------------|----------------------------------|--------------------------|------------|
| 00   | June 8, 2023  | Initial Issue                    | ALL                      | Doris Chu  |
| 01   | June 16, 2023 | See the following Note Rev. (01) | P.4, P.31-36,<br>P.39-44 | Doris Chu  |

Rev. (01)

1. Modify power supply in section 1.1.

2. Added remark in page 31-36.

3. Added Average and remark in page 39-44



Page: 3 / 44 Rev.: 01

## Table of contents

| 1.   | GENERAL INFORMATION                          | 4 |
|------|----------------------------------------------|---|
| 1.1  | EUT INFORMATION                              | 4 |
| 1.2  | EUT CHANNEL INFORMATION                      | 5 |
| 1.3  | ANTENNA INFORMATION                          | 5 |
| 1.4  | MEASUREMENT UNCERTAINTY                      | 6 |
| 1.5  | FACILITIES AND TEST LOCATION                 | 6 |
| 1.6  | INSTRUMENT CALIBRATION                       |   |
| 1.7  | SUPPORT AND EUT ACCESSORIES EQUIPMENT        | 8 |
| 1.8  | TEST METHODOLOGY AND APPLIED STANDARDS       | 8 |
| 2.   | TEST SUMMARY                                 | 9 |
| 3.   | DESCRIPTION OF TEST MODES 1                  | 0 |
| 3.1  | THE WORST MODE OF OPERATING CONDITION 1      | 0 |
| 3.2  | THE WORST MODE OF MEASUREMENT 1              | 1 |
| 3.3  | EUT DUTY CYCLE 1                             |   |
| 4.   | TEST RESULT 1                                | 3 |
| 4.1  | AC POWER LINE CONDUCTED EMISSION 1           | 3 |
| 4.2  | 6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%) 1 | 4 |
| 4.3  | OUTPUT POWER MEASUREMENT 1                   |   |
| 4.4  | POWER SPECTRAL DENSITY 2                     | 0 |
| 4.5  | CONDUCTED BAND EDGE AND SPURIOUS EMISSION 2  | 3 |
| 4.6  | RADIATION BANDEDGE AND SPURIOUS EMISSION 2   | 7 |
| APPE | NDIX 1 - PHOTOGRAPHS OF EUT                  |   |



## **1. GENERAL INFORMATION**

## **1.1 EUT INFORMATION**

| Applicant                                                                               | Sercomm Corporation<br>8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan |  |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| ManufacturerSercomm Corporation<br>8F, No. 3-1, YuanQu St., NanKang, Taipei 115, Taiwan |                                                                             |  |  |  |
| Equipment Image sensor with LoRa module                                                 |                                                                             |  |  |  |
| Model No. SL-IMG01                                                                      |                                                                             |  |  |  |
| Model Discrepancy N/A                                                                   |                                                                             |  |  |  |
| Trade Name                                                                              | Sercomm                                                                     |  |  |  |
| Received Date                                                                           | May 9, 2023                                                                 |  |  |  |
| Date of TestMay 15 ~ June 2, 2023                                                       |                                                                             |  |  |  |
| Power Supply                                                                            | Power from Battery. (DC 6V)                                                 |  |  |  |

#### Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.



## **1.2 EUT CHANNEL INFORMATION**

| Frequency Range    | 903 MHz-914.2 MHz |  |  |
|--------------------|-------------------|--|--|
| Modulation Type    | LoRa              |  |  |
| Number of channels | 8 Channels        |  |  |

#### Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

| Number of frequencies to be tested                                                                 |   |                                              |  |  |  |
|----------------------------------------------------------------------------------------------------|---|----------------------------------------------|--|--|--|
| Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation |   |                                              |  |  |  |
| 1 MHz or less                                                                                      | 1 | Middle                                       |  |  |  |
| 1 MHz to 10 MHz                                                                                    | 2 | 1 near top and 1 near bottom                 |  |  |  |
| More than 10 MHz                                                                                   | 3 | 1 near top, 1 near middle, and 1 near bottom |  |  |  |

## **1.3 ANTENNA INFORMATION**

| Antenna Type      | CHIP Z PIFA PCB Dipole Coils |
|-------------------|------------------------------|
| Antenna Gain      | Gain: -2.8 dBi               |
| Antenna Connector | N/A                          |

#### Remark:

1. The industrial epoxy adhesive is used making Antenna connection permanently prior to shipping. It complies with rule 15.203.



Page: 6 / 44 Rev.: 01

## **1.4 MEASUREMENT UNCERTAINTY**

| PARAMETER                       | UNCERTAINTY |
|---------------------------------|-------------|
| AC Powerline Conducted Emission | ± 2.1183    |
| Channel Bandwidth               | ± 2.1863    |
| Power Spectral density          | ± 2.1855    |
| Conducted Bandedge              | ± 2.1866    |
| Conducted Spurious Emission     | ± 2.1859    |
| Radiated Emission_9kHz-30MHz    | ± 3.842     |
| Radiated Emission_30MHz-200MHz  | ± 4.517     |
| Radiated Emission_200MHz-1GHz   | ± 4.844     |
| Radiated Emission_1GHz-6GHz     | ± 5.411     |
| Radiated Emission_6GHz-18GHz    | ± 5.266     |

Remark:

1.This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

## **1.5 FACILITIES AND TEST LOCATION**

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan.

No. 12, Ln. 116, Wugong 3rd Rd., Wugu Dist., New Taipei City, Taiwan 24803 CAB identifier: TW1309

| Test site          | Test Engineer | Remark                                                                   |
|--------------------|---------------|--------------------------------------------------------------------------|
| AC Conduction Room | -             | Not applicable, because EUT doesn't<br>connect to AC Main Source direct. |
| Radiation          | Czerny Lin    | -                                                                        |
| RF Conducted       | Jack Chen     | -                                                                        |

**Remark:** The lab has been recognized as the FCC accredited lab. under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309



## **1.6 INSTRUMENT CALIBRATION**

| RF Conducted Test Site |                                                             |     |                      |                          |            |                  |                  |                    |
|------------------------|-------------------------------------------------------------|-----|----------------------|--------------------------|------------|------------------|------------------|--------------------|
| Equipmen               | Equipment Manufacturer Model Serial Number Calibration Date |     |                      |                          |            |                  | Cali             | ibration Due       |
| Power Sens             | or Anrits                                                   | I   | MA2411B              | 1911386                  | 2022-      | )22-08-08        |                  | 023-08-07          |
| Power Sens             | or Anrits                                                   | I   | MA2411B              | 1911387                  | 2022-08-08 |                  | 2                | 023-08-07          |
| EXA Signa<br>Analyzer  | Keysig                                                      | nt  | N9010B               | MY55460167               | 2022-      | 09-07            | 09-07 2023-09-06 |                    |
| EXA Signa<br>Analyzer  | l Keysig                                                    | nt  | N9010A               | MY54200716               | 2022-      | 10-13            | 2                | 023-10-12          |
| Power Mete             | er Anrits                                                   | ı   | ML2496A              | 2136002                  | 2022-      | 11-24            | 2                | 023-11-23          |
| Software               |                                                             |     | Radi                 | o Test Software          | Ver. 21    |                  |                  |                    |
|                        |                                                             |     | 3M 966 Cham          | ber Test Site            |            |                  |                  |                    |
| Equipment              | Manufacturer                                                |     | Model                | Serial Nu                | mber       | Calibrat<br>Date |                  | Calibration<br>Due |
| Antenna                | SHWARZBECK                                                  |     | VULB 9168            | 1277                     |            | 2023-01          | -13              | 2024-01-12         |
| Pre-Amplifier          | EMCI                                                        | E   | MC118A45SE           | 98082                    | 0          | 2022-12          | 2-23             | 2023-12-22         |
| Pre-Amplifier          | EMCI                                                        |     | EMC330N              | 98085                    | 3          | 2022-12          | 2-23             | 2023-12-22         |
| Coaxial Cable          | EMC                                                         | EM  | C101G-KM-KM-9<br>000 | 220407+211228+2302<br>05 |            | 2023-03          | 8-21             | 2024-03-20         |
| Signal<br>Generator    | Agilent                                                     |     | N9010A               | MY52220817               |            | 2023-03          | 8-09             | 2024-03-08         |
| Coaxial Cable          |                                                             |     | EMCCFD400            | 211212+2112<br>20        | 22+2110    | 2023-03          | 8-21             | 2024-03-20         |
| Thermo-Hygr<br>o Meter | EDSDS                                                       |     | EDS-A49              | 966D <sup>-</sup>        | 1          | 2023-05-1        |                  | 2024-05-10         |
| Pre-Amplifier          | EMCI                                                        | E   | MC184045SE           | 98087                    | 2          | 2023-01-03       |                  | 2024-01-02         |
| Horn Antenna           | RF SPIN                                                     |     | DRH18-E              | 210301A18ES 2            |            | 2023-02-03       |                  | 2024-02-02         |
| Horn Antenna           | SHWARZBECK                                                  |     | BBHA 9170            | 1134                     | 1134 202   |                  | 2-30             | 2023-12-29         |
| Loop Antenna           | SCHWARZBEC<br>K                                             | F   | MZB 1513-60          | 1513-60-                 | 028        | 2022-12          | 2-27             | 2023-12-26         |
| High Pass<br>Filter    | TITAN                                                       | T04 | H10001000060S<br>01  | DS 211215-7-2 2023-02-02 |            | 2-02             | 2024-02-01       |                    |
| Software               |                                                             |     | ea                   | 6.11-20180413            | 3          |                  |                  |                    |

| AC Conducted Emissions Test Site |                                                   |  |  |  |  |  |  |
|----------------------------------|---------------------------------------------------|--|--|--|--|--|--|
| Equipment                        | Equipment Manufacturer Model S/N Cal Date Cal Due |  |  |  |  |  |  |
| N/A                              |                                                   |  |  |  |  |  |  |

Remark:

Each piece of equipment is scheduled for calibration once a year.
 N.C.R. = No Calibration Required.



.

Report No.: TMWK2305001437KR

## **1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT**

|     | EUT Accessories Equipment                   |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------|--|--|--|--|--|--|--|--|
| No. | No. Equipment Brand Model Series No. FCC ID |  |  |  |  |  |  |  |  |
|     | N/A                                         |  |  |  |  |  |  |  |  |

| Support Equipment |                                             |        |      |     |     |  |  |  |
|-------------------|---------------------------------------------|--------|------|-----|-----|--|--|--|
| No.               | No. Equipment Brand Model Series No. FCC ID |        |      |     |     |  |  |  |
| 1                 | NB(E)                                       | Lenovo | T460 | N/A | N/A |  |  |  |

## **1.8 TEST METHODOLOGY AND APPLIED STANDARDS**

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247.



Page: 9 / 44 Rev.: 01

## 2. TEST SUMMARY

| FCC Standard<br>Section | Report<br>Section | Test Item                   | Result |
|-------------------------|-------------------|-----------------------------|--------|
| 15.203                  | 1.3               | Antenna Requirement         | Pass   |
| 15.207(a)               | 4.1               | AC Conducted Emission       | N/A    |
| 15.247(a)(2)            | 4.2               | 6 dB Bandwidth              | Pass   |
| -                       | 4.2               | Occupied Bandwidth (99%)    | Pass   |
| 15.247(b)(3)            | 4.3               | Output Power Measurement    | Pass   |
| 15.247(e)               | 4.4               | Power Spectral Density      | Pass   |
| 15.247(d)               | 4.5               | Conducted Spurious Emission | Pass   |
| 15.247(d)               | 4.5               | Conducted Emission          | Pass   |
| 15.247(d)               | 4.6               | Radiation Band Edge         | Pass   |
| 15.247(d)               | 4.6               | Radiation Spurious Emission | Pass   |



Г

Report No.: TMWK2305001437KR

## 3. DESCRIPTION OF TEST MODES

### **3.1 THE WORST MODE OF OPERATING CONDITION**

| Operation mode                                                                                                   | LoRa with 500kHz Bandwidth. |                 |  |
|------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|--|
| Test Channel Frequencies1.Lowest Channel: 903 MHz<br>2.Middle Channel: 907.8 MHz<br>3.Highest Channel: 914.2 MHz |                             |                 |  |
|                                                                                                                  | Channel                     | Frequency (MHz) |  |
|                                                                                                                  | CH64                        | 903             |  |
|                                                                                                                  | CH65                        | 904.6           |  |
|                                                                                                                  | CH66                        | 906.2           |  |
| Channel List                                                                                                     | CH67                        | 907.8           |  |
|                                                                                                                  | CH68                        | 909.4           |  |
|                                                                                                                  | CH69                        | 911             |  |
|                                                                                                                  | CH70                        | 912.6           |  |
|                                                                                                                  | CH71                        | 914.2           |  |
|                                                                                                                  |                             |                 |  |

#### Remark:

1. The device supports hybrid mode.

2. RF output power was measured with Average detector



## **3.2 THE WORST MODE OF MEASUREMENT**

| Radiated Emission Measurement Above 1G   |                                                                                                                                                                                                                      |  |  |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Condition                           | Test Condition Radiated Emission Above 1G                                                                                                                                                                            |  |  |  |  |
| Power supply Mode                        | Mode 1: EUT power by Battery                                                                                                                                                                                         |  |  |  |  |
| Worst Mode I Mode 1 Mode 2 Mode 3 Mode 4 |                                                                                                                                                                                                                      |  |  |  |  |
| Worst Position                           | <ul> <li>Placed in fixed position.</li> <li>Placed in fixed position at X-Plane (E2-Plane)</li> <li>Placed in fixed position at Y-Plane (E1-Plane)</li> <li>Placed in fixed position at Z-Plane (H-Plane)</li> </ul> |  |  |  |  |

| Radiated Emission Measurement Below 1G                                 |                                           |  |  |  |  |
|------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| Test Condition                                                         | Test Condition Radiated Emission Below 1G |  |  |  |  |
| Power supply Mode Mode 1: EUT power by Battery                         |                                           |  |  |  |  |
| Worst Mode         Mode 1         Mode 2         Mode 3         Mode 4 |                                           |  |  |  |  |

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Y-Plane) were recorded in this report



Page: 12 / 44 Rev.: 01

## **3.3 EUT DUTY CYCLE**

| Temperature: | <b>22.8 ~ 26.8</b> ℃ | Test date: | May 15 ~ June 2, 2023 |
|--------------|----------------------|------------|-----------------------|
| Humidity:    | 52 ~ 61% RH          | Tested by: | Jack Chen             |

| Duty Cycle    |                |                                            |           |                      |  |  |
|---------------|----------------|--------------------------------------------|-----------|----------------------|--|--|
| Configuration | Duty Cycle (%) | Duty Factor (dB)<br>=10*log (1/Duty Cycle) | 1/T (kHz) | VBW setting<br>(kHz) |  |  |
| LoRa-500kHz   | 100.00         | 0.00                                       | 0.33      | 0.01                 |  |  |

|                    |                                                                                         | nalyzer - Swept SA          |                         |          |                                                      |                                 |                                               |                                     |
|--------------------|-----------------------------------------------------------------------------------------|-----------------------------|-------------------------|----------|------------------------------------------------------|---------------------------------|-----------------------------------------------|-------------------------------------|
| XI RL              | RF                                                                                      | 50 Ω DC                     | RALI_                   |          | SENSE:INT                                            | ALIGN AUTO<br>Avg Type: Voltage | 12:22:13 PM May 15, 2023<br>TRACE 1 2 3 4 5 6 | Frequency                           |
| Center i           | -req 9                                                                                  | 03.000000                   | PNO: Fast<br>IFGain:Lot | t ↔<br>N | <ul> <li>Trig: Free Run<br/>#Atten: 30 dB</li> </ul> | Avg Type. Voltage               |                                               |                                     |
| 10 dB/div          |                                                                                         | Offset 10.5 dB<br>30.00 dBm |                         |          |                                                      | Δ                               | Mkr3 3.000 ms<br>0.01 dB                      | Auto Tune                           |
| Log                |                                                                                         | <u>30.00 dB</u> m           |                         |          |                                                      |                                 |                                               |                                     |
| 20.0               | ₂</td <td>¥</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Center Freq</td> | ¥                           |                         |          |                                                      |                                 |                                               | Center Freq                         |
| 10.0               |                                                                                         |                             |                         |          |                                                      |                                 |                                               | 903.000000 MHz                      |
| 0.00               |                                                                                         |                             |                         |          |                                                      |                                 |                                               |                                     |
| -10.0              |                                                                                         |                             |                         |          |                                                      |                                 |                                               | Start Freq                          |
| -20.0              |                                                                                         |                             |                         |          |                                                      |                                 |                                               | 903.000000 MHz                      |
| -30.0              |                                                                                         |                             |                         |          |                                                      |                                 |                                               | 500.000000 11112                    |
| -40.0              |                                                                                         |                             |                         |          |                                                      |                                 |                                               |                                     |
| -50.0              |                                                                                         |                             |                         |          |                                                      |                                 |                                               | Stop Freq                           |
| -60.0              |                                                                                         |                             |                         |          |                                                      |                                 |                                               | 903.000000 MHz                      |
|                    |                                                                                         |                             |                         |          |                                                      |                                 |                                               |                                     |
| Center 9<br>Res BW |                                                                                         | 0000 MHz                    | #\                      | /BW      | 8.0 MHz                                              | Sweep 2                         | Span 0 Hz<br>0.00 ms (1001 pts)               | CF Step<br>8.000000 MHz<br>Auto Man |
|                    | RC SCL                                                                                  | ×<br>(Δ)                    | 3.000 ms                | (Δ)      | Y FU                                                 | INCTION FUNCTION WIDTH          |                                               | <u>Auto</u> Man                     |
| 2 F<br>3 Δ4        | 1 t<br>1 t                                                                              | (Δ)                         | 1.000 ms<br>3.000 ms    | (A)      | 20.67 dBm<br>0.01 dB                                 |                                 |                                               | Freq Offset                         |
| 4 F                | i t                                                                                     | (Δ)                         | 1.000 ms                | (Δ)      | 20.67 dBm                                            |                                 |                                               | 0 Hz                                |
| 5<br>6<br>7        |                                                                                         |                             |                         |          |                                                      |                                 | E                                             |                                     |
| 7<br>8<br>9        |                                                                                         |                             |                         |          |                                                      |                                 |                                               | Scale Type                          |
| 10<br>11           |                                                                                         |                             |                         |          |                                                      |                                 |                                               | Log <u>Lin</u>                      |
| •                  |                                                                                         |                             |                         |          |                                                      |                                 | •                                             |                                     |

#### -20054



Page: 13 / 44 Rev.: 01

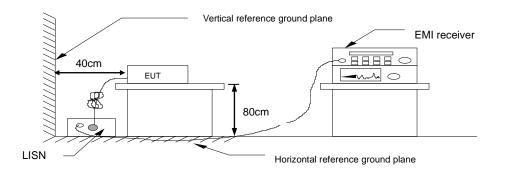
## 4. TEST RESULT

## **4.1 AC POWER LINE CONDUCTED EMISSION**

### 4.1.1 Test Limit

According to §15.207(a),

| Frequency Range | Limits(dBµV) |           |  |
|-----------------|--------------|-----------|--|
| (MHz)           | Quasi-peak   | Average   |  |
| 0.15 to 0.50    | 66 to 56*    | 56 to 46* |  |
| 0.50 to 5       | 56           | 46        |  |
| 5 to 30         | 60           | 50        |  |


\* Decreases with the logarithm of the frequency.

### 4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed above horizontal ground plane and 0.4m above vertical ground plane
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

### 4.1.3 Test Setup



### 4.1.4 Test Result

Not applicable, because EUT not connect to AC Main Source direct.



Page: 14 / 44 Rev.: 01

## 4.26dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

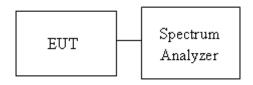
### 4.2.1 Test Limit

According to §15.247(a)(2),

#### 6 dB Bandwidth :

Limit

Shall be at least 500kHz


**Occupied Bandwidth(99%)** : For reporting purposes only.

### 4.2.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.9.2,

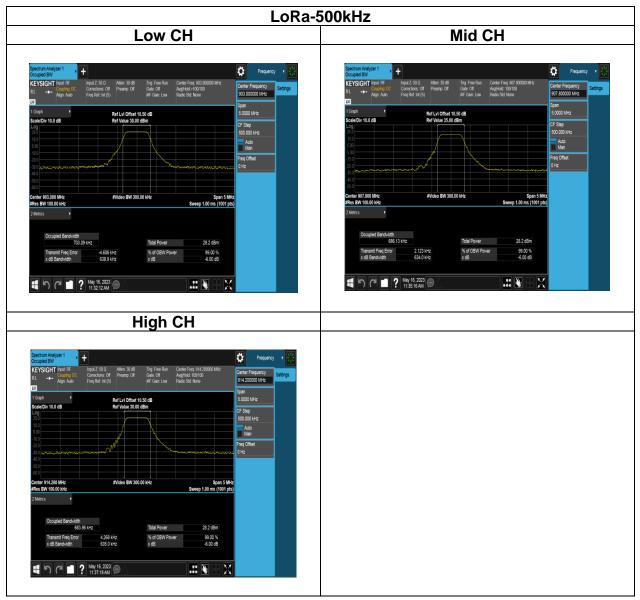
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. SA set RBW = 100kHz, VBW = 300 kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

### 4.2.3 Test Setup



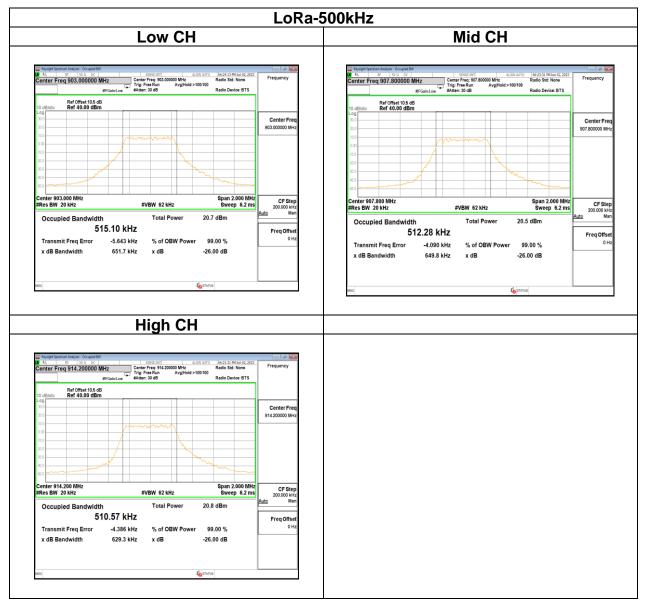


Page: 15 / 44 Rev.: 01


### 4.2.4 Test Result

| Temperature: | <b>22.8 ~ 26.8</b> °C | Test date: | May 15 ~ June 2, 2023 |
|--------------|-----------------------|------------|-----------------------|
| Humidity:    | 52 ~ 61% RH           | Tested by: | Jack Chen             |

| Test mode: LoRa-500kHz / 903-914.2 MHz                                     |       |         |        |      |  |  |  |
|----------------------------------------------------------------------------|-------|---------|--------|------|--|--|--|
| ChannelFrequency<br>(MHz)OBW (99%)<br>(MHz)6dB BW<br>(MHz)6dB lim<br>(kHz) |       |         |        |      |  |  |  |
| Low                                                                        | 903   | 0.51510 | 0.6389 |      |  |  |  |
| Mid                                                                        | 907.8 | 0.51228 | 0.6340 | >500 |  |  |  |
| High                                                                       | 914.2 | 0.51057 | 0.6350 |      |  |  |  |




## 6dB BANDWIDTH Test Data





## BANDWIDTH (99%) Test Data





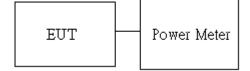
Page: 18 / 44 Rev.: 01

## 4.3 OUTPUT POWER MEASUREMENT

### 4.3.1 Test Limit

According to §15.247(b)(3).

For systems using digital modulation in the 902-928 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


| Limit $\bigtriangleup$ Antenna not exceed 6 dBi : 30dBmLimit $\square$ Antenna with DG greater than 6 dBi[ Limit = 30 - (DG - 6) ] $\square$ Point-to-point operation |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

### 4.3.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Average output power. in the test report.

### 4.3.3 Test Setup





Page: 19 / 44 Rev.: 01

### 4.3.4 Test Result

| Temperature: | <b>22.8 ~ 26.8</b> ℃ | Test date: | May 15 ~ June 2, 2023 |
|--------------|----------------------|------------|-----------------------|
| Humidity:    | 52 ~ 61% RH          | Tested by: | Jack Chen             |

#### LoRa-500kHz:

| СН   | Frequency<br>(MHz) | Power<br>set | Maximum Output power<br>(dBm) | Required Limit<br>(dBm) |
|------|--------------------|--------------|-------------------------------|-------------------------|
| Low  | 903                | 22           | 20.33                         | 30                      |
| Mid  | 907.8              | 22           | 20.36                         | 30                      |
| High | 914.2              | 22           | 20.38                         | 30                      |



Page: 20 / 44 Rev.: 01

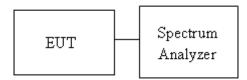
## 4.4 POWER SPECTRAL DENSITY

### 4.4.1 Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit


Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] Point-to-point operation :

### 4.4.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = RMS, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

### 4.4.3 Test Setup

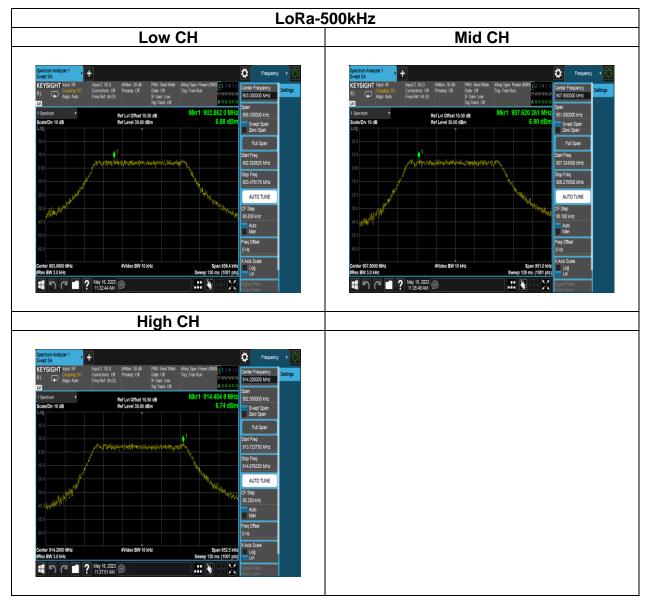




Page: 21 / 44 Rev.: 01

### 4.4.4 Test Result

| Temperature: | <b>22.8 ~ 26.8</b> °C | Test date: | May 15 ~ June 2, 2023 |
|--------------|-----------------------|------------|-----------------------|
| Humidity:    | 52 ~ 61% RH           | Tested by: | Jack Chen             |


#### LoRa-500kHz

| Frequency<br>(MHz) | RF Power Density<br>(dBm/3kHz) | Maximum Limit<br>(dBm/3kHz) | Result |
|--------------------|--------------------------------|-----------------------------|--------|
| 903                | 6.880                          | 8                           | PASS   |
| 907.8              | 6.900                          | 8                           | PASS   |
| 914.2              | 6.740                          | 8                           | PASS   |



Page: 22 / 44 Rev.: 01

## Test Data





Page: 23 / 44 Rev.: 01

## 4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

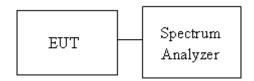
### 4.5.1 Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

### 4.5.2 Test Procedure


Test method Refer as ANSI C63.10:2013.

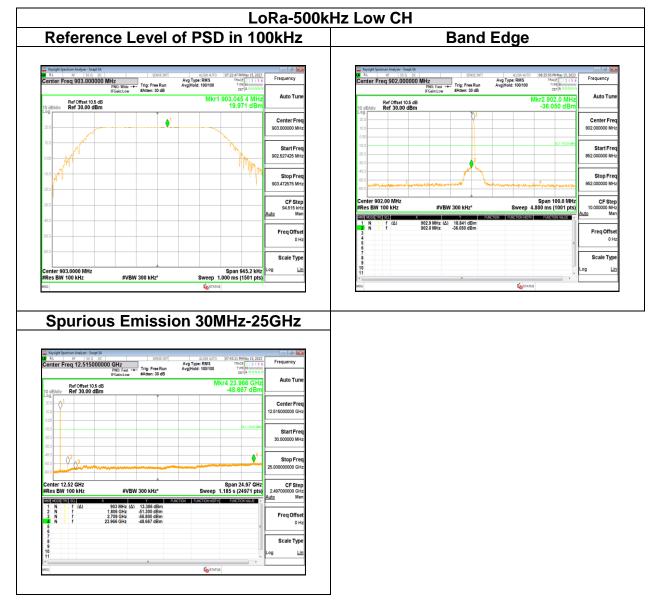
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

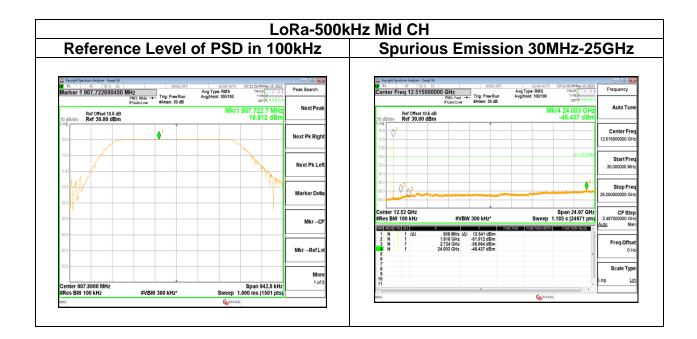
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

### 4.5.3 Test Setup

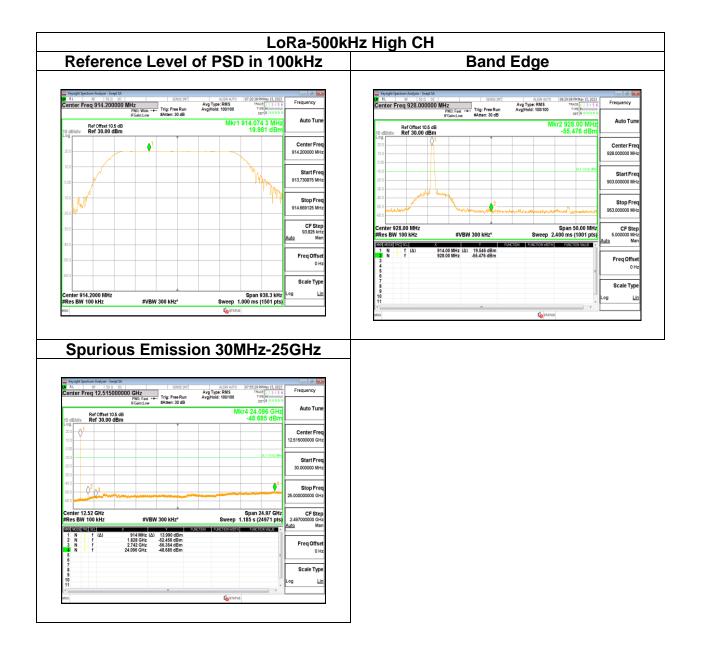





Page: 24 / 44 Rev.: 01


### 4.5.4 Test Result

| Temperature: | <b>22.8 ~ 26.8</b> °C | Test date: | May 15 ~ June 2, 2023 |
|--------------|-----------------------|------------|-----------------------|
| Humidity:    | 52 ~ 61% RH           | Tested by: | Jack Chen             |


### Test Data













Page: 27 / 44 Rev.: 01

## 4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

### 4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

#### Below 30 MHz

| Frequency     | Field Strength<br>(microvolts/m) | Magnetic<br>H-Field<br>(microamperes/m) | Measurement<br>Distance<br>(metres) |
|---------------|----------------------------------|-----------------------------------------|-------------------------------------|
| 9-490 kHz     | 2,400/F (F in kHz)               | 2,400/F (F in kHz)                      | 300                                 |
| 490-1,705 kHz | 24,000/F (F in kHz)              | 24,000/F (F in kHz)                     | 30                                  |
| 1.705-30 MHz  | 30                               | N/A                                     | 30                                  |

#### Above 30 MHz

| Frequency | Field Strength<br>microvolts/m at 3 metres (watts, e.i.r.p.) |              |  |  |  |
|-----------|--------------------------------------------------------------|--------------|--|--|--|
| (MHz)     | Transmitters                                                 | Receivers    |  |  |  |
| 30-88     | 100 (3 nW)                                                   | 100 (3 nW)   |  |  |  |
| 88-216    | 150 (6.8 nW)                                                 | 150 (6.8 nW) |  |  |  |
| 216-960   | 200 (12 nW)                                                  | 200 (12 nW)  |  |  |  |
| Above 960 | 500 (75 nW)                                                  | 500 (75 nW)  |  |  |  |

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.



Page: 28 / 44 Rev.: 01

### 4.6.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

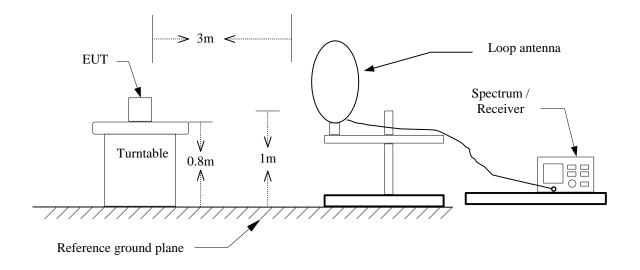
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9KHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

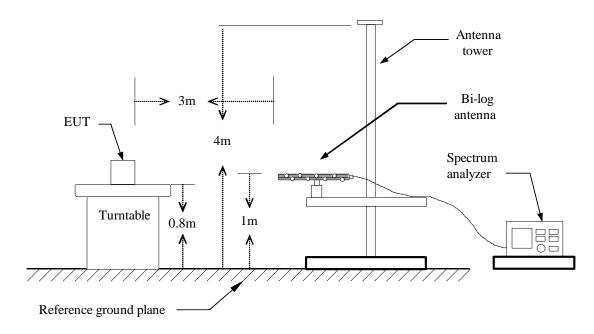
Remark:

 Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
 No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

- 4. The SA setting following :
  - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
  - (2) Above 1G:
    - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
    - (2.2) For Average measurement : RBW = 1MHz, VBW


If Duty Cycle  $\geq$  98%, VBW=10Hz.

'If Duty Cycle < 98%, VBW=1/T.




Page: 29 / 44 Rev.: 01

### 4.6.3 Test Setup <u>9kHz ~ 30MHz</u>



#### <u>30MHz ~ 1GHz</u>





### Above 1 GHz





### 4.6.4 Test Result

### Band Edge Test Data

| Test Item<br>Polarize                                             | Band Edge              | Test Data        |              |
|-------------------------------------------------------------------|------------------------|------------------|--------------|
|                                                                   |                        | Test Date        | May 22, 2023 |
|                                                                   | Vertical               | Test Engineer    | Czerny Lin   |
| Detector                                                          | Peak / Average         | U U              | <b>_</b>     |
| 120 Level (dBuV/<br>105.0<br>90.0<br>75.0<br>60.0<br>45.0<br>30.0 | /m)                    |                  |              |
| 15.0                                                              |                        |                  |              |
| 0<br>825                                                          | 860. 895.<br>Frequency | 930. 96<br>(MHz) | 5. 1000      |

| Frequency | Detector<br>Mode | Spectrum<br>Reading Level | Factor | Actual<br>FS | Limit<br>@3m       | Margin |
|-----------|------------------|---------------------------|--------|--------------|--------------------|--------|
| (MHz)     | (PK/QP/AV)       | (dBµV)                    | (dB)   | (dBµV/m)     | (dBµV/m)           | (dB)   |
| 871.11    | Peak             | 40.88                     | -1.24  | 39.64        | 81.77 <sup>1</sup> | -42.13 |
| 902.00    | QP               | 57.73                     | -0.84  | 56.89        | 80.47 <sup>1</sup> | -23.58 |
| 902.00    | Peak             | 60.33                     | -0.84  | 59.50        | 81.77 <sup>1</sup> | -22.27 |
| 903.00    | QP               | 111.30                    | -0.83  | 110.47       |                    |        |
| 903.00    | Peak             | 112.60                    | -0.83  | 111.77       |                    |        |
| 903.00    | Average          | 103.90                    | -0.83  | 103.07       |                    |        |
| 928.01    | Peak             | 34.13                     | -0.19  | 33.94        | 81.77 <sup>1</sup> | -47.83 |
| 934.83    | Peak             | 39.58                     | -0.01  | 39.57        | 81.77 <sup>1</sup> | -42.20 |

Remark:

1. The limit is fundamental signal – 30 dB since the frequency of the unwanted emission was not in restricted band.



Page: 32 / 44 Rev.: 01

| Test Mode      |                              | Low CH<br>904 MHz |                  | um   | 25.5(℃) / 54%RH |
|----------------|------------------------------|-------------------|------------------|------|-----------------|
| Test Item      | Bar                          | nd Edge           | Test Da          | te   | May 22, 2023    |
| Polarize       |                              | rizontal          | Test Engi        | neer | Czerny Lin      |
| Detector       | Peak                         | / Average         |                  |      |                 |
| 120 Level (dBu | ıV/m)                        |                   |                  |      |                 |
| 105.0          |                              |                   |                  |      |                 |
| 90.0           |                              |                   |                  |      |                 |
| 75.0           |                              |                   |                  |      |                 |
| 60.0           |                              |                   |                  |      |                 |
| 45.0           | a hay a surface state of the | Name I            | Manual           |      |                 |
| 30.0           |                              |                   |                  |      |                 |
| 15.0           |                              |                   |                  |      |                 |
| 0<br>825       | 860.                         | 895.<br>Frequer   | 930.<br>cy (MHz) | 965  | . 1000          |

| Frequency | Detector<br>Mode | Spectrum<br>Reading Level | Factor | Actual<br>FS | Limit<br>@3m       | Margin |
|-----------|------------------|---------------------------|--------|--------------|--------------------|--------|
| (MHz)     | (PK/QP/AV)       | (dBµV)                    | (dB)   | (dBµV/m)     | (dBµV/m)           | (dB)   |
| 870.82    | QP               | 42.60                     | -1.24  | 41.36        | 87.97 <sup>1</sup> | -46.61 |
| 870.82    | Peak             | 47.98                     | -1.24  | 46.74        | 89.37 <sup>1</sup> | -42.63 |
| 902.00    | QP               | 62.80                     | -0.84  | 61.96        | 87.97 <sup>1</sup> | -26.01 |
| 902.00    | Peak             | 68.22                     | -0.84  | 67.38        | 89.37 <sup>1</sup> | -21.99 |
| 903.00    | QP               | 118.80                    | -0.83  | 117.97       |                    |        |
| 903.00    | Peak             | 120.20                    | -0.83  | 119.37       |                    |        |
| 903.00    | Average          | 111.40                    | -0.83  | 110.57       |                    |        |
| 928.00    | Peak             | 38.28                     | -0.19  | 38.09        | 89.37 <sup>1</sup> | -51.28 |
| 934.88    | Peak             | 44.49                     | -0.01  | 44.48        | 89.37 <sup>1</sup> | -44.89 |

Remark:

1. The limit is fundamental signal – 30 dB since the frequency of the unwanted emission was not in restricted band.



Page: 33 / 44 Rev.: 01

| Test Mod  | le          | Mid CH<br>907.8 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Temp/Hum      |            | 25.5(℃) / 54%RF    |          |
|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|------------|--------------------|----------|
| Test Iter | n           | Band Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | Т             | est Date   | May 2              | 22, 2023 |
| Polarize  | <b>;</b>    | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Tes           | t Engineer |                    | rny Lin  |
| Detecto   | r           | Peak / Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |               |            |                    |          |
| 120 Leve  | el (dBuV/m) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |            | 1                  | ]        |
| 105.0     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |            |                    |          |
| 90.0      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |            |                    |          |
| 75.0      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |            |                    |          |
| 60.0      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\wedge$ |               |            |                    |          |
| 45.0      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>₩</b> |               |            |                    |          |
| 30.0      |             | and the second s |          |               |            |                    |          |
| 15.0      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |            |                    |          |
| 0<br>825  | 860         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uency    | 93(<br>/ (MHz |            | 965.               | 1000     |
|           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |            |                    |          |
| Frequency | Detector    | Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fa       | ctor          | Actual     | Limit              | Margin   |
|           | Mode        | Reading Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |               | FS         | @3m                | -        |
| (MHz)     | (PK/QP/AV   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | IB)           | (dBµV/m)   | (dBµV/m)           | (dB)     |
| 875.96    | Peak        | 40.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | .20           | 39.35      | 81.06 <sup>1</sup> | -41.71   |

-0.84

-0.74

-0.74

-0.74

-0.19

0.15

43.04

109.66

111.06

102.26

32.94

39.79

81.06<sup>1</sup>

---

--

---

81.06<sup>1</sup>

81.06<sup>1</sup>

-38.02

--

---

---

-48.12

-41.27

Remark:

902.00

907.80

907.80

907.80

928.00

939.89

Peak

QP

Peak

Average

Peak

Peak

1. The limit is fundamental signal – 30 dB since the frequency of the unwanted emission was not in restricted band.

43.88

110.40

111.80

103.00

33.13

39.64



Page: 34 / 44 Rev.: 01

| Test Mode                                                               | Mid CH<br>907.8 MHz    | Temp/Hum                                | 25.5(℃) / 54%RH |
|-------------------------------------------------------------------------|------------------------|-----------------------------------------|-----------------|
| Test Item                                                               | Band Edge              | Test Date                               | May 22, 2023    |
| Polarize                                                                | Horizontal             | Test Engineer                           | Czerny Lin      |
| Detector                                                                | Peak / Average         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | •               |
| 120 Level (dBu<br>105.0<br>90.0<br>75.0<br>60.0<br>45.0<br>30.0<br>15.0 | V/m)                   |                                         |                 |
| 825                                                                     | 860. 895.<br>Frequency | 930. 96<br>(MHz)                        | 5. 1000         |
|                                                                         | ,                      | ,,                                      |                 |

| Frequency | Detector<br>Mode | Spectrum<br>Reading Level | Factor | Actual<br>FS | Limit<br>@3m       | Margin |
|-----------|------------------|---------------------------|--------|--------------|--------------------|--------|
| (MHz)     | (PK/QP/AV)       | (dBµV)                    | (dB)   | (dBµV/m)     | (dBµV/m)           | (dB)   |
| 876.01    | QP               | 44.87                     | -1.20  | 43.67        | 87.46 <sup>1</sup> | -43.79 |
| 876.01    | Peak             | 48.74                     | -1.20  | 47.55        | 88.86 <sup>1</sup> | -41.31 |
| 902.00    | QP               | 48.90                     | -0.84  | 48.06        | 87.46 <sup>1</sup> | -39.40 |
| 902.00    | Peak             | 52.64                     | -0.84  | 51.80        | 88.86 <sup>1</sup> | -37.06 |
| 907.80    | QP               | 118.20                    | -0.74  | 117.46       |                    |        |
| 907.80    | Peak             | 119.60                    | -0.74  | 118.86       |                    |        |
| 907.80    | Average          | 110.90                    | -0.74  | 110.16       |                    |        |
| 928.01    | Peak             | 39.02                     | -0.19  | 38.83        | 88.86 <sup>1</sup> | -50.03 |
| 939.78    | Peak             | 43.91                     | 0.14   | 44.05        | 88.86 <sup>1</sup> | -44.81 |

Remark:

1. The limit is fundamental signal – 30 dB since the frequency of the unwanted emission was not in restricted band.



Page: 35 / 44 Rev.: 01

| Test Mo         | ode        |                      | High CH<br>914.2 MHz | Т                     | emp/Hum           | <b>25.5(</b> ℃                 | ) / 54%RH      |  |
|-----------------|------------|----------------------|----------------------|-----------------------|-------------------|--------------------------------|----------------|--|
| Test Ite        | em         |                      | Band Edge            |                       | est Date          | May 2                          | May 22, 2023   |  |
| Polariz         | ze         |                      | Vertical             | Tes                   | st Engineer       |                                | rny Lin        |  |
| Detect          | or         | P                    | eak / Average        |                       |                   |                                |                |  |
| 120             | vel (dBu)  | //m)                 |                      |                       |                   |                                |                |  |
| 105.0           |            |                      |                      | <b> </b>              |                   |                                |                |  |
| 90.0            |            |                      |                      |                       |                   |                                |                |  |
| 75.0            |            |                      |                      |                       |                   |                                |                |  |
| 60.0            |            |                      |                      |                       |                   |                                |                |  |
| 45.0            |            |                      |                      |                       |                   |                                |                |  |
| 30.0            | . Herester |                      |                      |                       |                   | a him da an                    |                |  |
| 15.0            |            |                      |                      |                       |                   |                                |                |  |
| 0<br>825        | 5          | 860.                 | 895.<br>Freq         | 93<br>uency (MH       |                   | 65.                            | 1000           |  |
|                 |            |                      |                      |                       |                   |                                |                |  |
| Frequency       | Det        | ector                | Spectrum             | Factor                | Actual            | Limit                          | Margin         |  |
|                 | M          | ode                  | Reading Level        |                       | FS                | @3m                            |                |  |
|                 |            |                      | ( ·= · · ·           | (                     | 1                 |                                |                |  |
| (MHz)           | (PK/0      | QP/AV)               | (dBµV)               | (dB)                  | (dBµV/m)          | (dBµV/m)                       | (dB)           |  |
| (MHz)<br>882.44 |            | <b>QP/AV)</b><br>eak | (dBµV)<br>41.37      | ( <b>dB)</b><br>-1.16 | (dBµV/m)<br>40.21 | (dBµV/m)<br>81.06 <sup>1</sup> | (dB)<br>-40.85 |  |

-0.84

-0.64

-0.64

-0.64

-0.19

0.23

37.46

109.66

111.06

102.26

34.75

38.88

81.06<sup>1</sup>

--

--

---

81.06<sup>1</sup>

81.06<sup>1</sup>

-43.60

--

---

--

-46.31

-42.18

Remark:

902.00

914.20

914.20

914.20

927.99

946.18

1. The limit is fundamental signal – 30 dB since the frequency of the unwanted emission was not in restricted band.

38.30

110.30

111.70

102.90

34.94

38.65

Peak

QP

Peak

Average

Peak

Peak



Page: 36 / 44 Rev.: 01

| Test Item     Band Edge     Test Date     May 22, 2023       Polarize     Horizontal     Test Engineer     Czerny Lin       Detector     Peak / Average     Image: Close of the second s | Test Mode                              | High CH<br>914.2 MHz | Temp/Hum           | 25.5(℃) / 54%RH        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|--------------------|------------------------|
| Polarize Horizontal Test Engineer Czerny Lin<br>Detector Peak / Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test Item                              | Band Edge            | Test Date          | May 22, 2023           |
| Detector         Peak / Average           120         Level (dBuV/m)           105.0         90.0           90.0         75.0           60.0         45.0           15.0         860.         895.         930.         965.         1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Polarize                               | Horizontal           | Test Engineer      |                        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Detector                               | Peak / Average       |                    |                        |
| 15.0<br>0<br>825 860. 895. 930. 965. 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105.0       90.0       75.0       60.0 | V/m)                 |                    |                        |
| 0<br>825 860. 895. 930. 965. 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.0                                   |                      |                    | h- Hits in a faire the |
| 825 860. 895. 930. 965. 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.0                                   |                      |                    |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>825                               | 860. 895.<br>Frequ   | 930.<br>ency (MHz) | 965. 1000              |

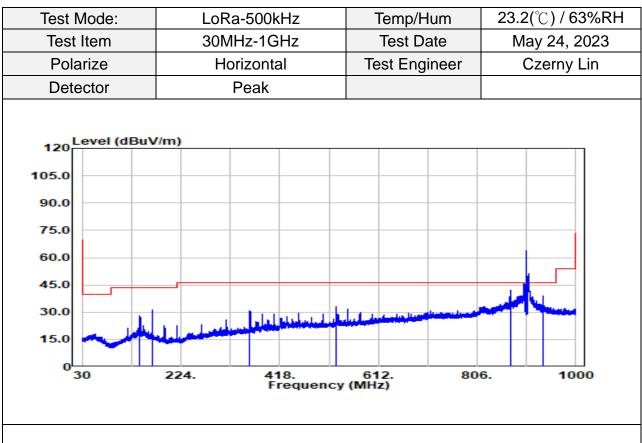
| Frequency | Detector<br>Mode | Spectrum<br>Reading Level | Factor | Actual<br>FS | Limit<br>@3m       | Margin |
|-----------|------------------|---------------------------|--------|--------------|--------------------|--------|
| (MHz)     | (PK/QP/AV)       | (dBµV)                    | (dB)   | (dBµV/m)     | (dBµV/m)           | (dB)   |
| 882.20    | QP               | 47.44                     | -1.16  | 46.28        | 87.36 <sup>1</sup> | -41.08 |
| 882.20    | Peak             | 51.28                     | -1.16  | 50.12        | 88.76 <sup>1</sup> | -38.64 |
| 902.00    | Peak             | 41.62                     | -0.84  | 40.78        | 88.76 <sup>1</sup> | -47.98 |
| 914.20    | QP               | 118.00                    | -0.64  | 117.36       |                    |        |
| 914.20    | Peak             | 119.40                    | -0.64  | 118.76       |                    |        |
| 914.20    | Average          | 112.24                    | -0.64  | 111.61       |                    |        |
| 927.99    | Peak             | 38.75                     | -0.19  | 38.55        | 88.76 <sup>1</sup> | -50.21 |
| 946.02    | Peak             | 44.02                     | 0.23   | 44.24        | 88.76 <sup>1</sup> | -44.52 |
| 946.02    | Peak             | 44.02                     | 0.23   | 44.24        | 88.76'             | -44.52 |

Remark:

1. The limit is fundamental signal – 30 dB since the frequency of the unwanted emission was not in restricted band.



### Below 1G Test Data


| Test Mode:            | LoRa-50             | 0kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp/Hu                                                                                                         | m   | <b>23.2(</b> °℃ | ) / 63%R |
|-----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|-----------------|----------|
| Test Item             | 30MHz-1             | 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Date                                                                                                       | е   | May             | 24, 2023 |
| Polarize              | Vertic              | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test Engineer                                                                                                   |     | Cze             | erny Lin |
| Detector              | Pea                 | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                               |     |                 |          |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
| 120 Level (dBu        | V/m)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
|                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
| 105.0                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
| 90.0                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
| 75.0                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
| 60.0                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
| 45.0                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
| 30.0                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
|                       | ملطسا بسيرين المطله | and the second se | and the state of the |     |                 |          |
| 15.0                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |     |                 |          |
| 0 <mark></mark><br>30 | 224.                | 418.<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 612.<br>/ (MHz)                                                                                                 | 806 |                 | 1000     |

| Frequency | Detector<br>Mode | Spectrum<br>Reading Level | Factor | Actual<br>FS | Limit<br>@3m | Margin |
|-----------|------------------|---------------------------|--------|--------------|--------------|--------|
| (MHz)     | (PK/QP/AV)       | (dBµV)                    | (dB)   | (dBµV/m)     | (dBµV/m)     | (dB)   |
| 142.52    | Peak             | 36.03                     | -13.35 | 22.68        | 43.50        | -20.82 |
| 168.03    | Peak             | 36.53                     | -13.33 | 23.20        | 43.50        | -20.30 |
| 345.64    | Peak             | 36.79                     | -11.18 | 25.61        | 46.00        | -20.39 |
| 532.75    | Peak             | 36.52                     | -6.85  | 29.67        | 46.00        | -16.33 |
| 870.89    | Peak             | 38.10                     | -1.24  | 36.85        | 46.00        | -9.15  |
| 934.91    | Peak             | 37.48                     | -0.01  | 37.47        | 46.00        | -8.53  |

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).



Page: 38 / 44 Rev.: 01



| Frequency | Detector   | Spectrum      | Factor | Actual   | Limit    | Margin |
|-----------|------------|---------------|--------|----------|----------|--------|
|           | Mode       | Reading Level |        | FS       | @3m      |        |
| (MHz)     | (PK/QP/AV) | (dBµV)        | (dB)   | (dBµV/m) | (dBµV/m) | (dB)   |
| 143.98    | Peak       | 41.12         | -13.18 | 27.93    | 43.50    | -15.57 |
| 167.93    | Peak       | 44.40         | -13.32 | 31.08    | 43.50    | -12.42 |
| 359.99    | Peak       | 42.04         | -11.10 | 30.94    | 46.00    | -15.06 |
| 528.00    | Peak       | 40.10         | -7.01  | 33.09    | 46.00    | -12.91 |
| 871.09    | Peak       | 43.49         | -1.24  | 42.25    | 46.00    | -3.75  |
| 935.20    | Peak       | 38.99         | 0.00   | 38.99    | 46.00    | -7.01  |
|           | •          |               |        | •        |          |        |

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).



### Above 1G Test Data

| Test Mode:      | Low CH                   | Temp/Hum            | 25.5(℃) / 54%RF |  |
|-----------------|--------------------------|---------------------|-----------------|--|
| Test Item       | Harmonic                 | Test Date           | May 22, 2023    |  |
| Polarize        | Vertical                 | Test Engineer       | Czerny Lin      |  |
| Detector        | Peak / Average           |                     |                 |  |
|                 |                          |                     |                 |  |
| 120 Level (dBuV | //m)                     |                     |                 |  |
| 105.0           |                          |                     |                 |  |
| 90.0            |                          |                     |                 |  |
| 75.0            |                          |                     |                 |  |
| 60.0            |                          |                     |                 |  |
| 45.0            |                          |                     |                 |  |
| 30.0            |                          |                     |                 |  |
| 15.0            |                          |                     |                 |  |
| 0<br>1000       | 2800. 4600.<br>Frequency | 6400. 82<br>/ (MHz) | 00. 10000       |  |

| Frequency | Detector<br>Mode | Spectrum<br>Reading Level | Factor | Actual<br>FS | Limit<br>@3m       | Margin |
|-----------|------------------|---------------------------|--------|--------------|--------------------|--------|
| (MHz)     | (PK/QP/AV)       | (dBµV)                    | (dB)   | (dBµV/m)     | (dBµV/m)           | (dB)   |
| 1806.00   | Peak             | 56.98                     | -7.34  | 49.65        | 81.77 <sup>2</sup> | -32.13 |
| 1806.00   | Average          | 53.61                     | -7.34  | 46.27        | 73.07 <sup>2</sup> | -26.80 |
| 2709.00   | Peak             | 52.89                     | -4.41  | 48.48        | 74.00              | -25.52 |
| 2709.00   | Average          | 47.29                     | -4.41  | 42.88        | 54.00              | -11.12 |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. The limit is fundamental signal 30 dB since the frequency of the unwanted emission was not in restricted band.



Page: 40 / 44 Rev.: 01

| Test Mod                | le:                   | Low CH                    | Т              | emp/Hum           | <b>25.5(°</b> ℃)                         | / 54%Rł          |
|-------------------------|-----------------------|---------------------------|----------------|-------------------|------------------------------------------|------------------|
| Test Iter               | n                     | Harmonic                  | -              | Test Date         | May 2                                    | 2, 2023          |
| Polariz                 | Э                     | Horizontal                | Те             | st Engineer       | Cze                                      | rny Lin          |
| Detecto                 | )r                    | Peak / Average            |                |                   |                                          |                  |
|                         |                       |                           |                |                   |                                          |                  |
| 120 Leve                | el (dBuV/m)           |                           |                |                   |                                          |                  |
| 105.0                   |                       |                           |                |                   |                                          |                  |
| 90.0                    |                       |                           |                |                   |                                          |                  |
| 75.0                    |                       |                           |                |                   |                                          |                  |
| 60.0                    |                       |                           |                |                   |                                          |                  |
| 45.0                    |                       |                           |                |                   |                                          |                  |
| 30.0                    |                       |                           |                |                   |                                          |                  |
| 15.0                    |                       |                           |                |                   |                                          |                  |
| 9                       | 2800                  | . 4600.                   | 640            | 20 9              | 200.                                     | 10000            |
| 1000                    | 2000                  |                           | Jency (MH      |                   | 2001                                     |                  |
| Frequency               | Detector<br>Mode      | Spectrum<br>Reading Level | Factor         | Actual<br>FS      | Limit<br>@3m                             | Margin           |
|                         | INIQUE                | Reauling Level            |                | гэ                |                                          |                  |
| (MHz)                   | (PK/QP/AV)            | (dBµV)                    | (dB)           | (dBµV/m)          | (dBµV/m)                                 | (dB)             |
| <b>(MHz)</b><br>1806.00 |                       | (dBμV)<br>55.68           | (dB)<br>-7.34  | (dBµV/m)<br>48.35 | (dBµV/m)<br>89.37 <sup>2</sup>           | (dB)<br>-41.02   |
|                         | (PK/QP/AV)            |                           |                |                   |                                          |                  |
| 1806.00                 | (PK/QP/AV)<br>Peak    | 55.68                     | -7.34          | 48.35             | 89.37 <sup>2</sup>                       | -41.02           |
| 1806.00<br>1806.00      | (PK/QP/AV)PeakAverage | 55.68<br>52.16            | -7.34<br>-7.34 | 48.35<br>44.83    | 89.37 <sup>2</sup><br>80.57 <sup>2</sup> | -41.02<br>-35.74 |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. The limit is fundamental signal 30 dB since the frequency of the unwanted emission was not in restricted band.



Page: 41 / 44 Rev.: 01

| Test Mode | e:         | Mid CH         | Т        | emp/Hum     | <b>25.5(</b> °C)   | ) / 54%Rł |
|-----------|------------|----------------|----------|-------------|--------------------|-----------|
| Test Item | ı          | Harmonic       | -        | Test Date   | May 2              | 22, 2023  |
| Polarize  | !          | Vertical       | Te       | st Engineer | Cze                | rny Lin   |
| Detector  | · F        | Peak / Average |          |             |                    |           |
|           |            |                |          |             |                    |           |
| 120 Leve  | l (dBuV/m) |                |          |             |                    |           |
| 105.0     |            |                |          |             |                    |           |
| 90.0      |            |                |          |             |                    |           |
| 75.0      |            |                |          |             |                    |           |
| 60.0      |            |                |          |             |                    |           |
| 45.0      |            |                |          |             |                    |           |
| 30.0      |            |                |          |             |                    |           |
| 15.0      |            |                |          |             |                    |           |
| 0         | 2800.      | 4600.          | 64       | 00 8        | 200.               | 10000     |
| 1000      | 2000.      | Frequ          | ency (MH | z)          | 200.               | 10000     |
|           |            |                |          |             |                    |           |
| Frequency | Detector   | Spectrum       | Factor   | Actual      | Limit              | Margin    |
| requeitcy | Mode       | Reading Level  | I actor  | FS          | @3m                | wargin    |
| (MHz)     | (PK/QP/AV) | (dBµV)         | (dB)     | (dBµV/m)    | (dBµV/m)           | (dB)      |
| 1815.60   | Peak       | 56.87          | -7.31    | 49.56       | 81.06 <sup>2</sup> | -31.50    |
| 1815.60   | Average    | 53.63          | -7.31    | 46.33       | 72.26 <sup>2</sup> | -25.93    |
| 2723.40   | Peak       | 52.68          | -4.36    | 48.32       | 74.00              | -25.68    |
| 2723.40   |            |                |          |             |                    |           |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. The limit is fundamental signal 30 dB since the frequency of the unwanted emission was not in restricted band.



Page: 42 / 44 Rev.: 01

| Test Mod         | e:                 | Mid CH                              |               | emp/Hum           | 25.5(°C) / 54%R                |                |
|------------------|--------------------|-------------------------------------|---------------|-------------------|--------------------------------|----------------|
| Test Item        |                    | Harmonic                            |               | Test Date         | May 22, 2023                   |                |
| Polarize         | •                  | Horizontal                          |               | st Engineer       | Czerny Lin                     |                |
| Detecto          | r F                | Peak / Average                      |               |                   |                                |                |
| Leve             | l (dBuV/m)         |                                     |               |                   |                                |                |
|                  |                    |                                     |               |                   |                                |                |
| 105.0            |                    |                                     |               |                   |                                |                |
| 90.0             |                    |                                     |               |                   |                                |                |
| 75.0             |                    |                                     |               |                   |                                |                |
| 60.0             |                    |                                     |               |                   |                                |                |
| 45.0             |                    |                                     |               |                   |                                |                |
| 30.0             |                    |                                     |               |                   |                                |                |
| 15.0             |                    |                                     |               |                   |                                |                |
|                  |                    |                                     |               |                   |                                |                |
| 1000             | 2800.              | 2800. 4600. 6400<br>Frequency (MHz) |               |                   |                                |                |
|                  |                    |                                     |               |                   |                                |                |
| Frequency        | Detector           | Spectrum                            | Factor        | Actual            | Limit                          | Margin         |
| (8411-)          | Mode               | Reading Level                       |               | FS                | @3m                            |                |
| (MHz)<br>1815.60 | (PK/QP/AV)<br>Peak | (dBµV)<br>58.13                     | (dB)<br>-7.31 | (dBµV/m)<br>50.83 | (dBµV/m)<br>88.86 <sup>2</sup> | (dB)<br>-38.03 |
| 1815.60          | Average            | 55.12                               | -7.31         | 47.82             | 80.16 <sup>2</sup>             | -32.34         |
| 2723.40          | Peak               | 51.72                               | -4.36         | 47.37             | 74.00                          | -26.63         |
| 2120.40          |                    | 45.56                               | -4.36         | 41.21             | 54.00                          | -20.03         |
| 2723.40          | Average            | 45 56                               |               |                   |                                |                |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. The limit is fundamental signal 30 dB since the frequency of the unwanted emission was not in restricted band.



Page: 43 / 44 Rev.: 01

| Test Mode: |            | High CH        |           | emp/Hum     | 25.5(°C) / 54%R    |        |
|------------|------------|----------------|-----------|-------------|--------------------|--------|
| Test Item  |            | Harmonic       |           | Fest Date   | May 22, 2023       |        |
| Polarize   |            | Vertical       |           | st Engineer | Czerny Lin         |        |
| Detector   | r F        | Peak / Average |           |             |                    |        |
|            | •          |                |           |             | -                  |        |
| 120Leve    | l (dBuV/m) |                |           |             |                    |        |
| 105.0      |            |                |           |             |                    |        |
| 90.0       |            |                |           |             |                    |        |
| 75.0       |            |                |           |             |                    |        |
| 60.0       |            |                |           |             |                    |        |
| 45.0       |            |                |           |             |                    |        |
| 30.0       |            |                |           |             |                    |        |
| 15.0       |            |                |           |             |                    |        |
| 9          | 2800.      |                | 640       |             | 200.               | 10000  |
|            |            | Frequ          | ency (MH) | 2)          |                    |        |
|            |            |                |           |             |                    |        |
| Frequency  | Detector   | Spectrum       | Factor    | Actual      | Limit              | Margin |
|            | Mode       | Reading Level  |           | FS          | @3m                |        |
| (MHz)      | (PK/QP/AV) | (dBµV)         | (dB)      | (dBµV/m)    | (dBµV/m)           | (dB)   |
| 1828.40    | Peak       | 52.68          | -7.32     | 45.36       | 81.06 <sup>2</sup> | -35.70 |
| 1828.40    | Average    | 48.41          | -7.32     | 41.10       | 72.26 <sup>2</sup> | -31.16 |
| 2742.60    | Peak       | 52.23          | -4.17     | 48.06       | 74.00              | -25.94 |
| 2742.00    |            |                |           |             |                    |        |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. The limit is fundamental signal 30 dB since the frequency of the unwanted emission was not in restricted band.



Page: 44 / 44 Rev.: 01

| Test Mod  | e:          | High CH        |                   | emp/Hum     | 25.5(°C) / 54%RH   |              |  |
|-----------|-------------|----------------|-------------------|-------------|--------------------|--------------|--|
| Test Item |             | Harmonic       |                   | Test Date   | May 2              | May 22, 2023 |  |
| Polarize  | •           | Horizontal     |                   | st Engineer | Czerny Lin         |              |  |
| Detecto   | r F         | Peak / Average |                   |             |                    |              |  |
| 4 20 Leve | el (dBuV/m) |                |                   |             |                    |              |  |
|           |             |                |                   |             |                    |              |  |
| 105.0     |             |                |                   |             |                    |              |  |
| 90.0      |             |                |                   |             |                    |              |  |
| 75.0      |             |                |                   |             |                    | _            |  |
| 60.0      |             |                |                   |             |                    |              |  |
| 45.0      |             |                |                   |             |                    |              |  |
| 30.0      |             |                |                   |             |                    |              |  |
| 15.0      |             |                |                   |             |                    |              |  |
|           |             |                |                   |             |                    |              |  |
| 1000      | 2800.       | 4600.<br>Frequ | 640<br>Jency (MH) | 00. 8<br>z) | 200.               | 10000        |  |
| Frequency | Detector    | Spectrum       | Factor            | Actual      | Limit              | Margin       |  |
|           | Mode        | Reading Level  |                   | FS          | @3m                |              |  |
| (MHz)     | (PK/QP/AV)  | (dBµV)         | (dB)              | (dBµV/m)    | (dBµV/m)           | (dB)         |  |
| 1828.40   | Peak        | 60.88          | -7.32             | 53.56       | 88.76 <sup>2</sup> | -35.20       |  |
| 1828.40   | Average     | 58.12          | -7.32             | 50.80       | 81.61 <sup>2</sup> | -30.81       |  |
| 2742.60   | Peak        | 50.91          | -4.17             | 46.74       | 74.00              | -27.26       |  |
|           |             | 44.35          | -4.17             | 40.18       | 54.00              | -13.82       |  |
| 2742.60   | Average     | 44.55          |                   | 10110       | 0 1100             | 10102        |  |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. The limit is fundamental signal 30 dB since the frequency of the unwanted emission was not in restricted band.

--End of Test Report--