

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
SPECTRUM ANALYZER	FSEK30	100049	July 24, 2003

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3kHz RBW and 30kHz VBW, set sweep time=span/3kHz. The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span/3KHz for a full response of the mixer in the spectrum analyzer.

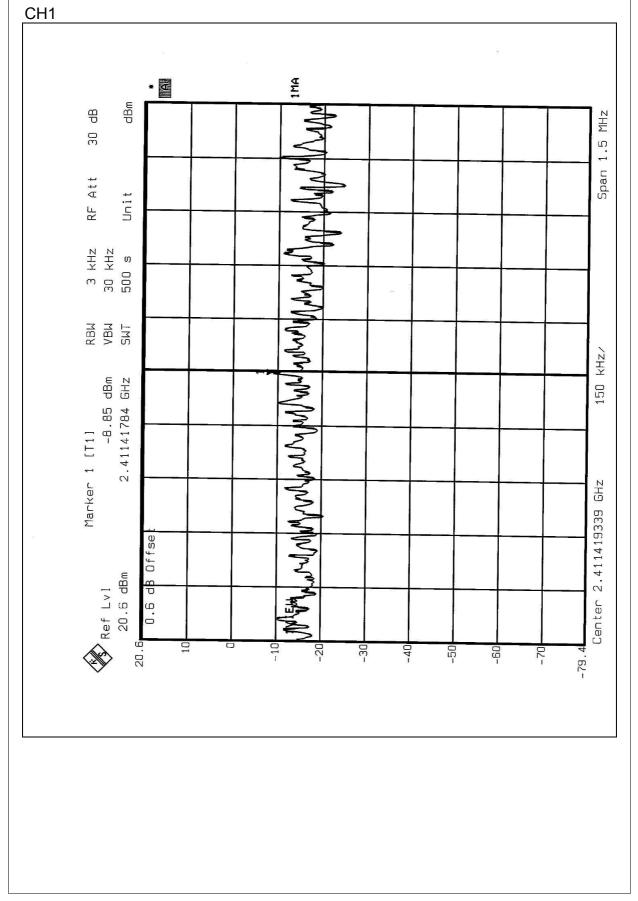
4.5.4 DEVIATION FROM TEST STANDARD

No deviation

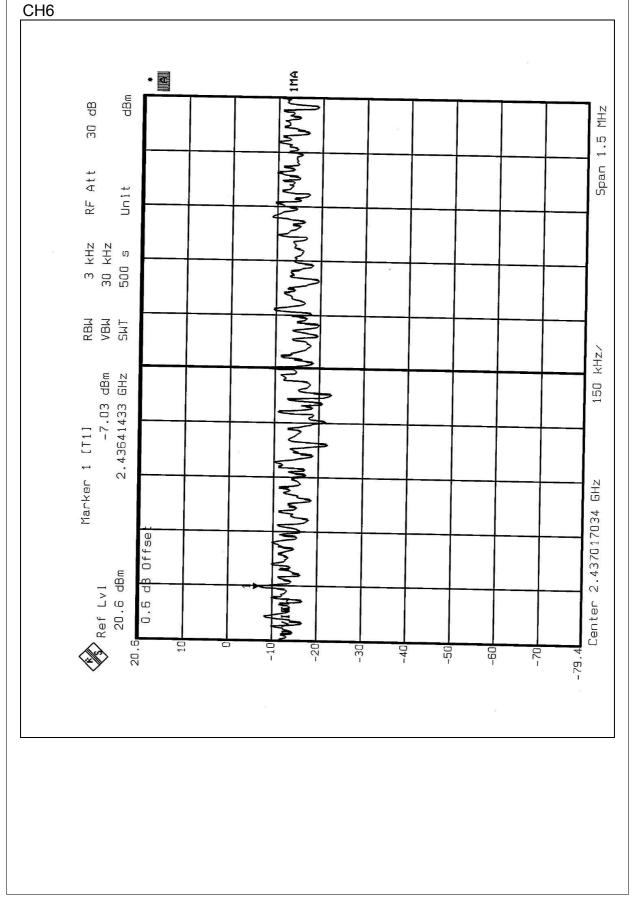
4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITIONS

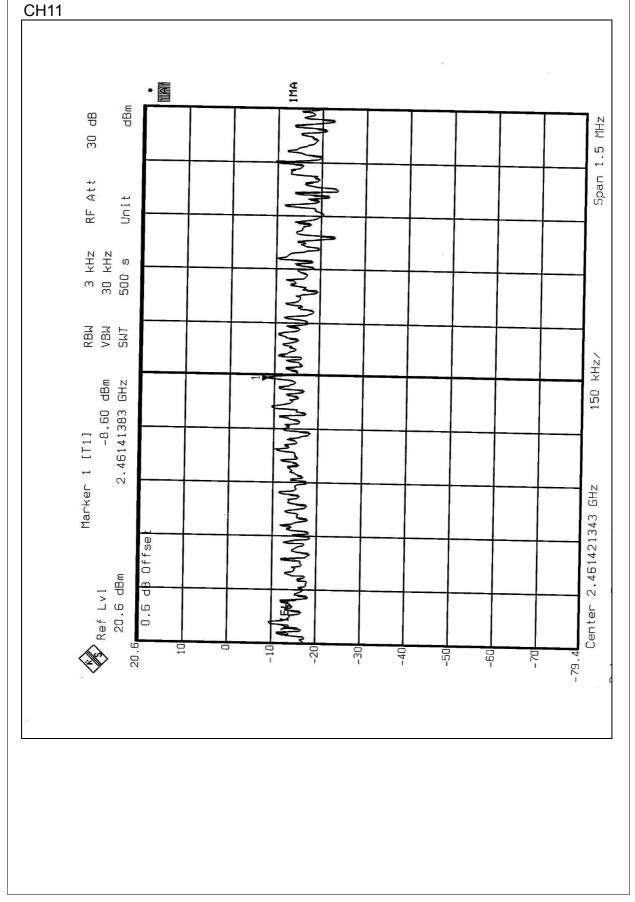
Same as 4.3.6

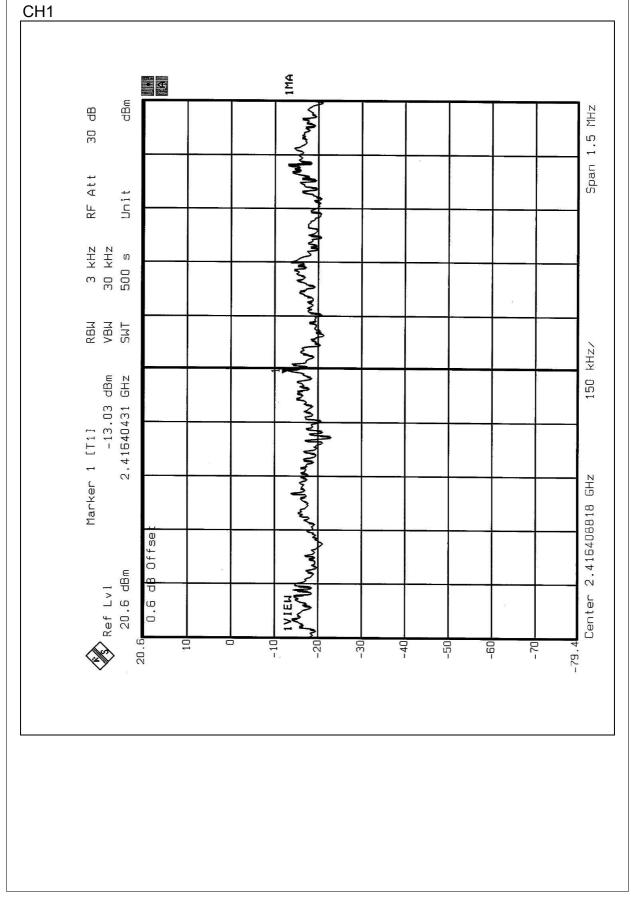


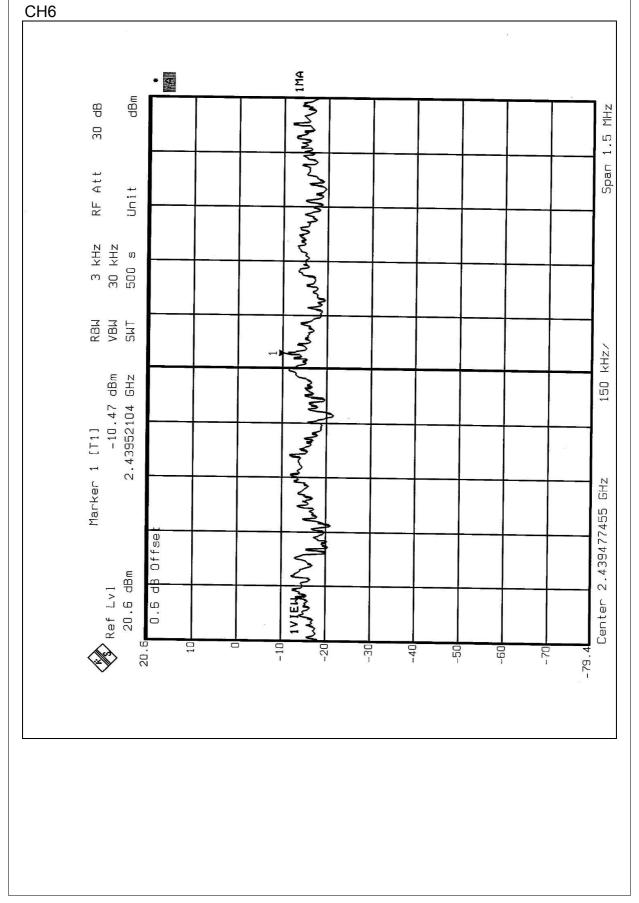
4.5.7 TEST RESULTS


EUT	Wireless G mini-PCI	MODEL	WL-850F
201	adapter	MODE	ССК
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	21deg. C, 69%RH, 991hPa
TESTED BY: Ansen Lei			

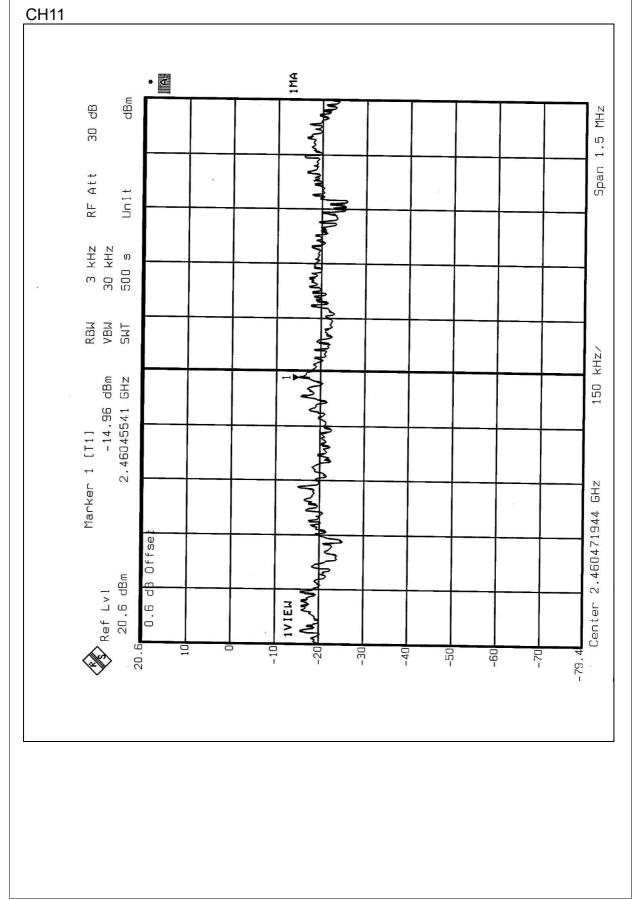
CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3 kHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	2412	-8.85	8	PASS
6	2437	-7.03	8	PASS
11	2462	-8.60	8	PASS






EUT Wireless G mini-PCI		MODEL	WL-850F
EUT	adapter	MODE	OFDM
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	21deg. C, 69%RH, 991hPa
TESTED BY: Ansen Lei			

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN3 kHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	2412	-13.03	8	PASS
6	2437	-10.47	8	PASS
11	2462	-14.96	8	PASS



4.6 BAND EDGES MEASUREMENT

4.6.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz Resolution Bandwidth).

4.6.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
SPECTRUM ANALYZER	FSEK30	100049	July 24, 2003

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURE

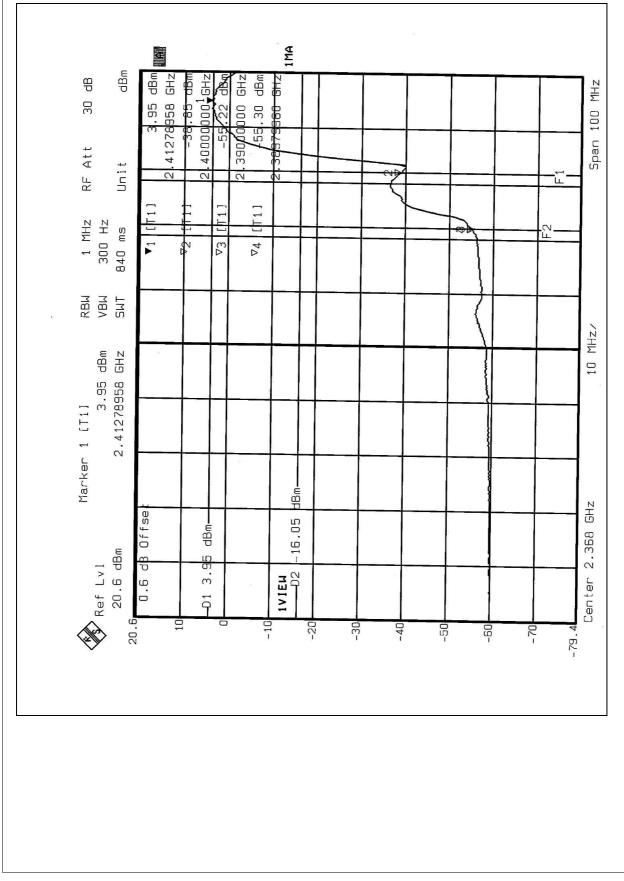
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 1MHz and 300Hz with suitable frequency span including 100kHz bandwidth from band edge. The band edges was measured and recorded.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 EUT OPERATING CONDITION

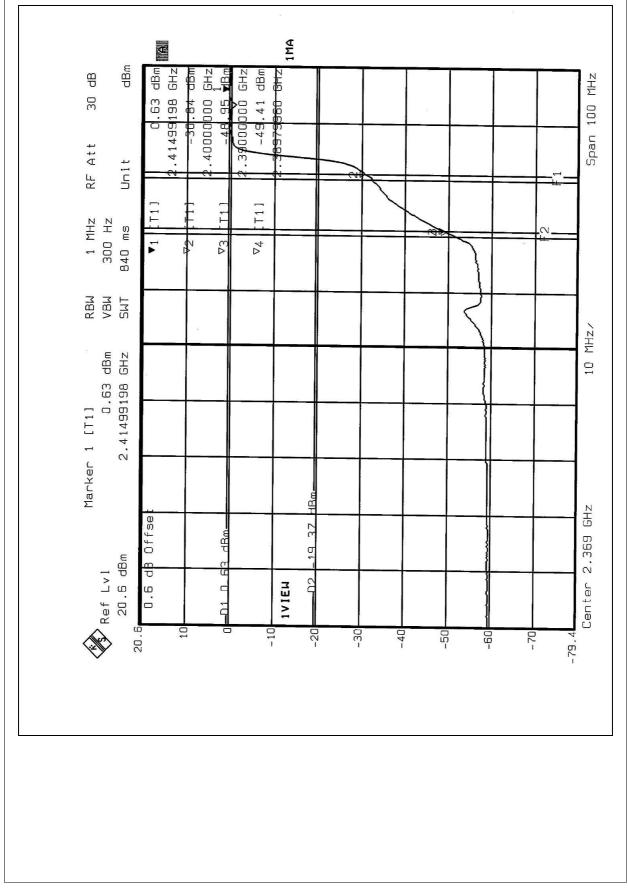
Same as Item 4.3.6


4.6.6 TEST RESULTS

The spectrum plots are attached on the following 2 pages. D2 line indicates the highest level, D1 line indicates the 20dB offset below D2. It shows compliance with the requirement in part 15.247(C).


NOTE 1: The band edge emission plot on the following 1-2 pages shows 59.17dB / 58.26dB delta between carrier maximum power and local maximum emission in restrict band (2.3900GHz / 2.4835GHz). The emission of carrier strength list in the test result of channel 11 of CCK technique at the item 4.2.7 is 97.8dBuV/m, so the maximum field strength in restrict band is 97.8-58.26=39.54dBuV/m which is under 54dBuV/m limit.

NOTE 2: The band edge emission plot on the following 3-4 pages shows 49.58dB / 50.39dB delta between carrier maximum power and local maximum emission in restrict band (2.3900GHz / 2.4835GHz). The emission of carrier strength list in the test result of channel 11 of OFDM technique at the item 4.2.7 is 102.3dBuV/m, so the maximum field strength in restrict band is 102.3-50.39=51.91dBuV/m which is under 54dBuV/m limit.



Ref Lv1 Anker I [T1] RBM I MHz RF At 20.6 dBm 2.46481563 GHz SMT 840 ms Unit 20.6 dBm 2.46481563 GHz SMT 840 ms Unit 0.6 dB 0ffset 7 [T1] 2.46 1 0.6 dB 0ffset 7 1 2.46 1 0.6 dB 0ffset 7 1 2.46 1 0.6 dB 0ffset 7 1 2.46 1 1 7 7 7 1 1 1 1 7 7 1 1 1 1 7 1 2 1 1 1 7 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 <t< th=""><th>Imarker 1 [T1] RBW 1 MHz RF Imarker 1 [T1] -0.91 dBm VBW 300 Hz Uni Imarker 1 [T1] -0.91 dBm VBW 300 Hz Uni Imarker 1 [T1] -0.91 dBm VBW 300 Hz Uni Imarker 1 [T1] -0.91 dBm VBW 300 Hz Uni Imarker 1 [T1] -0.91 dBm VBM V1 [T1] 2 Imarker 1 [T1] -0.91 dBm V3 [T1] 2 2 Imarker 1 [T1] -0.91 dBm V3 [T1] 2 2 Imarker 1 [T1] -0.91 dBm V4 [T1] 2 2 Imarker 1 [T1] -0.91 dBm V4 [T1] 2 2 Imarker 1 [T1] -0.91 dBm V4 [T1] 2<!--</th--><th></th><th>dBm GHz GHz dBm dBm dBm GHz</th><th></th><th></th></th></t<>	Imarker 1 [T1] RBW 1 MHz RF Imarker 1 [T1] -0.91 dBm VBW 300 Hz Uni Imarker 1 [T1] -0.91 dBm VBW 300 Hz Uni Imarker 1 [T1] -0.91 dBm VBW 300 Hz Uni Imarker 1 [T1] -0.91 dBm VBW 300 Hz Uni Imarker 1 [T1] -0.91 dBm VBM V1 [T1] 2 Imarker 1 [T1] -0.91 dBm V3 [T1] 2 2 Imarker 1 [T1] -0.91 dBm V3 [T1] 2 2 Imarker 1 [T1] -0.91 dBm V4 [T1] 2 2 Imarker 1 [T1] -0.91 dBm V4 [T1] 2 2 Imarker 1 [T1] -0.91 dBm V4 [T1] 2 </th <th></th> <th>dBm GHz GHz dBm dBm dBm GHz</th> <th></th> <th></th>		dBm GHz GHz dBm dBm dBm GHz		
Marker i [T1] RBH I MHz 20.6 dBm 2.46481563 GHz 930 Hz 20.6 dBm 2.46481563 GHz 930 Hz 0.6 dB 0ffset 1 0.1 dB 0ffset 7 0.1 dB 7 7 0.1 dB 7 7 0.1 dB 7 7 1.1 dB 7 7 </td <td>Marker i [T1] RBH I MHz 20.6 dBm 2.46481563 GHz 930 Hz 20.6 dBm 2.46481563 GHz 930 Hz 0.6 dB 0ffset 1 0.1 dB 0ffset 7 0.1 dB 7 7 0.1 dB 7 7 0.1 dB 7 7 1.1 dB 7 7<!--</td--><td>t t -0. 164815</td><td>-51,30 2.48350000 51.61 2.48370040 2.48370040 2.5000000</td><td></td><td>Span 100</td></td>	Marker i [T1] RBH I MHz 20.6 dBm 2.46481563 GHz 930 Hz 20.6 dBm 2.46481563 GHz 930 Hz 0.6 dB 0ffset 1 0.1 dB 0ffset 7 0.1 dB 7 7 0.1 dB 7 7 0.1 dB 7 7 1.1 dB 7 7 </td <td>t t -0. 164815</td> <td>-51,30 2.48350000 51.61 2.48370040 2.48370040 2.5000000</td> <td></td> <td>Span 100</td>	t t -0. 164815	-51,30 2.48350000 51.61 2.48370040 2.48370040 2.5000000		Span 100
Marker 1 [T1] Ref Lv1 -0.91 dBm 20.6 dBm 2.46481563 GHz 0.6 dB Offset	Marker 1 [T1] Ref Lv1 -0.91 dBm 20.6 dBm 2.46481563 GHz 0.6 dB Offset	z z []]			
Marker 1 [T1] Ref Lv1 -0.91 (-	Marker 1 [T1] Ref Lv1 -0.91 (-	RBM VBM SMT			
Ref Lv1 20.6 dBm 0.6 dB Offse ivieu	Ref Lv1 20.6 dBm 0.6 dB Offse ivieu	.91			N
Center	Center)ffse:		16.	
	20.6 -10 -20 -30 -50 -60 -79.4	Ref Ly 20.6 0.6		07	Center

4.7 ANTENNA REQUIREMENT

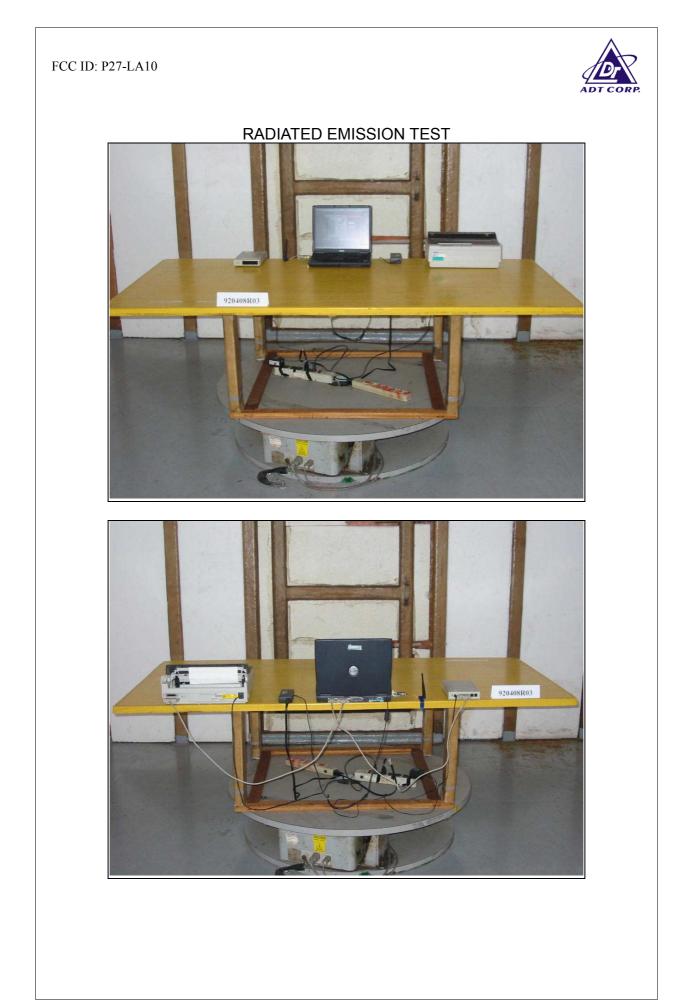
4.7.1 STANDARD APPLICABLE

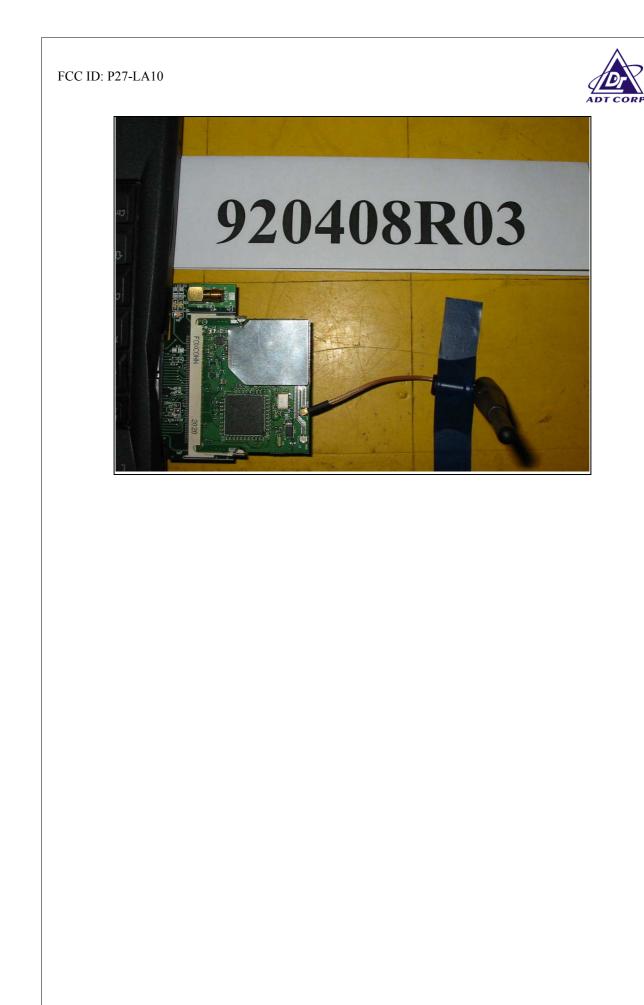
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.7.2 ANTENNA CONNECTED CONSTRUCTION

The antenna type used in this product is Dipole antenna with MMCX connector. The maximum Gain of this antenna is 2dBi.


5 PHOTOGRAPHS OF THE TEST CONFIGURATION


CONDUCTED EMISSION TEST

6 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025, Guide 25 or EN 45001:

USA	FCC, NVLAP
Germany	TUV Rheinland
Japan	VCCI
New Zealand	MoC
Norway	NEMKO
R.O.C.	BSMI, DGT, CNLA

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC Lab: Tel: 886-2-26052180 Fax: 886-2-26052943

Lin Kou Safety Lab: Tel: 886-2-26093195 Fax: 886-2-26093184 Hsin Chu EMC Lab: Tel: 886-35-935343 Fax: 886-35-935342

Lin Kou RF&Telecom Lab Tel: 886-3-3270910 Fax: 886-3-3270892

Email: <u>service@mail.adt.com.tw</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.