## Tantalus Systems Corp.

**RT-2200** 

## **Report of Measurements**

Per

# CFR47, FCC Part 15, Subpart B and FCC Part 90 Subpart I and T

Revision 1.1

September 12, 2002

| Approvals   |                         |      |
|-------------|-------------------------|------|
| Written By: |                         |      |
|             |                         |      |
|             | Craig Long              | Date |
| Checked by  |                         |      |
|             |                         |      |
|             | Robert Stirling, P.Eng. | Date |

Protocol Labs, Abbotsford B.C., Canada FCC Registration Number 96437 Industry Canada Registration Number IC3384

## Index

|             | FCC CFR47 Part 15/B Report of Measurements                 | 3  |
|-------------|------------------------------------------------------------|----|
|             | Equipment Under Test:                                      | 5  |
|             | Part 1 - Radiated Emission Testing                         | 7  |
|             | Part 2 - Conducted Emissions                               | 8  |
|             | Part 3 - Radiated Spurious Emissions                       | 9  |
|             | Part 4 - Occupied Bandwidth                                | 10 |
|             | Part 5 - Frequency Stability Over Supply Voltage Variation | 11 |
|             | Part 6 - Frequency Stability Over Temperature Variation    | 12 |
| Appendix A: | Photos                                                     | 14 |
| Appendix B: | FCC Part 15/B Measurement Data and Plots                   | 16 |
|             | Measurement Data                                           | 16 |
|             | Emissions Plots                                            | 18 |
| Appendix C: | Radiated Spurious Emissions                                | 23 |
| Appendix D: | Occupied Bandwidth                                         | 26 |
| Appendix E: | Harmonic Measurements                                      | 30 |
| Appendix F: | Frequency Stability Over Temperature Variation             | 33 |
| Appendix G: | Frequency Stability Over Supply Voltage Variation          | 36 |

#### FCC CFR47 Part 15/B Report of Measurements

**Testing Details:** 

TESTED BY: Robert Stirling

TEST CONDITIONS: Temperature and Humidity: 24°C, 60%

TEST VOLTAGE: 208 VAC 60 Hz

**Test Facilities:** 

Protocol Labs

28945 McTavish Rd.

Abbotsford B.C., Canada, V4X 2E7

FCC Registration Number 96437

Industry Canada Registration Number IC3384

**Test Equipment List:** 

**EMISSIONS:** 

| Device                | Model Number              | Serial No. | Last<br>Cal. | Next Cal |
|-----------------------|---------------------------|------------|--------------|----------|
| Antenna               | EMCO 3141 Bilog           | 1127       | 09/13/01     | 09/13/02 |
| Antenna               | EMCO 3105                 | 2024       | 09/10/01     | 09/10/02 |
| Spectrum<br>Analyzer  | Hewlett Packard<br>8566B  | 2241A02102 | 01/10/02     | 01/10/03 |
| RF-<br>Preselector    | Hewlett Packard<br>85685A | 3107A01222 | 01/10/02     | 01/10/03 |
| Quasi-Peak<br>Adapter | Hewlett Packard<br>85650A | 2043A00240 | 01/10/02     | 01/10/03 |
| Power Meter           | Marconi 6960B             | 237087/007 | 02/11/02     | 02/11/03 |
| Power Sensor          | Marconi                   | 961823/002 | 02/11/02     | 02/11/03 |
| Tower                 | Rhientech Labs            | Custom     | N/A          | N/A      |
| Turntable             | Protocol                  | Custom     | N/A          | N/A      |

The following set of equipment was used for the occupied bandwidth, frequency stability over supply voltage variation, and frequency stability over temperature variation.

#### **EMISSIONS:**

| Device                      | Model Number                                                                   | Serial<br>No.     | Last<br>Cal.                              | Next Cal |
|-----------------------------|--------------------------------------------------------------------------------|-------------------|-------------------------------------------|----------|
| Thermotron                  | Thermotron<br>S1.2                                                             | 16576             | N/A                                       | N/A      |
| Signal Generator            | Rohde and Schwartz<br>SMIQ Q3                                                  | DE23617           | 02/25/02                                  | 02/25/05 |
| Spectrum<br>Analyzer        | Hewlett Packard<br>E4402B                                                      | 962588            | 12/11/01                                  | 12/11/02 |
| Thermometer                 | Omega<br>HH501DK Type K                                                        | 905               | 19/03/02                                  | 19/03/02 |
| Network<br>Analyzer         | Hewlett Packard<br>8753D                                                       | 3410A             | 31/10/01                                  | 31/10/02 |
| Directional<br>Ccoupler     | MECA<br>KS-21603L 3                                                            | 1918              | Swept with calibrated HP network Analyzer |          |
| 30 Db Attenuator            | Bird<br>8306-300-N                                                             | MFC709<br>98      | Swept with calibrated HP network Analyzer |          |
| True RMS<br>Multimeter      | Fluke<br>179                                                                   | 8080071<br>0      | 12/08/02                                  | 12/08/03 |
| Converter                   | Form S meter box<br>assembly with Linear<br>120 – 240 VAC Step<br>up converter | 2917011<br>A-0758 | 12/06/02                                  | 12/06/03 |
| Variable<br>Autotransformer | PowerSat<br>116B                                                               | 100001            | N/A                                       | N/A      |

#### **Equipment Under Test:**

THE TEST SYSTEM: EUT RT-2200 Series 220 MHz Remote Transceiver

Manufacturer Tantalus Systems Corp.

Part Number RT- 2200

Serial Number Prototype

**Emissions Designator:** F1D155K

CABLING:

Cable Description Shielded Ferrite

Power AC Input Power Cable No No

TEST SETUP: For the unintentional radiator portion of the testing the EUT was placed in

receive mode, and for the Spurious emissions testing the EUT was placed

in transmit mode for the duration of the testing.

#### TEST SUMMARY:

| Test                                       | Standard                                   | Description                                                                                             | Result   |
|--------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| Conducted<br>Emissions                     | FCC 15.107<br>,15.207<br>Class B<br>Limits | The Conducted Emissions are measured on the phase and Neutral Power lines in the 0.15 - 30.0 MHz range. | Complies |
| Radiated<br>Emissions                      | FCC15.109<br>15.209<br>Class B<br>Limits   | The Radiated Emissions are measured from 30 MHz to 1000 MHz                                             | Complies |
| Radiated<br>Spurious                       | FCC 2.103/<br>2.1053                       | The radiated emissions are measured up to the 10 <sup>th</sup> Harmonic                                 | Complies |
| Frequency<br>Stability over<br>Temperature | FCC 90.213/<br>2.1055                      | Radiated Emissions<br>on the fundamental<br>form -30°C to +60°C                                         | Complies |
| Occupied<br>Bandwidth                      | FCC 2.1049                                 | A Radiated measurement of the fundamental                                                               | Complies |

MODIFICATIONS: This unit requires no modifications for it to pass.

RT-2200 tested complies with the requirements of FCC CFR47 part 15/B and FCC Part 90 Subpart I and T ( Private land mobile radio servises) CONCLUSION:

#### Part 1 - Radiated Emission Testing

DATE: July 23, 2002

TEST STANDARD: FCC CFR47, Part 15, Subpart B section 15.109/ 15.209 Class B

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test Section, above, for EUT Descriptions.

TEST SETUP: The equipment was set up in a 3 meter open field test site. Emissions in both horizontal and vertical polarization's were measured while rotating the

EUT on a turntable to maximize the emissions signal strength and the

results recorded on the attached plots.

CABLING DETAILS: The EUT was set up using the manufacturer's specified normal cabling

configuration.

CABLE DESCRIPTIONS

| Cable | Name                 | Ferrite | Shielded |
|-------|----------------------|---------|----------|
| Power | AC Input Power Cable | No      | No       |

MINIMUM STANDARD: Class B Limits:

| Frequency (MHz) | Maximum Field Strength<br>dBuV/m at 3m |
|-----------------|----------------------------------------|
| 30 - 88         | 39.0                                   |
| 88 - 216        | 43.5                                   |
| 216 - 960       | 46.5                                   |
| 960 - up        | 49.5                                   |

MEASUREMENT DATA: See Appendix B for Plots, The blue trace represents all emissions,

including ambient noise. 'All Suspects' are marked in purple. FCC Class B

limits are marked in solid purple.

EMISSIONS DATA: See Table 7 and 8 in Appendix B for corresponding frequencies.

#### Part 2 - Conducted Emissions

DATE: July 23, 2002

TEST STANDARD: FCC CFR47, Part 15, Subpart B section 15.107/ 15.207 Class B

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test Section, above, for EUT Descriptions.

TEST SETUP: The EUT was connected to the conducted emissions LISN apparatus.

METHOD OF MEASUREMENT: Measurements were made using a spectrum analyzer, Peak detector. Any

emissions that are close to the limit are measured using a test receiver, CISPR Quasi-Peak detector. The RT-2200 was tested for conducted emission in receiving and transmitting mode at 208 VAC 60 Hz.

CABLING DETAILS: The EUT was set up using the manufacturer's specified normal cabling

configuration.

CABLE DESCRIPTIONS

| Cable | Name                 | Ferrite | Shielded |
|-------|----------------------|---------|----------|
| Power | AC Input Power Cable | No      | No       |

MINIMUM STANDARD: Class B Limits:

| Frequency (MHz) | Maximum Level (dBuV) | Maximum Level (dBuV) |
|-----------------|----------------------|----------------------|
|                 | Quasi-Peak           | Average              |
| 0.45 – 30.0     | 51.0                 | 48.0                 |

MEASUREMENT DATA: See Appendix B for Plots,

EMISSIONS DATA: See Table 1, 2, 3, 4, 5 and 6 in Appendix B for corresponding frequencies.

#### Part 3 - Radiated Spurious Emissions

DATE: July 23, 2002

TEST STANDARD: FCC CFR47, Part 2, 103, and 1053

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test Section, above, for EUT Descriptions.

TEST SETUP: The equipment was set up at a 3 m measurement distance, and. Spurious

emissions we measured in both horizontal and vertical polarization's with signal strength and the results recorded on the attached graph and tables. This testing was performed with a 6 dB attenuator on the input of the spectrum analyzer. A notch filter was used for all frequencies but the fundamental and for any frequencies in close proximity to the fundamental.

CABLING DETAILS: The EUT was Set up using the manufacturer's specified normal cabling

configuration.

MINIMUM STANDARD: Spurious Attenuation = 55 + 10log(Power)dB .Power is specified in Watts.

 $ERP = (S/G - loss) + (G_{SUB} - G_d)$ 

 $ERP = (S/G - loss) + [(20logF - AF_S - 29.79) - (20logF - AF_D - 29.79)]$ 

 $ERP = (S/G - loss) - AF_S + AF_D$ 

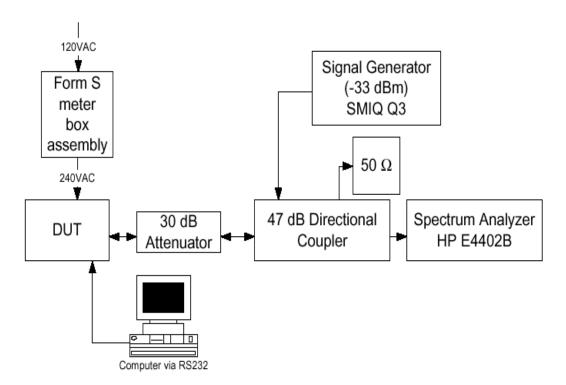
MEASUREMENT DATA: See Appendix C for Graphs and Data

EMISSIONS DATA: See Appendix E, for Harmonics Data and Plots

MEASUREMENT PROCEDURE: A bilog and horn antenna located 3 meters away from the transmitter picks

up any signal radiated from the transmitter. A spectrum analyzer covering the necessary frequency range is used to detect and measure any radiation picked up by the antenna. The testing procedure is repeated for both horizontal and vertical polarization's of the receiving antenna. Relative signal strength is indicated on the spectrum analyzer connected to this antenna, and the cable losses, amplifier gain and antenna correction factor are added to calculate the signal strength. Actual measurements are

recorded on the attached graphs.


#### Part 4 - Occupied Bandwidth

DATE: August 12 2002

TEST STANDARD: FCC CFR47, Part 2.1049

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test Section, above, for EUT Descriptions.

TEST SETUP:



CABLING DETAILS: The EUT was Set up using the manufacturer's specified normal cabling

configuration.

MEASUREMENT DATA: See Appendix D for Graphs and Data

EMISSIONS DATA: See Appendix D for corresponding frequencies

MEASUREMENT PROCEDURE: 1) The test setup in Figure 2 is used to test the Occupied Bandwidth at

room temperature. This is measured to be at 25°C using the Omega

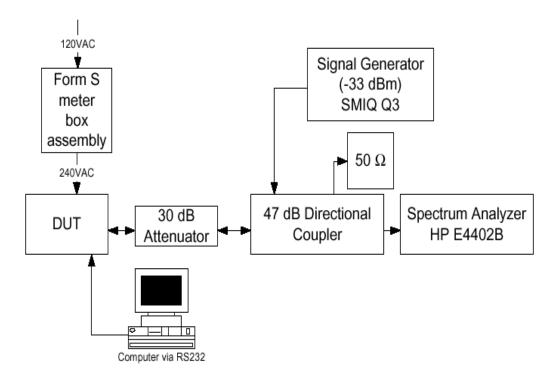
HH501DK Type K Thermometer.

2) The occupied bandwidth is measured using the "Occupied Bandwidth" function of the HP Model E4402B Spectrum Analyzer. Both data speeds

were measured and the data plotted.

The occupied bandwidth plots were performed for the three separate frequencies; 221.00247 MHz, 221.4975 MHz and 221.99747 MHz. The testing was performed at 1600 bps and 3200 bps. This test was performed

at 25°C.


#### Part 5 - Frequency Stability Over Supply Voltage Variation

DATE: August 12 2002

TEST STANDARD: FCC CFR47, Part 90.213

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test Section, above, for EUT Descriptions.

TEST SETUP: Test Setup for Occupied Bandwidth and Supply Variation tests.



CABLING DETAILS: The EUT was Set up using the manufacturer's specified normal cabling

configuration.

MEASUREMENT DATA: See Appendix G for Graphs and Data

EMISSIONS DATA: See Appendix G, for corresponding frequencies.

MEASUREMENT PROCEDURE: 1) The test setup in Figure 2 is used to test the Frequency Stability at room

temperature. This is measured to be at 25°C using the Omega HH501DK

Type K Thermometer.

2) The 120VAC supply is varied by the autotransformer and the supply voltage to the DUT is measured at the DUT supply input pins by the Fluke

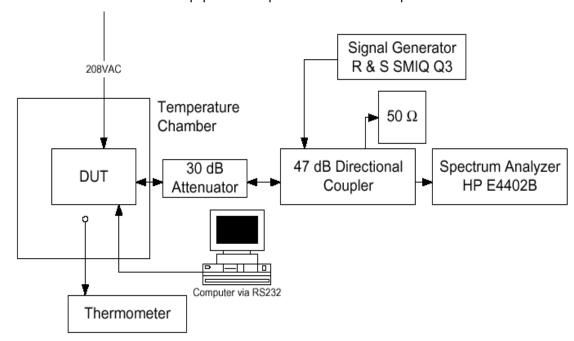
179 True RMS Multi-meter.

3) Measurements are made on all three test frequencies as per the

instructions stated in "Procedure – Mask versus Temperature" above.

The frequency stability over supply voltage variation plots was performed for the three-seperate frequencies; 221.00247 MHz, 221.4975 MHz and 221.99747 MHz. The testing was performed at 1600 bps and 3200 bps.

This test was performed at 25°C


#### Part 6 - Frequency Stability Over Temperature Variation

DATE: August 12 2002

TEST STANDARD: FCC CFR47, Part 90.213

DEVICE DESCRIPTIONS: Refer to the Equipment Under Test Section, above, for EUT Descriptions.

TEST SETUP: Test equipment setup for mask verses temperature tests.



CABLING DETAILS: The EUT was Set up using the manufacturer's specified normal cabling

configuration.

MEASUREMENT DATA: See Appendix F for Graphs and Data

EMISSIONS DATA: See Appendix F, for corresponding frequencies.

MEASUREMENT PROCEDURE:

- 1) The RT with its associated plastic enclosure is placed in the temperature chamber. The RT is powered on and the software allowed to initialize. The temperature chamber is programmed for the target temperature. After the calibrated digital thermometer reached the target temperature the RT is given time to reach thermal equilibrium.
- 2) The RT's normal operation is to disable its transmitter when it detects a temperature change of five degrees or more. It then will wait for a frequency correction command from the Base station. The laptop computer mimics the base station by issuing these commands through its serial port. At this time the RT is given the command to frequency correct by the laptop computer.
- 3) The RT receives the signal from the RF generator at a level of –110dBm which mimics the Base station and corrects its internal oscillator by a measurement and comparison method. The transmitter is keyed on with constant carrier and the peak of the signal adjusted to the top of the mask on the spectrum analyzer. Then the modulation is applied at the

appropriate data rate. The transmitter power and deviation is measured and calibrated before being put in the chamber with the calibrated attenuator and spectrum analyzer for 37dBm (5 Watts) and +/- 750 Hz. respectively.

- 4) The modulated data is taken with maximum hold function of the spectrum analyzer enabled. Then the transmitter is keyed off.
- 5) This procedure is repeated for the low, middle and high channels at all the measured temperatures.

The Frequency Stability Over Temperature Variation plots and data were performed for the three sperate frequencies; 221.00247 MHz, 221.4975 MHz and 221.99747 MHz. The testing was performed at 1600 bps and 3200 bps.

PERFORMANCE:

Complies.

## Appendix A: Photos



**Emissions Test Setup Front View** 



Emissions Test Setup Rear View

## Appendix B: FCC Part 15/B Measurement Data and Plots

#### **Measurement Data**

#### **Conducted Emissions**

#### **Non Transmitting**

Table 1: Line 1 FCC Class B

| Frequency<br>(MHz) | Peak (dBuV) | DelLim-Pk<br>(dB) |
|--------------------|-------------|-------------------|
| 13.14              | 43.8        | -4.2              |
| 13.28              | 43.8        | -4.2              |
| 13.56              | 43          | -5.0              |
| 12.86              | 42.6        | -5.4              |
| 22.54              | 41.8        | -6.2              |

Table 2: Line 2 FCC Class B

| Frequency (MHz) | Peak (dBuV) | DelLim-Pk<br>(dB) |
|-----------------|-------------|-------------------|
| 13.28           | 41.6        | -6.4              |
| 22.42           | 41          | -7.0              |
| .8203           | 40.1        | -7.9              |
| .5429           | 39.5        | -8.5              |
| .7263           | 39.5        | -8.5              |

#### **Transmitting**

Table 3: Line 1 FCC Class B

| Frequency<br>(MHz) | Peak (dBuV) | DelLim-Pk<br>(dB) |
|--------------------|-------------|-------------------|
| 13                 | 47.5        | -0.5              |
| 12.86              | 47.2        | -0.8              |
| 13.28              | 47          | -1.0              |
| 13.56              | 45.6        | -2.4              |
| 12.39              | 44.6        | -3.4              |

Table 4: Line 2 FCC Class B

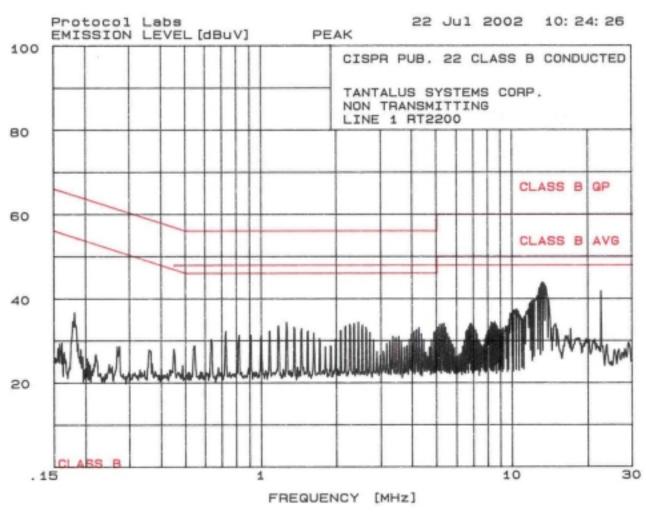
| Frequency (MHz) | Peak (dBuV) | DelLim-Pk<br>(dB) |
|-----------------|-------------|-------------------|
| 1.28            | 46.9        | -1.1              |
| .8203           | 46.6        | -1.4              |
| 1.182           | 46.6        | -1.4              |
| 1.182           | 46.6        | -1.4              |
| 2.184           | 46.6        | -1.4              |

Table 5: Line 1 FCC Class B AVG

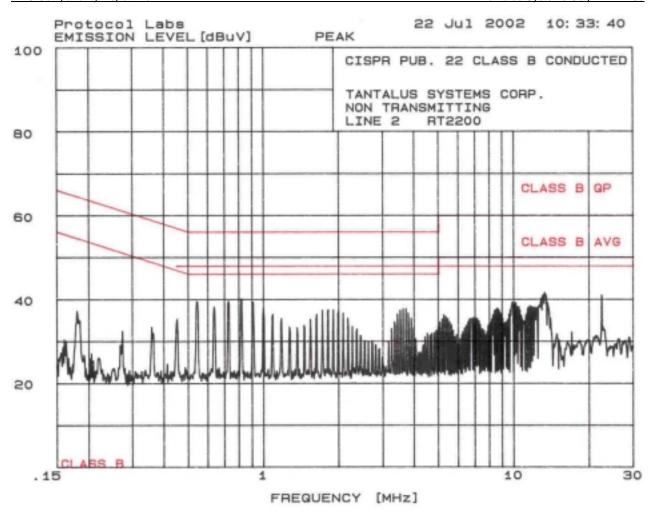
| Frequency<br>(MHz) | Peak (dBuV) | DelLim-Pk<br>(dB) |
|--------------------|-------------|-------------------|
| 13.14              | 42.8        | -5.2              |
| 13.28              | 42.7        | -5.3              |
| 12.66              | 41.1        | -6.9              |
| 13.56              | 40.3        | -7.7              |
| 12.01              | 36.5        | -11.5             |

Table 6: Line 2 FCC Class B AVG

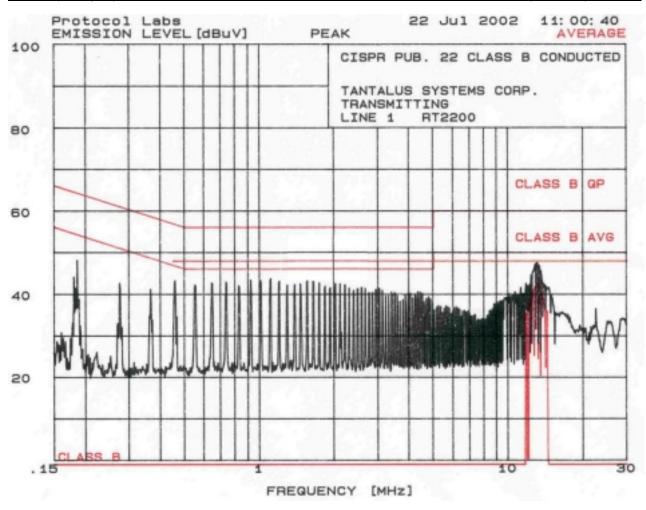
| Frequency (MHz) | Peak (dBuV) | DelLim-Pk<br>(dB) |
|-----------------|-------------|-------------------|
| 1.293           | 44.9        | -3.1              |
| 1.749           | 44.9        | -3.1              |
| 1.844           | 44.8        | -3.2              |
| 1.385           | 44.4        | -3.6              |
| .8291           | 44.3        | -3.7              |


Table 7: Radiated Emissions sorted by frequency

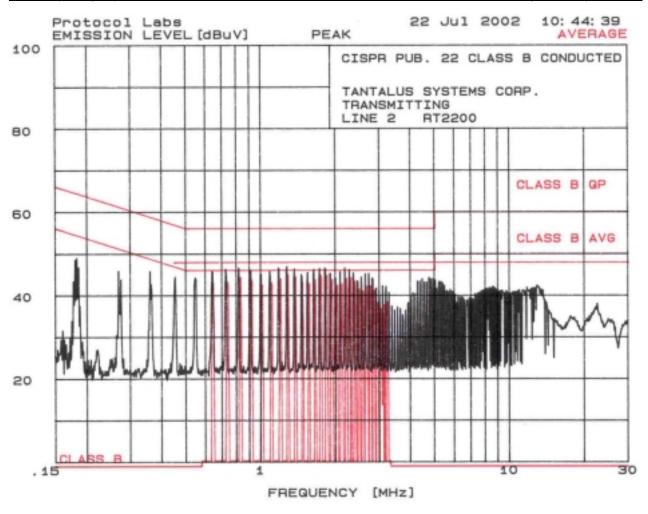
| Frequency  | Pol  | Height | Angle | Un Corr<br>Pk | Tot Corr | Peak     | DelLim-<br>Pk |
|------------|------|--------|-------|---------------|----------|----------|---------------|
| (MHz)      |      | (cm)   | (deg) | (dB)          | (dB)     | (dBuV/m) | (dB)          |
| 36.087427  | Vert | 100    | 0     | 14.10         | 6.53     | 20.63    | -19.37        |
| 37.502363  | Vert | 100    | 70    | 13.80         | 5.89     | 19.69    | -20.31        |
| 39.566032  | Vert | 100    | 195   | 16.50         | 4.97     | 21.47    | -18.53        |
| 40.332653  | Vert | 100    | 180   | 13.40         | 4.82     | 18.22    | -21.78        |
| 42.168850  | Vert | 100    | 180   | 16.90         | 5.06     | 21.96    | -18.04        |
| 107.074953 | Vert | 100    | 180   | 15.10         | 10.43    | 25.53    | -17.97        |
| 114.574077 | Vert | 100    | 107   | 14.10         | 9.90     | 24.00    | -19.50        |
| 129.753589 | Vert | 100    | 100   | 15.40         | 9.75     | 25.15    | -18.35        |
| 133.949789 | Vert | 100    | 0     | 12.50         | 9.93     | 22.43    | -21.07        |
| 141.936621 | Vert | 100    | 0     | 13.10         | 10.31    | 23.41    | -20.09        |
| 400.029338 | Vert | 100    | 180   | 11.80         | 19.00    | 30.80    | -15.20        |


Table 8: Radiated Emissions sorted by amplitude

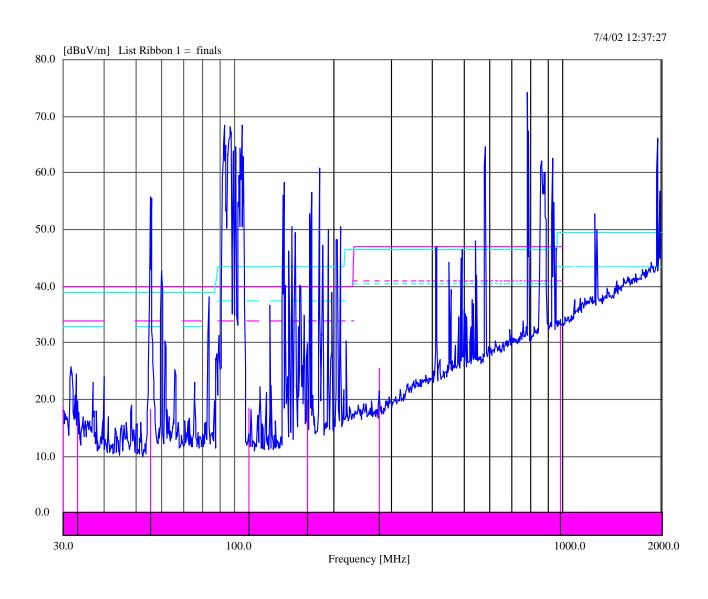
| Frequency  | Pol  | Height | Angle | Un Corr<br>Pk | Tot Corr | Peak     | DelLim-<br>Pk |
|------------|------|--------|-------|---------------|----------|----------|---------------|
| (MHz)      |      | (cm)   | (deg) | (dB)          | (dB)     | (dBuV/m) | (dB)          |
| 400.029338 | Vert | 100    | 180   | 11.80         | 19.00    | 30.80    | -15.20        |
| 107.074953 | Vert | 100    | 180   | 15.10         | 10.43    | 25.53    | -17.97        |
| 42.168850  | Vert | 100    | 180   | 16.90         | 5.06     | 21.96    | -18.04        |
| 129.753589 | Vert | 100    | 100   | 15.40         | 9.75     | 25.15    | -18.35        |
| 39.566032  | Vert | 100    | 195   | 16.50         | 4.97     | 21.47    | -18.53        |
| 36.087427  | Vert | 100    | 0     | 14.10         | 6.53     | 20.63    | -19.37        |
| 114.574077 | Vert | 100    | 107   | 14.10         | 9.90     | 24.00    | -19.50        |
| 141.936621 | Vert | 100    | 0     | 13.10         | 10.31    | 23.41    | -20.09        |
| 37.502363  | Vert | 100    | 70    | 13.80         | 5.89     | 19.69    | -20.31        |
| 133.949789 | Vert | 100    | 0     | 12.50         | 9.93     | 22.43    | -21.07        |

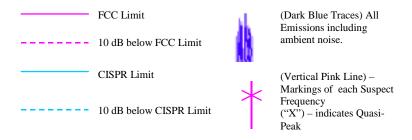

#### **Emissions Plots**




Receiving Line 1



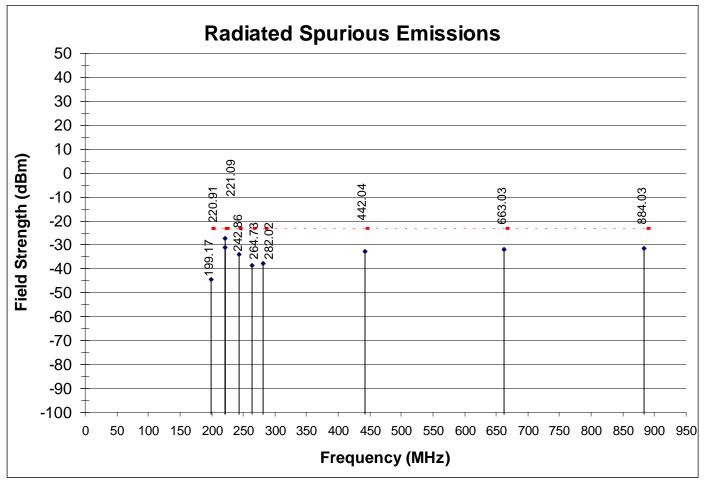

Receiving Line 2




Transmitting Line 1

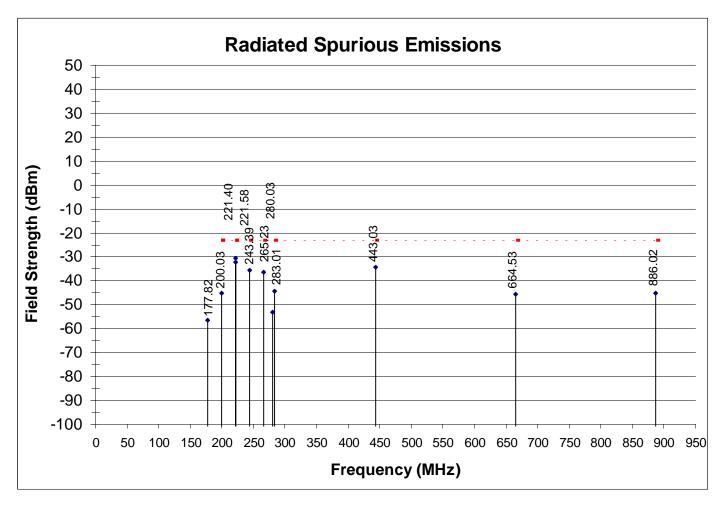


Transmitting Line 2



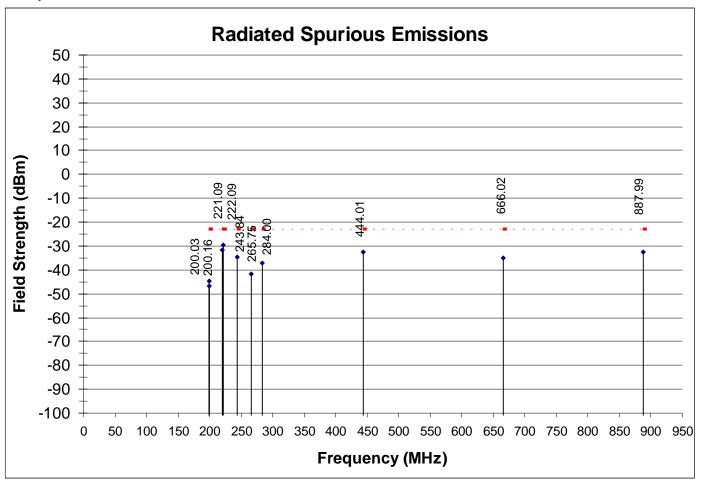



#### **Radiated Emission**


## **Appendix C: Radiated Spurious Emissions**

Spurious Emissions For 221.00247 MHz

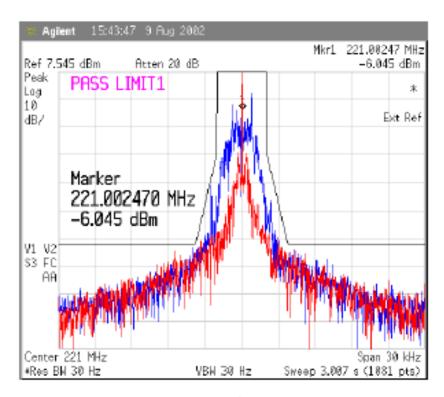



| Frequency<br>(MHz) | Polarity | Uncor Pk<br>(dBuV) | Tot Corr<br>(dB) | Peak<br>(dbuV/m) | Limit<br>(dBm) | subs AF | dipole AF | ERP    | dBc    |
|--------------------|----------|--------------------|------------------|------------------|----------------|---------|-----------|--------|--------|
| 199.1711           | V        | 26.4               | 24.1             | 50.5             | -23            | 11.8    | 16.20     | -44.35 | -84.35 |
| 220.9096           | V        | 45.4               | 19.06            | 64.46            | -23            | 11.2    | 17.10     | -30.99 | -70.99 |
| 221.0996           | V        | 49.2               | 19.06            | 68.26            | -23            | 11.2    | 17.11     | -27.20 | -67.20 |
| 242.8617           | V        | 36.6               | 25.87            | 62.47            | -23            | 11.75   | 17.92     | -33.80 | -73.80 |
| 264.7338           | V        | 32.3               | 25.74            | 58.04            | -23            | 12.85   | 18.67     | -38.70 | -78.70 |
| 282.0253           | V        | 32.1               | 26.19            | 58.29            | -23            | 13.4    | 19.22     | -37.73 | -77.73 |
| 442.0402           | V        | 33.1               | 31.57            | 64.67            | -23            | 16.4    | 23.12     | -32.85 | -72.85 |
| 663.0344           | V        | 25.4               | 35.86            | 61.26            | -23            | 19.95   | 26.65     | -31.74 | -71.74 |
| 884.0322           | V        | 22.9               | 38.41            | 61.31            | -23            | 22.55   | 29.14     | -31.38 | -71.38 |

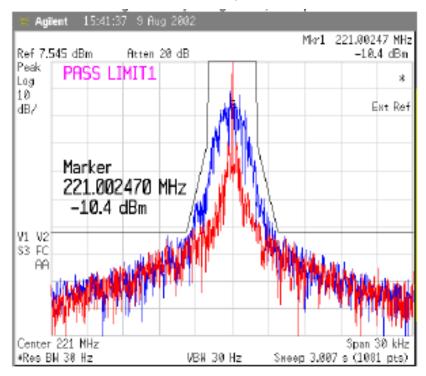
#### Spurious Emissions For 221.497500 MHz



| Frequency<br>(MHz) | Polarity | Uncor Pk<br>(dBuV) | Tot Corr<br>(dB) | Peak<br>(dbuV/m) | Limit dBc (dBm) | subs AF | dipole AF | ERP    | dBc    |
|--------------------|----------|--------------------|------------------|------------------|-----------------|---------|-----------|--------|--------|
| 177.8268           | V        | 13.40              | 23.79            | 37.19            | -23             | 11.8    | 15.21     | -56.67 | -96.67 |
| 200.0346           | V        | 26.30              | 23.5             | 49.80            | -23             | 11.8    | 16.24     | -45.09 | -85.09 |
| 221.404            | V        | 44.10              | 19.06            | 63.16            | -23             | 11.2    | 17.12     | -32.31 | -72.31 |
| 221.588            | V        | 45.90              | 19.06            | 64.96            | -23             | 11.2    | 17.13     | -30.52 | -70.52 |
| 243.395            | V        | 35.10              | 25.49            | 60.59            | -23             | 11.75   | 17.94     | -35.69 | -75.69 |
| 265.235            | V        | 35.80              | 25.38            | 61.18            | -23             | 12      | 18.69     | -36.43 | -76.43 |
| 280.027            | V        | 17.20              | 25.65            | 42.85            | -23             | 13.4    | 19.16     | -53.10 | -93.10 |
| 283.0057           | V        | 25.50              | 25.93            | 51.43            | -23             | 13.4    | 19.25     | -44.61 | -84.61 |
| 443.026            | V        | 32.00              | 31.34            | 63.34            | -23             | 16.4    | 23.14     | -34.20 | -74.20 |
| 664.534            | V        | 12.10              | 35.23            | 47.33            | -23             | 19.95   | 26.67     | -45.68 | -85.68 |
| 886.0238           | V        | 8.90               | 38.59            | 47.49            | -23             | 22.55   | 29.16     | -45.22 | -85.22 |

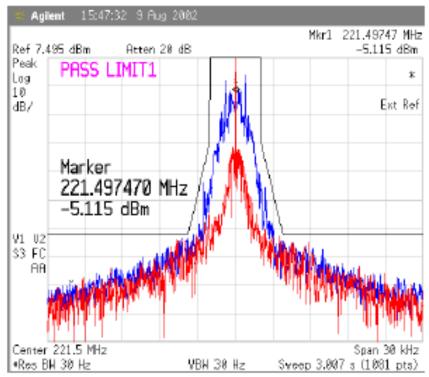

#### **Spurious Emissions For 221.997470 MHz**



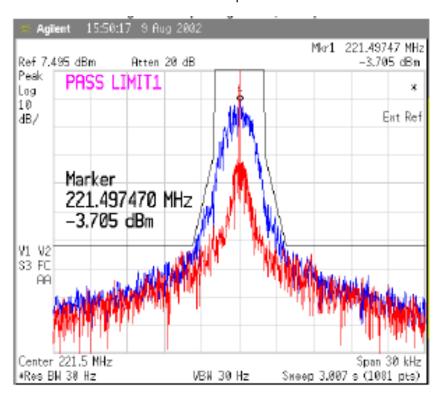

| Frequency<br>(MHz) | Polarity | Uncor Pk<br>(dBuV) | Tot Corr<br>(dB) | Peak<br>(dbuV/m) | Limit dBc<br>(dBm) | Subs AF | Dipole AF | ERP    | dBc    |
|--------------------|----------|--------------------|------------------|------------------|--------------------|---------|-----------|--------|--------|
| 200.034            | V        | 23.9               | 24               | 47.9             | -23                | 11.8    | 16.24     | -46.99 | -86.99 |
| 200.16             | V        | 26.1               | 24.01            | 50.11            | -23                | 11.8    | 16.24     | -44.78 | -84.78 |
| 221.092            | V        | 44.5               | 19.09            | 63.59            | -23                | 11.2    | 17.11     | -31.87 | -71.87 |
| 222.097            | V        | 46.9               | 19.09            | 65.99            | -23                | 11.2    | 17.15     | -29.51 | -69.51 |
| 243.846            | V        | 35.6               | 25.9             | 61.5             | -23                | 11.75   | 17.96     | -34.81 | -74.81 |
| 265.755            | V        | 29.5               | 25.72            | 55.22            | -23                | 12.85   | 18.70     | -41.55 | -81.55 |
| 284.001            | V        | 32.5               | 26.37            | 58.87            | -23                | 13.4    | 19.28     | -37.21 | -77.21 |
| 444.015            | V        | 33.3               | 31.71            | 65.01            | -23                | 16.4    | 23.16     | -32.55 | -72.55 |
| 666.0247           | V        | 22.2               | 35.93            | 58.13            | -23                | 19.95   | 26.68     | -34.90 | -74.90 |
| 887.997            | V        | 21.8               | 38.34            | 60.14            | -23                | 22.55   | 29.18     | -32.59 | -72.59 |

## **Appendix D: Occupied Bandwidth**

Occupied Bandwidth for 221.00247 MHz

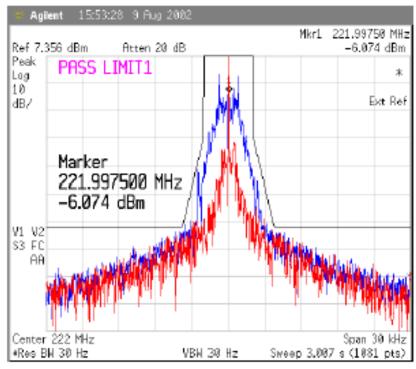


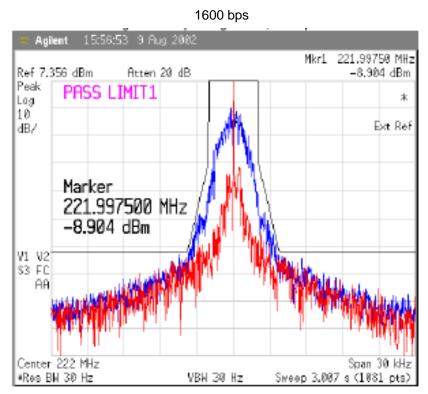



3200 bps

#### Occupied Bandwidth for 221.497470 MHz





#### 1600 bps



3200 bps

#### Occupied Bandwidth for 221.997470 MHz



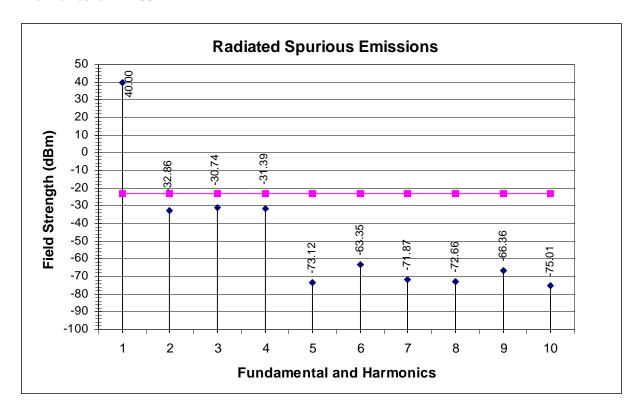


3200 bps

#### Low Channel Fundamental

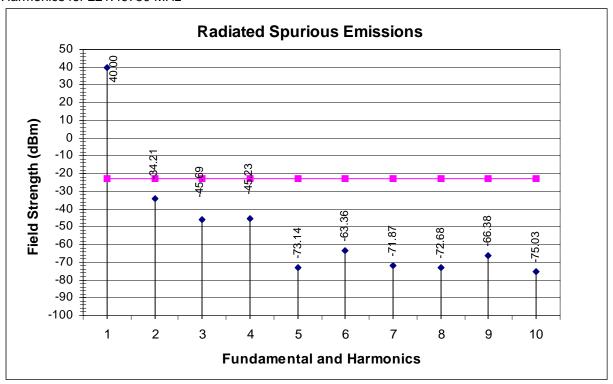
| Harmonic | Frequency | Polarity | Uncor Pk | Tot Corr | Peak     | Subs AF | Dipole AF | ERP   |
|----------|-----------|----------|----------|----------|----------|---------|-----------|-------|
|          | (MHz)     |          | (dBuV)   | (dB)     | (dbuV/m) |         |           |       |
| 1        | 221.02    | Vert     | 112.8    | 19.02    | 131.82   | 11.2    | 17.10     | 36.36 |

#### Mid Channel Fundamental


| Harmonic | Frequency | Polarity | Uncor Pk | Tot Corr | Peak     | Subs AF | Dipole AF | ERP   |
|----------|-----------|----------|----------|----------|----------|---------|-----------|-------|
|          | (MHz)     |          | (dBuV)   | (dB)     | (dbuV/m) |         |           |       |
| 1        | 221.4975  | Vert     | 111.2    | 19.06    | 130.26   | 11.2    | 17.12     | 34.78 |

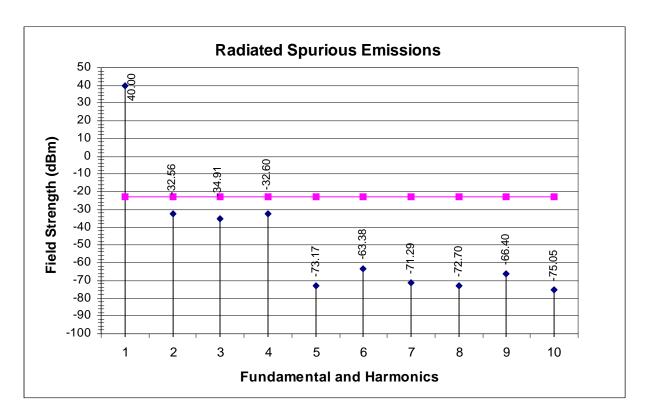
#### High Channel Fundamental

| Harmonic | Frequency | Polarity | Uncor Pk | Tot Corr | Peak     | Subs AF | Dipole AF | ERP   |
|----------|-----------|----------|----------|----------|----------|---------|-----------|-------|
|          | (MHz)     |          | (dBuV)   | (dB)     | (dbuV/m) |         |           |       |
| 1        | 221.9975  | Vert     | 112.94   | 19.09    | 132.03   | 11.2    | 17.14     | 36.53 |


## **Appendix E: Harmonic Measurements**

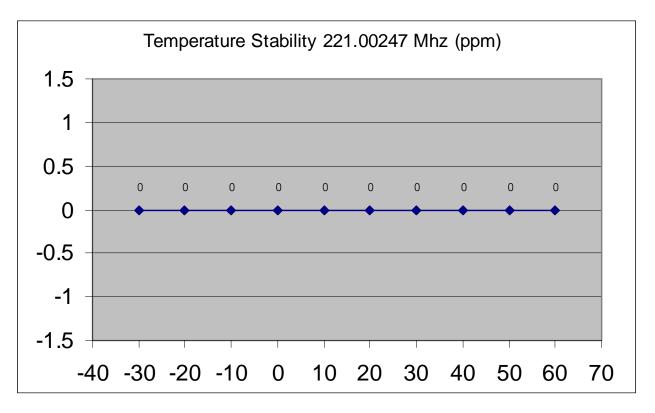
Harmonics for 221.00247 MHz




| Harmonic | Frequency<br>(MHz) | Polarity | Uncor Pk<br>(dBuV) | Tot Corr<br>(dB) | Peak<br>(dbuV/m) | Limit dBc<br>(dBm) | Subs AF | Dipole AF | ERP    | dBc     |
|----------|--------------------|----------|--------------------|------------------|------------------|--------------------|---------|-----------|--------|---------|
| 2nd      | 442.04             | V        | 33.1               | 31.57            | 64.67            | -23                | 16.4    | 23.12     | -32.85 | -72.85  |
| 3rd      | 663.06             | V        | 25.4               | 36.86            | 62.26            | -23                | 19.95   | 26.65     | -30.74 | -70.74  |
| 4th      | 884.08             | V        | 22.9               | 38.41            | 61.31            | -23                | 22.55   | 29.14     | -31.38 | -71.38  |
| 5th      | 1105.1             | V        | -12                | 40.96            | 28.96            | -23                | 26.2    | 31.08     | -73.12 | -113.12 |
| 6th      | 1326.12            | V        | -12                | 51.96            | 39.96            | -23                | 26.7    | 32.67     | -63.35 | -103.35 |
| 7th      | 1547.14            | V        | -12                | 44.54            | 32.54            | -23                | 27.2    | 34.01     | -71.87 | -111.87 |
| 8th      | 1768.16            | V        | -12                | 44.16            | 32.16            | -23                | 28.35   | 35.17     | -72.66 | -112.66 |
| 9th      | 1989.18            | V        | -12                | 49.13            | 37.13            | -23                | 29.5    | 36.19     | -66.36 | -106.36 |
| 10th     | 2210.2             | V        | -12                | 52               | 40               | -23                | 7.4     | 37.10     | -73.50 | -113.50 |

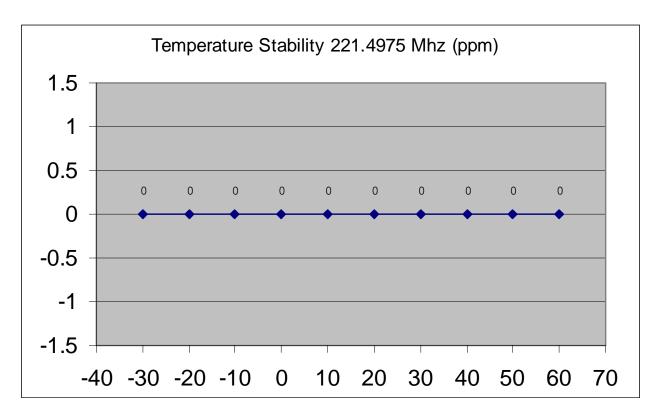
#### Harmonics for 221.49750 MHz




| Harmonic | Frequency<br>(MHz) | Polarity | Uncor Pk<br>(dBuV) | Tot Corr<br>(dB) | Peak<br>(dbuV/m) | Limit dBc<br>(dBm) | Subs AF | Dipole AF | ERP      | dBc      |
|----------|--------------------|----------|--------------------|------------------|------------------|--------------------|---------|-----------|----------|----------|
| 2nd      | 442.9949           | V        | 32                 | 31.341           | 63.341           | -23                | 16.4    | 23.14781  | -34.2068 | -74.2068 |
| 3rd      | 664.4924           | V        | 12.1               | 35.231           | 47.331           | -23                | 19.95   | 26.66963  | -45.6886 | -85.6886 |
| 4th      | 885.9899           | V        | 8.9                | 38.59            | 47.49            | -23                | 22.55   | 29.16841  | -45.2284 | -85.2284 |
| 5th      | 1107.487           | V        | -12                | 40.96            | 28.96            | -23                | 26.2    | 31.1066   | -73.1406 | -113.141 |
| 6th      | 1328.985           | V        | -12                | 51.96            | 39.96            | -23                | 26.7    | 32.69023  | -63.3642 | -103.364 |
| 7th      | 1550.482           | V        | -12                | 44.56            | 32.56            | -23                | 27.2    | 34.02917  | -71.8693 | -111.869 |
| 8th      | 1771.98            | V        | -12                | 44.16            | 32.16            | -23                | 28.35   | 35.18901  | -72.679  | -112.679 |
| 9th      | 1993.477           | V        | -12                | 49.13            | 37.13            | -23                | 29.5    | 36.21206  | -66.3824 | -106.382 |
| 10th     | 2214.975           | V        | -12                | 52               | 40               | -23                | 7.4     | 37.10846  | -73.5085 | -113.508 |

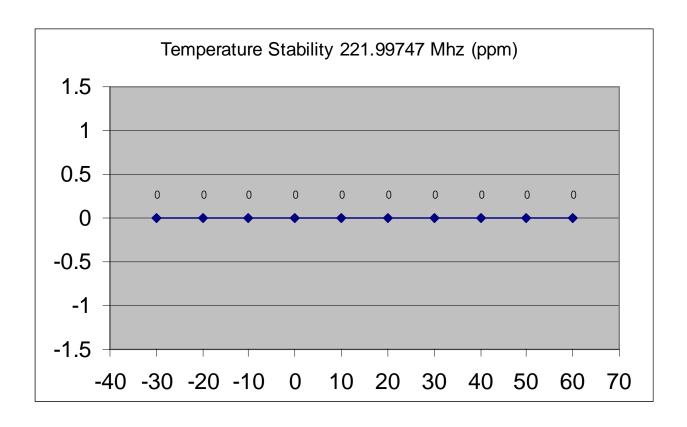
#### Harmonics for 221.997470 MH




| Harmonic | Frequency<br>(MHz) | Polarity | Uncor Pk<br>(dBuV) | Tot Corr<br>(dB) | Peak<br>(dbuV/m) | Limit dBc<br>(dBm) | Subs AF | Dipole AF | ERP      | dBc      |
|----------|--------------------|----------|--------------------|------------------|------------------|--------------------|---------|-----------|----------|----------|
| 2nd      | 443.995            | V        | 33.3               | 31.71            | 65.01            | -23                | 16.4    | 23.16739  | -32.5574 | -72.5574 |
| 3rd      | 665.9925           | V        | 22.2               | 35.93            | 58.13            | -23                | 19.95   | 26.68922  | -34.9092 | -74.9092 |
| 4th      | 887.99             | V        | 21.8               | 38.34            | 60.14            | -23                | 22.55   | 29.18799  | -32.598  | -72.598  |
| 5th      | 1109.988           | V        | -12                | 40.96            | 28.96            | -23                | 26.2    | 31.1262   | -73.1656 | -113.166 |
| 6th      | 1331.985           | V        | -12                | 51.96            | 39.96            | -23                | 26.7    | 32.70982  | -63.3838 | -103.384 |
| 7th      | 1553.983           | V        | -12                | 44.56            | 32.56            | -23                | 27.2    | 34.04876  | -71.2898 | -111.29  |
| 8th      | 1775.98            | V        | -12                | 44.16            | 32.16            | -23                | 28.35   | 35.20859  | -72.6986 | -112.699 |
| 9th      | 1997.978           | V        | -12                | 49.13            | 37.13            | -23                | 29.5    | 36.23165  | -66.4019 | -106.402 |
| 10th     | 2219.975           | V        | -12                | 52               | 40               | -23                | 7.4     | 37.10846  | -73.5085 | -113.508 |

## **Appendix F: Frequency Stability Over Temperature Variation**

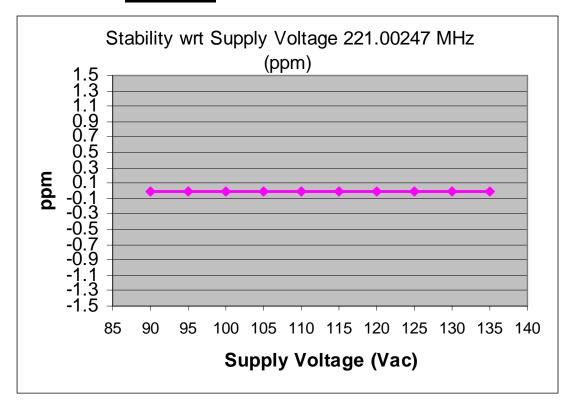



Frequency Stability VS. Temperature Specified Limits: +/- 1.5 ppm (-30°C to +60°C)

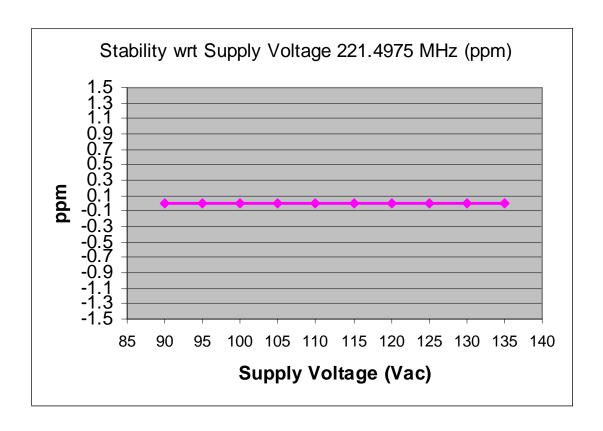
| Temp (°C) | Stability | Deviation |  |
|-----------|-----------|-----------|--|
|           | (ppm)     | (MHz)     |  |
| -30       | 0.00      | 0.00      |  |
| -20       | 0.00      | 0.00      |  |
| -10       | 0.00      | 0.00      |  |
| 0         | 0.00      | 0.00      |  |
| 10        | 0.00      | 0.00      |  |
| 20        | 0.00      | 0.00      |  |
| 30        | 0.00      | 0.00      |  |
| 40        | 0.00      | 0.00      |  |
| 50        | 0.00      | 0.00      |  |
| 60        | 0.00      | 0.00      |  |



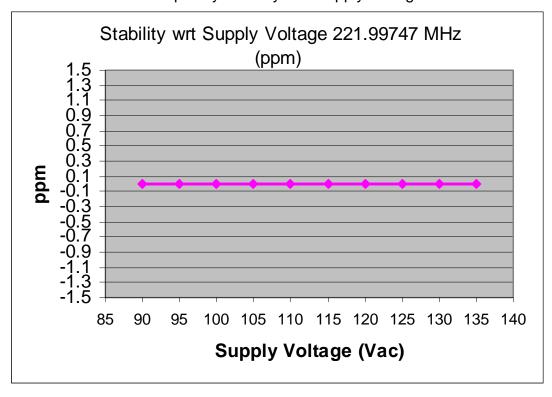
Frequency Stability VS. Temperature Specified Limits: +/- 1.5 ppm (-30°C to +60°C)


| Temp (°C) | Stability | Deviation |  |  |  |  |
|-----------|-----------|-----------|--|--|--|--|
|           | (ppm)     | (MHz)     |  |  |  |  |
| -30       | 0.00      | 0.00      |  |  |  |  |
| -20       | 0.00      | 0.00      |  |  |  |  |
| -10       | 0.00      | 0.00      |  |  |  |  |
| 0         | 0.00      | 0.00      |  |  |  |  |
| 10        | 0.00      | 0.00      |  |  |  |  |
| 20        | 0.00      | 0.00      |  |  |  |  |
| 30        | 0.00      | 0.00      |  |  |  |  |
| 40        | 0.00      | 0.00      |  |  |  |  |
| 50        | 0.00      | 0.00      |  |  |  |  |
| 60        | 0.00      | 0.00      |  |  |  |  |




Frequency Stability VS. Temperature Specified Limits: +/- 1.5 ppm (-30°C to +60°C)

| Temp (°C) | Stability<br>(ppm) | Deviation<br>(MHz) |
|-----------|--------------------|--------------------|
| -30       | 0.00               | 0.00               |
| -20       | 0.00               | 0.00               |
| -10       | 0.00               | 0.00               |
| 0         | 0.00               | 0.00               |
| 10        | 0.00               | 0.00               |
| 20        | 0.00               | 0.00               |
| 30        | 0.00               | 0.00               |
| 40        | 0.00               | 0.00               |
| 50        | 0.00               | 0.00               |
| 60        | 0.00               | 0.00               |


# Appendix G: Frequency Stability Over Supply Voltage Variation



Frequency Stability VS. Supply Voltage



Frequency Stability VS. Supply Voltage



Frequency Stability VS. Supply Voltage